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Abstract

Schooling behavior is a challenging topic in the context of animal aggregation. It is
also of economic importance for the estimation and conservation of stock sizes. An
individual based movement model will be developed, taking into account energetic
advantages of schooling. This model is a cellular automaton with a hexagonal grid. The
latter considers the geometry of a school, where fish swim in a diamond-shape config-
uration in order to take advantage of the velocity, induced by the tail strokes of pre-
ceding fish. Furthermore, knowing the induced velocity field makes it possible to
consider the energetic needs of fish swimming in that school and to describe the break
up of schools due to oxygen depletion. This allows us to estimate maximum school
sizes. © 1999 Elsevier Science Inc. All rights reserved.

Keywords: Fish school formation; Cellular automaton models; Behavioral model based
simulations; Populations with spatial structure

1. Introduction

The investigation of fish schools is interesting as a phenomenon of complex
structure and of self organization in animal life. It is also of economic im-
portance for fisheries worldwide. The fact that fish schools exist is essential for
some fisheries, since fishing can be targeted on schools. The knowledge about
school sizes, their occurrence and their distribution can help to make use of fish
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as protein rich food stuff without exhausting the stock. Therefore, a better
understanding of the formation of fish schools and their migration [1-3] is
essential.

Increasing yields in fishery are misleading as long as the catch intensity is
increasing. During the period from 1939 to 1959 the annual catch of yellowfin
tuna in the East Pacific increased from 56 250 000 to 85 500 000 kg, whereas
the local amount decreased from 4050 to 2250 kg per norm day, where a norm
day is defined by the size of the fleet and the total number of working hours.
These data are even more fatal if the share of young fish in the catch is in-
creasing, because the young fish are guaranteeing the offspring. What needs to
be better understood is the size of the fish stock, which is not directly linked
with the catch rates. Recent data show a stagnation rather than a decline in
catch rates, but these data need to be read carefully, because the commonly
used CPUE (catch per unit effort) might increase due to improved technologies,
even if the fish stock would be decreasing. The definition of the CPUE depends
on the catch strategy. It can be numbers of fish per 100 hooks for long-liners, or
melric tonnes per day for pole-and-line vessels [4,5].

Catch numbers and samples of fishery do not provide much information as
long as the size of schools, the distribution of schools and the migration routes
are not known. In the paper presented here the emphasize is on the study of the
size of schools and their distribution.

We suggest a theoretical two-dimensional model with nnormalized variables.
This model can be used to simulate the formation of schools. The unit length in
this model is the lateral average distance between two fish, and the unit time is
the time a fish swimming at average speed needs to cross the unit length.

The application of this model to concrete situations will be subject of a
future study. In this paper we focus on the description of the theoretical model.
The calculation of the maximum length of schools, assuming that oxygen is a
limiting factor, is based on experimental data.

More than 4000 species of pelagic fish are schooling, among them the tuna,
the herring and the mackerel. Large fish, such as the shark or the swordfish are
not schooling. Within some species mature fish are solitaire, but swim in the
swarm when they are young, such as Micropterus, a bass species. Some sharks,
instead, form schools for mating. There are several reasons why fish are
schooling. The relative importance of the reasons listed in the following is
different for different fish species.
¢ Protection: although the school in its entirely form might be discovered more

easily by a predator, swimming in a school reduces the probability for the

individual to become a prey item. A single fish can ‘hide in the crowd’. Ad-
ditionally, a predator can be confused by school members escaping into dif-
ferent directions. This is the so-called ‘confusion factor’.

¢ Energy savings: swimming in its predecessor’s wake results in hydrodyna-
mical advantages for the fish [6-9].
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o Social aspects: there are social advantages of schooling, such as a higher pos-
sibility to find a partner. For example, the Anthias squammipinnis is a coral-
reef fish living in schools with territories on the reef. Schools consist entirely
of females plus one male. If the male is removed, one of the females changes
sex in response to visual stimuli [10].

e Foraging: more eyes can find more prey items, but the food has to be shared.
The latter might be a reason why large fish do not school. Schooling fish can
more easily adjust their foraging behavior to changes in availability of food
sources and patchiness of food items. The sampling ability is reduced in
smaller groups of fish [11].

The emphasis of this model is on behavior that possibly originates in energy
saving strategies. In a phenomenological way we consider hydrodynamic as-
pects, as they can explain certain swimming configurations. Without devel-
oping our model on a hydrodynamic level, we use results of previous studies
for the geometrical conception of our model. The model to be presented in the
following is flexible enough for considering other aspects such as social be-
havior, as will be explained further below.

We consider four main patterns of schools. There are:

1. solitary fish,

2. schools that are called ‘together but confused’. They show a locally higher
density of fish, but not common orientation,

3. a common orientation and swimming direction. Such schools occur for fish
moving into a common direction, such as during migration. It is not yet
known if schooling is a necessary condition for migration. Certain swim-
ming configurations guarantee energetic advantages, and larger distances
can be crossed with a given amount of energy. A diamond-shape swimming
direction is likely to be advantageous in terms of energy and can be observed
in many schools [7-9].

