To subscribe to the ORE seminar mailing list, click here.
For a (working draft) list of upcoming seminars, click here.
If you are interested in giving an ORE seminar, please contact us at nosal [at] hawaii [dot] edu.
Vibrations
Latest Past Events
Seminar: Understanding the Fundamentals of Vortex-induced Vibrations: Research Past, Present and Future
Deniz Gedikli, PhD Assistant Professor Ocean and Resources Engineering Department, University of Hawaii at Manoa Figure 1: Example offshore platforms that undergo VIV The canonical problem of fluid flow across an elastically mounted circular cylinder has been a widely studied problem in fluid mechanics due to the ubiquitous nature of the simple geometry in engineering applications and the resulting complexity of the fluid-structure interaction. In many engineering design and operation applications, it is advantageous to be able to predict fluid-structure interactions such as self-limiting vortex-induced vibrations, since these vibrations can strongly affect fatigue life or operational downtime in a variety
Experiments and Interpretation of Ice-Induced Vibrations of Offshore Structures
Dr. Torodd Nord Associate Professor Department of Ocean Operations and Civil Engineering Norwegian University of Science and Technology (NTNU) When drifting sea ice interacts with a structure, it may result in structural vibrations hence ice-induced vibration. With the potential to harm the structural integrity, secondary installations and operational safety, ice-induced vibration is an important problem that needs to be addressed in structural design. Since the first deployment of Arctic offshore platforms in Cook Inlet, Alaska in 1960s, extensive measurement campaigns have brought significant attention and knowledge to ice-induced vibrations. With today’s growing demand for renewable energy, the development of offshore
Seminar: Fluid-Structure Interactions: From Fundamentals of Flow-induced Vibration to Applications in Energy Harvesting
Banafsheh Seyed-Aghazadeh, PhD Mechanical Engineering Department, University of Massachusetts, Dartmouth When a flexible or flexibly-mounted structure is placed in fluid flow, it can deform or oscillate. The deformation or oscillation of the structure will result in the change of flow forces, which in turn will result in the change of the structure’s deformation or oscillation. This is called a Fluid-Structure Interactions (FSI) problem and the oscillation is called Flow-Induced Vibration (FIV). FIV has significant implications for a number of physical systems, from aeolian harps to power transmission lines, towing cables, undersea pipelines, drilling risers and mooring lines used to stabilize