1. Course Number and Title

ORE 612 Dynamics of Ocean Structures

2. Credit and Hours

Credits, two 3-hour sessions per week

3. Instructor

Deniz Gedikli

4. Textbooks

Textbooks: None References:

- a. Bhattacharyya, R., <u>Dynamics of Marine Vehicles</u>, John Wiley & Sons, 1978
- b. Chakrabarti, S.K., Hydrodynamics of Offshore Structures, Springer, 1987
- c. Faltinsen, O.M., <u>Sea Loads on Ships and Offshore Structures</u>, Cambridge University Press, 1990
- d. Jackson, Leland B., Signals, Systems, and Transforms, Addison-Wesley, 1991
- e. Jacobson, Lydik S. and Ayre, Robert S., <u>Engineering Vibrations</u>, McGraw-Hill, 1958
- f. Newman, J.N., Marine Hydrodynamics, MIT Press, 1977
- g. Wilson, J.F., <u>Dynamics of Offshore Structures</u>, John Wiley & Sons, 2003

5. Course Information

- a. Course content: Response of floating platforms and vessels to wave action, spectral analysis in sea keeping. Frequency and time domain analyses of rigid body motions in six degrees of freedom.
- b. Prerequisite:
 - i. ORE 411 or consent.
 - ii. Co-requisite ORE 609 or consent.
- c. Designation: Offshore Option

6. Course Goal

Upon satisfactory completion of the course, the student should:

- a. Understand the wave forces which act on offshore structures
- b. Be able to calculate these forces for various situations
- c. Have a sound background in the mathematical tools involved
- d. Have a basic understanding of offshore structure kinematics

7. Topics covered

- a. Linear Oscillator One Degree of Freedom
- b. Free Vibration with Linear Damping
 - i. Motion of a Floating Body in Quiescent Water
- c. Forced Vibration Steady State Oscillation (Part I)
 - i. Motion of a Floating Body in Regular Waves
- d. Forced Vibration Transient and Nonperiodic Vibrations
 - i. Review of Laplace Transform
 - ii. Unit Step Function Indicial Response
 - iii. Unit Impulse Function Impulsive Response

- iv. Pulsed Sinusoidal Excitation
- v. Arbitrary Excitation
- e. Forced Vibration Steady State Oscillation (Part II)
 - i. Review of Fourier Transforms
 - ii. Impulsive Response and Complex Frequency Operator
- f. Time Domain Solutions
- g. Time Domain Solution of Equations of Motion Containing Frequency Dependent Coefficients
 - i. Connection between Frequency Domain and Time Domain
 - ii. Time Domain Description Linear Equations of Motion
 - iii. Hydrodynamic Force on Body Making Arbitrary Oscillations in Originally Calm Water
- h. Motion of Floating Bodies
 - Kinematics of Rigid Bodies
 - ii. Linear Momentum of a Rigid Body
 - iii. Angular Momentum
 - iv. Dynamics of a Rigid Body

Linear Motions

Rotational Motions

The General Six Scalar Equations of Motion

The Linearized Equations of Motion for a Body with a Plane of Symmetry

- i. Hydrodynamic Coefficients and Wave Excitation 3D Source Distribution
 - i. Review of Ideal Fluid Theory
 - ii. Green's Theorem and Distribution of Singularities
 - iii. Hydrodynamic Pressure Forces
 - iv. Force on a Moving Body in an Unbounded Fluid
 - v. General Properties of Added Mass Coefficients
 - vi. The Body-Mass Force
 - vii. Linear Diffraction Theory Equations of Motions
 - viii. Non-Linear Equations of Motion Frequency Domain
 - ix. Non-Linear Restoration Function Ritz-Galerkin Method
 - x. Forced Oscillation with Non-Linear Damping and Non-Linear Restoration
 - xi. General Types of Non-Linear Damping and Linear Restoration
- j. Two Moving Body Interaction Problem
 - i. Van Oortmerssen (1979)
 - ii. Cummins (1962)
 - iii. Greeson (1997)
- k. Ship Motions in Irregular Seas
 - i. St. Denis, et al (1950)