4. swarm balls guarantee protection against predators. If every fish tries to
hide behind its neighbors, a ball is formed by the swarm. That way, the vul-
nerable surface is minimized.

This study focuses schools of the third type, because such schools are ex-
pected to be found during migration, whereas swarm balls are rather a short
term event. They can be observed when a group of fish is disturbed by a po-
tential predator. ;

In contrast to mammal herds, fish have no leader. The cooperation of a fish
school as a complex phenomenon is the result of individuals carrying the same
‘program’ i.e. having the same physiological properties for receiving infor-
mation from the environment and the same behavior patterns for reacting on
them. Therefore, cellular automata seem to be an appropriate method for
modeling fish schools. This type of a mathematical model is commonly used for
describing the complex interaction of individual subunits. An arbitrary number
of components (the cells) follows the same set of behavior rules and only reacts
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on cells in the local neighborhood [12]. Cellular automata became famous
through Conway’s game of life and were systematically studied by Stephen
Wolfram [13-13].

Previously, fish schools have been modeled by partial differential equations
and by means of Monte Carlo simulations [16-22]. The high number of fish in a
school suggests to describe fish schools as an interacting particle system in the
framework of Newtonian dynamics [23]. Cellular automata have been used for
studying swarms, but mainly mammal herds [24], insects [25] or bacteria
[26,27]. In the case of insects or bacteria a chemical substance is used as a
medium of communication (pheromones or slime, respectively). It might be
worthwhile to investigate pressure waves, produced by the tail beats of
swimming fish, in a similar way as a means of communication [28], i.e. as an
external field determining the swimming configuration. This requires further
studies of the lateral line and its reception area. At the present stage of re-
search, models suggesting energetic advantages as a driving force for schooling
are not always coherent with laboratory studies of the average fish-to-fish
distance [29]. This is due to differences in laboratory and natural environments
and also due to idealistic assumptions in the theoretical models.

So far, models of fish schools were evaluated by their ability to predict
cohesion and polarization [22]. Modeling a high degree of cohesion is not
necessarily equivalent to modeling a realistic fish school, since fish schools may
break up due to oxygen depletion [30] or solitary fish may not find a school if
the school is too far. In order to model the oxygen consumption of fish in a
school, the energy costs of swimming in that school must be known. An initial
number of fish does not necessarily have to build up one school. Fish can build
up several schools, if oxygen is scarce or if searching strategies are of limited
success. In two sample calculations we will show how school size and oxygen
depletion can be related.

In previous Monte Carlo simulations, positions and swimming angles were
continuous variables. They can be evaluated for each fish at each time step by
means of probability distributions, whose maxima are determined by the states
of the neighbor fish [16-18,22]. Efforts have to be made to determine the
neighbor fish at each time step, which forbids dealing with too large numbers
of individuals. It has been suggested to make a choice of representative indi-
viduals for simulating large schools [31].

Our basic assumptions (see below) on fish behavior are equivalent to those
made in the studies mentioned above, but we model in a discrete state space
with"a discrete set of swimming positions and angles. This reduces the nu-
merical effort, and, instead, we are able to present simulations with a larger and
therefore more realistic number of fish. We do not consider our approach as an
oversimplification, as pictures of fish schools show a striking order of well
defined swimming positions, and as hydrodynamical considerations suggest
such an order as well.
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2. The model

Schooling models are based on the following basic assumptions [17,22]:

1. Every fish in the school swims according to the same behavior model. The
model fish group moves without a leader, even though temporary leaders
seem to appear in the simulations.

2 The motion of each fish is only influenced by its nearest neighbors. Vision
and lateral line are considered to be the most important senses for school
organization.

3. Random influences are taken into account for the individual fish.

The first item points out the main difference between mammal herds and fish
schools. Because there is a leader, a mammal herd has a predefined direction of
motion. Therefore, one can look at animals that do not belong to the herd as
moving relatively to the herd. It is possible to introduce a coordinate system
that moves with the leader of the herd. This is not the case for fish schools.
Since there is no predefined moving direction, the movement of each fish has to
be evaluated — either at each time step or in a random sequence.

Due to the second point it stands to reason to model fish schools with cel-
lular automata. Cellular automata are the appropriate tool to model complex
phenomena that are based on local neighborhood rules only. It is still under
investigation to which degree the vision, the lateral line and the existence of an
induced velocity field (due to the tail strokes of preceding fish) interact, com-
plete or override each other, when a fish approaches a school. For some species
it is proven that bad light conditions can break up a school [21], yet apparently
blind fish can join a school as well [32].

