The study of oscillating water column (OWC)-type wave energy converters (WEC) has primarily focused on applications in the nearshore environment with an end use in residential power grids. This study examines the power performance of the Halona OWC geometry relative to different blue economy energy objectives that focus on providing power in the intermediate-water-depth environment. The method examines power performance through the use of performance indicators and their relationship to power extraction efficiency. The study discusses the implications of these coefficients relative to realigned end uses and examine the analytical relationship between each indicator. A discussion will be presented to compare the traditional applications of wave power to new priorities of blue economy settings relative to these indicators. Traditional priorities may over emphasize the need to optimize extraction efficiency, and may be misguided for some at-sea power applications. The discussion will center on how performance indicators have functionality in OWC design outside of power performance, which can be used in the design of field deployed wave energy converters.