Hottest, most buoyant hotspots draw from deep, primordial reservoir

Earth’s mantle—the layer between the crust and the outer core—is home to a primordial soup even older than the moon. Among the main ingredients is helium-3 (He-3), a vestige of the Big Bang and nuclear fusion reactions in stars. And the mantle is its only terrestrial source.

Scientists studying volcanic hotspots, like our Hawaiian Islands, find high helium-3 relative to helium-4 (He-3/4) in some plumes, the upwellings from the Earth’s deep mantle which may contain this primordial material. A 2012 study by Jasper Konter, geologist at the University of Hawaiʻi at Mānoa School of Ocean and Earth Science and Technology, and Thorsten Becker of the University of Texas at Austin proposed a correlation between such hotspots and the velocity of seismic waves moving through the Earth’s interior.

Inspired by that study, University of California, Santa Barbara geochemist Matthew Jackson teamed up with Konter and Becker to show that only the hottest hotspots with the slowest wave velocity draw from the primitive reservoir formed early in the planet’s history. Their findings appear this week in the journal Nature.

For their study, the researchers used the latest seismic models of the Earth’s velocity structure and 35 years of helium data. When they assessed oceanic hotspots with high levels of He-3/4 and associated seismic wave velocities, they found that these represent the hottest hotspots, with seismic waves that move more slowly than they do in cooler areas. They also analyzed hotspot buoyancy flux, which can be used to measure how much melt a particular hotspot produces. In Hawaiʻi, the Galapagos Islands, Samoa and Easter Island as well as in Iceland, hotspots had high buoyancy levels, confirming a basic rule of physics—the hotter, the more buoyant.

“We found that the higher the hotspot buoyancy flux, the more melt a hotspot was producing and the more likely it was to have high He-3/4,” Jackson said. “Hotter plumes not only have slower seismic velocity and a higher hotspot buoyancy flux, they also are the ones with the highest He-3/4. This all ties together nicely and is the first time that He-3/4 has been correlated with shallow mantle velocities and hotspot buoyancy globally.”

Read more at Science Daily, Phys.org and UH News.