The third requirement for schooling models — the consideration of random
influences — is often solved by a probability distribution over possible swim-
ming directions and velocities [22]. In our model, the cellular structure allows a
discrete set of moving directions only, because a fish has to move into one of
the neighbor cells. Stochastics are considered, whenever one discrete swimming
direction is chosen at random out of the set of possible directions: if a fish
averages the swimming directions of its neighbors, a swimming direction not
pointing a neighbor cell might result. In such a case one of the neighbor cells
closest to that swimming direction is chosen at random.

Before we go into the details of our model, we will summarize the main
features of a cellular automaton briefly. This we do for clarifying the used
terms.

Cellular automata are a class of models especially designed in order to
describe interwoven activities of a number of subsystems. This is a simple
approach for modeling a complex behavior: an arbitrary number of compo-
nents, all behaving according to the same rules, interact. These rules consider
the local neighborhood only. Each cellular automaton is defined through the
following five properties [12,33]:
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1. Cellular space — a discrete lattice of sites. The best known lattice is a two-di-
mensional rectangle, the ‘playground’ of Conways’s game of life [34]. In our
case it will be a two-dimensional hexagon grid. Such a grid is suitable in or-
der to model a diamond-shape swimming configuration, as it will be ex-
plained below.

2. State space — each site takes a set of finite possible values. In our model each
cell can be empty or can be occupied by one or more fish.

3. Neighborhood — The evolution of a site depends on local neighborhood rules

* only. Unlike on a rectangular grid, we do not have to differentiate between
nearest neighbors and neighbors on the diagonal line. A cell in a hexagonal
grid has six direct neighbors.

4. State evolution — The states of the cells evolve in discrete time steps. We fit
these rules to the observed behavior of fish. A fish will move towards a school,
and once within the school preferably into cells which are not highly occupied.

5. Boundary conditions — we choose periodic boundary conditions in order to
conserve the original number of fish.

In the following we will describe our model for fish schools in referring to
the properties of cellular automata listed above.

2.1. The cellular space

Pictures of fish schools often show a striking organization of swimming
positions. Fish swimming in rows shifted alternately to each other. That way
fish show a diamond-shape swimming configuration. At least qualitatively this
can be explained by calculating the velocity field which is induced by the tail
strokes of the swimming fish. For a detailed discussion of the following con-
siderations we refer to the literature [7-9].

The induced velocity ((#, v) in the complex plane) can be derived from the
complete potential w:

u—iu:‘:i—w, w=@+i¥, V&=V¥=0, (2.1)
v4

@ is called the velocity function, and ¥ is called the stream function. They
fulfill the Cauchy-Riemann-differential-equations.

Under the assumption of a low velocity and high Reynolds numbers, we
look at the vortices produced by the tail strokes as a Karman vortex street (Le.
the flow does separate).

Assuming a Karman vortex street, the complex potential of the vortex street
can be calculated from the positions of the vortices in the complex plane

— i3S [log(z ~ Ay(m,n)) + log(z — As(m,m)

n=0m=—ox

~ log(z — A3(m,n)) — log(z — A4(m, n))]. (2.2)
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Here z is a point in the complex plain, and 4;(m, n) are the positions of the
vortices, where m refers to the counting of vortices stemming from neighbor
fish, and n refers to the counting within a single vortex street of vortices shed by
one single fish. The +— signs are depending on the orientation of the vortices.
The vortex strength k can be derived from the ‘thrust=drag’ equation. For
more details see Ref. [7].

Gray 1968 verified experimentally that the Karman vortex street applies
to the fish model [35]. The observed swimming positions then seem to be
positions which require less physical effort, i.e. these positions are advan-
tageous in terms of energy. Due to the induced velocity field, there are
swimming positions which are more favorable and others which are less
favorable in terms of energy. A fish can swim in the wake of its predecessor
or against an induced current. In deriving w(z) (Eq. (2.2)) with respect to z
the induced velocity field can be calculated. It is illustrated in Figs. 1-3.
The calculations underlying the figures show that preceding fish beating
their tail in anti-phase produce a more favorable velocity field (without
components perpendicular to the swimming direction) than fish swimming
in phase. We do not claim that fish in a school deliberately move their tails
in anti-phase. Such a behavior would be altruistic, because it favors the
following fish. But we claim that situations where fish accidentally move
their tail in anti-phase rather become stabilized than situations with fish
swimming in phase.

A calculation of the energetic minima suggests a diamond-shape swim-
ming configuration [7-9]. Quantitatively, these calculations do not always fit
the distances measured between fish in a school [29]. Possibly, because other
factors such as social behavior and the reception area of the lateral line
play important roles besides an optimal use of the available energy. Cer-
tainly, fish are also found in other positions than in the energetic minima.
Other factors like predation and escaping determine the swimming direc-
tion, and the induced velocity field is not stable, because of other objects
drifting in the water. Qualitatively, a diamond-shape swimming configura-
tion can often be observed, and we will base the grid for the cellular au-
tomata on the induced velocity field. In order to display simulations on a
screen, we express the position of each cell in Cartesian coordinates {i, j},
where the sum of i and j is even, denoting the centers of the hexagons, s
(Fig. 7).

