To subscribe to the ORE seminar mailing list, click here.
For a (working draft) list of upcoming seminars, click here.
If you are interested in giving an ORE seminar, please contact us at nosal [at] hawaii [dot] edu.
coastal structures
Latest Past Events
Seminar: A Numerical Study of Effects of Perforation Layouts on Wave Energy Dissipation Caused by a Submerged Perforated Breakwater in Front of a Vertical Seawall
Bilger Hall 150 2545 McCarthy Mall, HonoluluBrady Halvorson Ph.D. Student Department of Ocean and Resources Engineering University of Hawai’i at Mānoa Location Information **This seminar will be held both in person (Bilger Hall 150) and over Zoom** https://hawaii.zoom.us/j/95081858686 Meeting ID: 950 8185 8686 Passcode: OREseminar Perforated structures are a promising alternative to standard sea walls and breakwaters for dissipating wave energy and protecting coastlines. Perforated marine structures can effectively remove wave energy from ocean waves by the energy loss associated with the flow through the perforations in the structure. Understanding the factors that may affect the hydrodynamic characteristics of flow through a perforated plate is important
The effect of water wave conditions and geometrical parameters of a fixed Oscillating Water Column Wave Energy Converter on its hydrodynamic performance
Watanabe 112 2505 Correa Rd, HonoluluDr. Ayrton Alfonso Medina Rodriguez Postdoctoral Researcher Applied Research Laboratory and Department of Ocean and Resources Engineering University of Hawaiʻi at Mānoa Location Information **This seminar will be held both in person (Watanabe Hall 112) and over Zoom** Meeting ID: 961 6222 2366 Passcode: OREseminar https://hawaii.zoom.us/j/96162222366 In order to achieve maximum pneumatic power in an Oscillating Water Column (OWC) device, it is crucial for the chamber to operate as close to the resonance condition as possible. This means that the frequency of the incident wave must match the resonant frequency of the converter. This resonant frequency is influenced not only
Seminar: Wave runup, forecasting, and enhanced observations with a drone-mounted LiDAR
Zoom Meeting ID______ 935 4503 7290 Passcode: ore792Julia Fiedler, PhD Postdoctoral Scholar Scripps Institution of Oceanography University of California San Diego Storm wave run-up causes beach erosion, wave overtopping, and street flooding. Extreme runup estimates may be improved, relative to predictions from general empirical formulae with default parameter values, by using historical storm waves and eroded profiles in numerical runup simulations. For use in a local flood warning system, the relationship between incident wave energy spectra E(f) and SWASH-modeled shoreline water levels is approximated with the numerically simple integrated power law approximation (IPA), wherein broad and multi-peaked E(f) are accommodated by characterizing wave forcing with frequency-weighted integrals