In general, cellular automata are criticized if they show patterns that pos-
sibly reflect nothing more than the underlying grid, and efforts — such as
randomizing the grid — are made to avoid such situations, since they are due to
numerical reasons without reflecting the biological reality [36]. Here, instead,
the grid is chosen deliberately and consciously, as we intend to implement the
anisotropy due to the wakes into our model.
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Induced velocity field
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Fig. 1. The velocity field left behind by four fish swimming to the left (calculated with the derivation
of the complex potential with respect to the complex variable, see Eq. (2.2)). The vortices left
behind by the fish swimming to the left are marked with an asterisk. Vector arrows are not plotted
for the sake of overall view, and directions are indicated by color shadings instead. Velocity vectors
with a component into the swimming direction of the school are plotted in a darker grey. In the
positions plotted in a lighter grey the induced velocity field is directed against the swimming di-
rection of the preceding fish. Focusing the darker areas shows that the favorable positions form a
diamond structure.

2.2. The state space

In the simplest version of our model the state of each cell is a vector whose
nonzero components are the swimming directions of each fish in that cell. Since
there are only six possible swimming orientations (in the directions of the six
neighbor cells), these components are a number between one and six. Zero
indicates an empty cell, and the number of nonzero elements indicates the
number of fish in that cell.

sij=1{01,00,...}, o, €10, 1,2,3,4,5,6}, i,j,keN. (2.3)

Hence, the first components ¢, indicates if the cell is occupied, and what the
orientation of the first fish in this cell is. The vector components are consec-
utively filled up. If o, is zero, all o; with / > k are zero, and there are k — 1 fish
in the cell.
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Induced velocity field
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Fig. 2. Same picture as before. Velocity vectors with a component against the swimming direction
of the school are not plotted in order to point out the favorable swimming positions.

This type of model is extremely flexible since further components of the state
variable can easily be introduced. In further versions of our model the state of a
cell can be described with a set of vectors. The orientation vector is then one
component of the state variable, other components possibly being the oxygen
concentration and the velocity of the surrounding water:

sij = {0, Cox, v}, (2.4)
with
0=1{01,02,03,...}, Co € R and v={v.,v,,0:}, v€E R3. (2.5)

Especially, we present simulations where oxygen consumption in a cell is
modeled as

Cox+1 = Cox,s + P(l - coxjt) - cox,tgn- (2~6)

Here, co is the oxygen concentration in a cell, p a replenishment rate, { the
oxygen consumption by a single fish, #» the number of fish in a cell, and 7 and
t + 1 refer to two consecutive time steps. Oxygen is supposed to be replenished
due to the mixing of water, and the maximum oxygen concentration (de-
pending on the water temperature) is normalized to one. Fish then only enter a
cell if the oxygen concentration is above a critical value: cox > Coxcrit» Otherwise
they turn away from the critical cell.



176 S. Stocker | Mathematical Biosciences 156 (1999) 167—190

AN\ N7~ \ L~ \ LI ~\ 1
AT R R R R
N \\ Wil
AR (N

il =\ I\
o AN X N
IR B B 7
R % T
TN
Z, N Q\\\

I LW TN

Fig. 3. Velocity field induced by two fish swimming to the left with tail strokes in phase. Only the
favorable swimming positions with a component into the swimming direction of the school (here: to
the left) are plotted. If the preceding fish move their tails in phase, the velocity vectors show a
component perpendicular to the swimming direction of the school. The compensation of this
component requires additional energy from the following fish. Again the vortex positions are
marked with an asterisk. Here, two vortices with identical horizontal (x-), but different vertical (y-)
positions have the same orientation, as the fish strike their tails in phase. In the previous two figures
such two vortices have opposite orientation.

2.3. The neighborhood

Due to the hexagon shape of the cells, the neighborhood is extremely
symmetrical. Each cell has six direct neighbors. Additionally, we consider an
extended neighborhood. Within the direct neighborhood fish will adjust their
swimming direction. Within the extended neighborhood, they will move to-
wards each other (see Fig. 4 ). The nearest neighbors form a concentric ring
around the center cell under consideration. If the center cell has the coordinates
{ij}, the six nearest neighbors have the coordinates

{i,j+2}, {i+1,j+1},

{i+ laj— 1}{ivj—2} {i_ laj— 1} {i_ 17j+ 1},

i,jeN
keeping in mind that in our fixing the centers of the hexagons expressed in
Cartesian coordinates allow x,y-coordinate pairs with even sums only.
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The next concentric rings of cells consist of 12,18, ... cells. The coordinates
of these cells can easily be determined from Fig. 4 . In our terminology we
speak about a neighborhood of radius r, where » € {1,2,3,...}. Even though
the concentric rings of neighbor cells from hexagons rather than a circle, we
refer to the term ‘radius’ as the result of the division of the number of cells in
such a ring by six. Hence, the direct neighbors belong to the neighborhood of
radius one, the radius of the next ring is two, etc. We assume a dead angle area
behind every fish, where that fish cannot realize neighbors.

2.4. The state evolution

The rules for the state evolution are summarized in Fig. 5. These rules are
according to the general rules of schooling models as mentioned in the intro-
duction to this chapter.

In the following we explain the most simple set of rules for the state evo-
lution, which is still reasonable in biological terms. More complicated rules are
possible and desirable from a biological point of view, but the rules listed here
for updating the automaton at each time step should be the basis for future
model development.

The occupation of each cell is checked in the beginning of the updating
algorithm. If a cell is occupied with more than one fish, any additional fish will

r >=3: search area

r = 2: attraction

l ! i ! i ! area

r = 1: parallel
orientation area

Fig. 4. The neighborhood of a cell in a hexagon grid.
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Fig. 5. A scheme for the cellular automaton model. These rules for the state evolution are applied
to each occupied cell (i.e. to each fish) at each time step.

move towards the closest empty cell. That way the repulsion area of former
schooling models is considered [22,17]. We assume that fish swimming too
close to each other will disturb each other through their tail strokes. A fish
never moves farther than to one of the six nearest neighbor cells at a time. If all
neighbor cells are occupied, the additional fish moves nevertheless, and, thus,
the double occupation is just shifted. At a further (third) time step the addi-
tional fish keeps moving ‘away from the crowd’. '

The new moving direction (a number between one and six indicating one of
the six neighbor cells) for all single fish in all occupied cells must then be de-
termined. Parallel orientation has higher priority than searching. Therefore, for
any occupied cell the orientation area is checked. If there are fish in the ori-
entation area, the new moving direction of the fish under consideration is the
rounded average of all swimming directions of all fish in the parallel orienta-
tion area, including the center fish. If the average is exactly between two
possible swimming directions, either direction is chosen at random. If there are
no fish in the orientation area, fish in the attraction area are checked, and the
fish under consideration moves towards the closet fish. Only if there are no fish
in the orientation area nor in the attraction area do the fish move at random,
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i.e. the direction component of the state variable is a random number between
one and six.

The orientation area and the attraction area are defined by their radius with
center in the cell of the fish under consideration. The term radius as it is used
on our hexagon grid is defined in the previous section. For the simulations, a
radius of one or two is used for the orientation area and of two or three for the
attraction area (see Fig. 4).

As previously mentioned, this model is based on normalized parameters. In
order to avoid a multiple occupation of cells, it is defined that a cell is
equivalent to the repulsion area. If it is assumed that fish move from one cell to
the next within one time step, it becomes clear that the length of a time unit is
the quotient of the distance between cell centers divided by the average
swimming speed of the school.

Strictly speaking, the state evolution of the cells rather than the fish is ob-
served. Speaking in terms of cellular automata, the state vector of an occupied
cell receives a direction component with the fish occupying that cell. An un-
occupied cell can switch to the state ‘occupied’ if it has an occupied neighbor
cell, and if the direction component of the state vector of this occupied
neighbor cell points into the empty cell.

Modeling the state evolution that way, we move away from the classical
cellular automaton, where the scalar state variables of cells evolve according to
deterministic rules and depending on the neighborhood. Our rules are not
entirely deterministic: if two fish move towards the same cell, a random choice
has to be made between the two of them. Indeed, classical cellular automata
cannot be used to model migration as the contents of cells cannot be ex-
changed. A number of suggestions has been made how to repair this ‘lack’ of
classical cellular automata. Usually, migration is implemented by means of a
stochastic process: two cells are picked up at random and their contents are
exchanged [37]. Another approach was suggested by introducing ‘dimers’: two
cells are updated at a time, depending on both the neighborhoods [38].

2.5. The boundary conditions

Periodic boundary conditions are chosen in order to conserve the initial
number of fish. As already mentioned, the location of the hexagon cells is
expressed in Cartesian coordinates. Thus, periodic boundary conditions yield a
torus. The high symmetry of the hexagons enables closure of the space into a
transformed sphere (see Fig. 6). However, the display of a grid that consists of
the proper amount of hexagons that can be closed to a transformed sphere, is
not very clear. Therefore, the classical boundary conditions that lead to a torus
are used (Fig. 7). In any case, the boundary conditions should not have a major
influence on the simulation results.
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Fig. 6. Closing a lattice of hexagons to a transformed sphere. The hexagons printed in grey form
the equator line. They are plotted twice and can be identified through their numbers. Some
hexagons along the equator line only have five neighbors, because they touch one of their neighbors
with two edges. Because of these singularities we speak about a transformation and not about a
homeomorphism on the sphere.

5 T
0 1 2 3 4 X

Fig. 7. Boundary conditions leading to a torus. The centers of the hexagon cells can be expressed in

Cartesian coordinates. In our fixing, the centers of the hexagons have even sums of x- and y-co-
ordinates.
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3. Results
3.1. Simulations

We present two simulations — with a higher and with a smaller number of
fish — and one simulation where we additionally consider oxygen depletion as
described in formula (2.6). The calculation of the maximum possible length of a
school is based on experimental data.

With the cellular automaton described in the previous section we simulate
the behavior of a number of fish initially at random distributed. Also the initial
swimming directions are determined at random out of the six possible swim-
ming directions (on a hexagon grid). The code is written in C and on request
available from the author. For each simulation the initial value of the random
generator was written down in order to allow a reproduction of the obtained
results at a later time. The state of the cellular automaton was at each time step
stored in data files, and the entire state evolution can be displayed with a
matlab program [39]. For this publication we show the final steps of three
sample evolutions (see Figs. 9 and 10).

For the statistical analysis (Fig. 8), the number and size of schools is re-
corded as well as the polarization of each school after a certain amount of time
steps (2000 in the example of Fig. 9, 10 000 for Fig. 10). The mean swimming
direction of the school is given with reference to the (vertical) y-axis; this is
against common use, but due to the hexagonal grid swimming directions along
the x-axis it cannot occur. Therefore, we gave preference to our notation for
the sake of clarity. In the tabular the angles « between the swimming direction
of the school and the y-axis are listed in degree(—180° < o < 180°).

It is a matter of definition how dense an aggregation of fish has to be in
order to be considered as a school. Therefore, we counted schools for an
evaluation radius of 1, 2 and 3. With an evaluation radius of 1, fish are con-
sidered to belong to the same school only if they occupy nearest neighbor cells.
With an evaluation radius of 2 one empty cell may be between fish of the same
school, and with an evaluation radius of 3 there may be a gap of two empty
cells.

The table in Fig. 8 shows the statistical analysis for the final formations in
Figs. 9 and 10. We calculate the average size of a school in dividing the total
number of fish by the number of schools (single fish are considered as schools
of size one). The mean swimming direction of each school is determined
through the vector sum of the swimming velocities of all fish divided by the
number of fish in the school under consideration. For the standard deviation of
the school we evaluate

o, =\ (n—n)/n, i=1,...s, (3.7
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12 fish, measureradius = 1

school# size mean swimming direction standard deviation
1 4 0 0
2 4 -60 0
3 2 180 0
4 2 -180 0

average school size: 3

standard deviation: 1.1547

64 fish, measurc_radius = 1

school# size mean swimming di
1 12 -60 0
2 6 -120 0
3 1n [ ]
4 22 -120 0
5 13 -60 0

average school size: 12.8

standard deviation: 3.24519

64 fish, model with oxygen consumption, measure_radius = 1

school# size mean swimming direction standard deviation

1 3 180 0
2 1 120 0
3 1 -60 0
4 7 -60 0
5 3 60 ]
6 6 -120 0
7 2 -120 0
8 4 -120 ]
9 10 -60 0
10 2 60 0
11 6 60 0

average school size: 5.81818

standard deviation: 4.38035

Fig. 8. Statistical output data for the 3 simulations displayed in Figs. 9 and 10. The mean swimming
direction is the angel between the vertical axis and the swimming direction of the school in degree.

where s is the number of schools, »; the size of school i, and n the average
school size.

Equivalently, we determine the standard deviation of the mean swimming
direction for each school

o =/ (& - ct,-‘j)z/nl, =1 .., {(3.8)

i

where &; is the mean swimming direction of school i (counter-clock-wise with
respect to the y-axis) and o;; the swimming direction of a single fish in that
school [22]. A perfect polarization is reached if ¢; = 0.

All results show a perfect polarization, i.e. no or only little deviation from
the swimming direction. This is not surprising, since we discretized the possible
swimming directions in only six. Therefore, the resolution of possible swim-
ming directions is not higher than 60° (360°/6). This is acceptable, because the
emphasis of this study is the investigation of school sizes. Furthermore, schools
with strongly coherent swimming directions can indeed be observed. This holds
even more in the time average, as schools would fall apart otherwise.



S. Stécker | Mathematical Biosciences 156 (1999) 167-190 183

100
80t
8ol

70F

10F § &
0 L L " s
0 10 20 a0 40 50 80 70 80 20 100

1001

%0}

N 3

70 EEE

60|

50

e

i £

T R
Fig. 9. Formation of schools after 2000 time steps for 12 (top) and for 64 (bottom) fish. The model
parameters are: search—radius =2, orientation—radius = 1.

The number and size of schools is stable after sufficiently long simulations.
What is ‘sufficiently long’, i.e. the convergence speed, depends on the model
parameters. Not only the radius of the attraction area, but also the radius of
the orientation area affects the time needed for schooling: if fish start to swim
into the same direction, even if they are not nearest neighbors, they are more
likely to become the nucleus of a school. In our simulations without oxygen
consumption we present results after 2000 time steps. We could not observe
any changes of the final pattern after 1000 time steps. In the case of models
with oxygen depletion some solitaire swimming fish without a specific (con-
stant) orientation always remain, as the oxygen depletion does not allow them
to join a school. However, the statistic of the number and average size of
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Fig. 10. Distorted formation of schools after 10 000 time steps for 64 fish. In the bottom figure the
relative oxygen concentration in the cells is visualized. The swimming path of the school can be
traced back. The parameter values are (referring to Eq. (2.6)): { = p=0.05, ¢, =0.8, search and
orientation radius as in the previous figures.

schools stabilizes also for models considering oxygen consumption. To be sure,
we increased the number of time steps in that case. The bottom table in Fig. 8
shows that there are either schools with about 10 fish, or very small groups with
about 3 fish. There are only a few patches with a medium size. This observation
suggests that the small fish groups are detachments from originally larger
schools due to a lack of oxygen. Additionally, we show the relative oxygen
concentration in the lower part of Fig. 10. The very dark points represent cells
with an oxygen concentration very close to the critical value, which is ¢, = 0.8
for that simulation.
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With an increasing number of fish the average size of schools increases, as
more fish are available and the likelihood to find and join a school increases.
For models with oxygen consumption basically the same can be observed, even
though in a weaker fashion. The difference to the model without oxygen
consumption is the increasing number of solitaire swimming, disorientated,
detached fish. ‘

3.2. The length of fish schools

In the following we calculate the maximum length of fish schools, assuming
that oxygen is the limiting factor. Towards the rear of a school oxygen can be
depleted due to the oxygen consumption of fish in front of the school. Oxygen
reductions of about 30% are reported for schools or mullet. If fish in the end of
the school actively roil the water surface, the school is close to break up [30].

In order to calculate the oxygen consumption throughout a school, we need
to know the oxygen need of fish swimming in a single line. The oxygen re-
quirement depends on the swimming speed of the fish.

The gross metabolic rate (GMR in (W/)) is a function of speed, water
temperature, light, age, season, etc. Typical values are [40-42]: 6.84 J/s fora2.8
kg yellowfin tuna swimming with 1.3 bl/s, 7.63 J/s for a 1.8 kg skipjack
swimming with 2.2 bl/s, where ‘bl’ denotes body lengths.

The required energy can be recalculated in oxygen need, using the oxycaloric
equivalent Eq, (energy/Vo,) . For muscular work it is14.1 J/mg O, or 20.1 J/ml
0,.

We compare the oxygen need to the oxygen available in sea water. The
oxygen concentration in sea water of 20°C is Cox=5.3 ml O,/1 water. The
appropriate temperature for tuna is higher than that — about 27°C - possibly
resulting in a lower oxygen concentration.

The oxygen available for a fish in a school is

O,y = ther X A X Cox, (3.9)

where uy is the effective speed and A is the capture cross-section of a single
fish. The effective speed can be higher than the speed that determines the
metabolism (Umetabol)» if the fish performs energy saving strategies.

The oxygen need for n fish in a consecutive row is

Oneed =n X GMR(umetabol)/EOy (310)
Oxygen is entirely depleted if
UeirACox

e = . 3.11
GMR(umetabol)/EOz ( )

We calculate an upper limit of the school length. Of course, the school will
break up before the oxygen of the surrounding water is entirely depleted. On



186 S. Stocker | Mathematical Biosciences 156 (1999) 167190

the other hand, we neglect a refreshment of oxygen due to the mixture with
water from the larger environment of the school.

In the following we show two examples for two tuna spices, using the
physiological data from the beginning of this section. Assuming an average
body length of 53.7 cm for a school of yellowfin tuna, the previous consider-
ations yield a school of 108 fish swimming in a consecutive row, or a school
length of 58 m. Assuming a school of skipjack with an average body length of
47.2 cm, the previous results in 145 fish or a school length of 68 m. The striking
unity of body size of fish within the same school has been reported and is no
additional assumption in the previous calculations.

The oxygen need can be reduced, when fish swim with energy saving
strategies. As mentioned throughout this study, swimming in advantageous
positions is an energy saving strategy.

Every second row of fish needs only 50% of the normally at that speed re-
quired energy, because it swims with the water stream. Therefore, the entire
school length can increase in 4/3.

Another energy saving strategy is burst and coast swimming [43,44]. A fish
can reach the same effective speed and reduce the required energy in 40% to
80%. That way the school length can increase by a factor of 1.25 to 2.5.

4. Discussion

The objective of the work suggested here is to model fish school formation
and realistic school sizes. This is decisive for estimations of stock sizes.

As a technic we suggest a cellular automaton model, since the phenomenon
of schooling is apparently based on the same behavior pattern for each member
of the school. We succeed in simulating the evolution of aligned fish schools. In
a further model the oxygen concentration is introduced: oxygen is reduced
when the cell is occupied and replenished when the cell is empty. By that
means, we can simulate the detachment of single fish from larger schools. In
two sample calculations we have shown how the school size can be related to
oxygen depletion.

Previous studies have shown that so-called averaging models lead to better
results than decision models [22]. In averaging models each fish averages the
behavior of its neighbor fish; in decision models each fish chooses at random a
“leader” fish in its environment. We relate the better results of the averaging
model to the hydrodynamic conditions of a school. The induced velocity field is
a superposition of wakes produced by all fish in that school. No fish can choose
to swim in the wakes of one neighbor fish only.

We model behavior based on energetic advantages for the fish. We consider
hydrodynamic advantages in introducing a hexagon grid, where the cells to be
occupied are already in the favorable positions.
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So far, our model is two-dimensional only, assuming that the major inter-
action of fish happens in the plane of their swimming direction. This is very
convenient from a mathematical point of view, because it is very elegant to
derive the velocity field in the complex plane from the complex potential. It has
to be investigated how far fish swimming above each other influence each
other, and if the mathematical assumptions made here are justified. Due to
technical problems there are only a few studies and video recordings of large
fish schools in the deep sea [45]. Lab conditions are different, and especially
schools of larger fish such as tuna can hardly be studied in basins, since lab
conditions alter the natural environment too much. Changing the swimming
direction constantly due to the limitations of a basin requires additional energy
from the fish.

The introduction of a natural geometry, such as a hexagon grid, simplifies
the consideration of energetic advantages, and restricts our model at the same
time to a certain class of fish schools. Fish schools of an entirely different
structure such as swarm balls or unorganized fish aggregations cannot be
considered. Our model applies mainly to such fish that school for the sake of
energy savings. Tuna is supposed to belong to that group, because the energetic
requirements on tuna fish are outstanding and extreme [46,47]. Since tuna fish
are not able to actively pump water over their gills, they need to swim for
having an adequate oxygen supply. At the same time, swimming increases the
metabolism and therefore the oxygen need [40-42].

In a later version of the model it would be interesting to introduce a ‘reason-
for-schooling-factor’. In such a model, foraging, protection, energy savings and
reproductive advantages, would be numerically weighted according to the fish
species under consideration. Depending on these weights the simulation of the
schools would result in structures such as swarm balls, diamond-shapes or
soldier lines [6].

The vector structure of the state variables allows an arbitrary number of
components. Therefore, the model can be easily extended, taking into account
further aspects such as prey density, distance to possible predators, and the
chemical composition of the surrounding water.

As already mentioned, cellular automata can be updated either simulta-
neously or in an asynchronous way. For one-dimensional automata it has been
shown that the fact of a simultaneous updating by itself can cause structures,
which have nothing to do with the underlying problem [48]. It is not yet clear if
this holds for two-dimensional automata. We consider simultaneous updating
appropriate, because fish in a school continuously swim. It would not be re-
alistic to simulate a single fish moving while all other fish are ‘waiting’. This is
different for mammal herds, which from time to time stop for the purpose of
feeding. We do not claim that every fish decides at the same moment where to
swim next, but that the evaluation steps of the cellular automaton are mo-
mentary displays of an ongoing action. Nevertheless, it remains interesting to
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investigate cellular automata with a set of behavior rules for school formation
with the evaluation of one cell at a time (chosen at random).

Last but not least, searching strategies deserve further interest. Which search
strategies result in an easier aggregation of initially solitary fish? What is the
optimal distance to be crossed, before a fish that does not succeed in finding a
school needs to change its swimming direction?

The above discussed model belongs to a wider class of models, which des-
cribe the interactions of individuals (or objects) possibly resulting in patch
information. These interactions depend on the relative positions and orienta-
tions of the individuals. A very comprehensive discussion of such models is
given in Ref. [49]. The general description considers continuous positions and
orientation angles, and gradual interaction intensities. This leads to a set of
partial integro—differential equations. Bifurcations between different behaviors,
such as spatially homogeneous alignment, formation of patches without
alignment and the formation of patches with alignment can be described. We
restricted ourselves to a discrete model, having a concrete application (to fish
schools) in mind. A cellular automation is a convenient modeling tool for that
purpose, allowing us to consider the anisotropy of the space due to wakes as
well. It would be interesting to derive the discrete model from the above
mentioned general class of models in view of the application of results.

In the model suggested here we merged a geometry stemming from hy-
drodynamical arguments with established assumptions on behavior. We hope
that the questions that arose in this context, such as search strategies, size and
polarization of schools, can also give direction for further experimental
studies.
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