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ABSTRACT 

The Imaging FlowCytobot (IFCB) has a continually growing role in 

oceanographic research, particularly in the exploration of microbial life within the North 

Pacific Subtropical Gyre (NPSG). However, the vast amount of data generated by the 

IFCB poses a challenge for manual sorting and taxonomic classification. This study 

addresses this challenge by developing a Convolutional Neural Network (CNN) training 

set to efficiently categorize IFCB images into taxonomic groups. Specifically focusing on 

the diatom Hemiaulus and ciliate phylum Ciliphora during a research cruise within the 

NPSG in the summer of 2021, the study aims to quantify the CNN's performance 

compared to manual annotations of IFCB images taken on this cruise, providing insights 

into the CNN’s accuracy and precision over time.  Statistical analyses of the CNN’s 

machine learning-based classifications indicate a high accuracy in the automated 

identification of Hemiaulus and Ciliophora. Analysis of biovolume and particle number 

concentration reveals trends in taxonomic abundance over the course of the cruise. 

Despite morphological changes of Hemiaulus as it loses structure over time, the CNN 

demonstrates an overall improvement in accuracy as the cruise progresses, particularly 

for Hemiaulus. This study highlights the development of a robust training set of roughly 

76,000 images, allowing the CNN to accurately classify images collected within the 

NPSG. 

 

 

Keywords:    Taxonomic sorting, machine learning, zooplankton, Imaging FlowCytoBot 

(IFCB), North Pacific Subtropical Gyre (NPSG), ocean microbiology.
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1.0 INTRODUCTION 

 

1.1 Significance of research 

The exploration of plankton in the ocean serves as a fundamental aspect of 

understanding marine ecosystems, offering insights into biodiversity, ecological 

dynamics, and biogeochemical processes. Plankton, despite their microscopic size, play 

pivotal roles in marine food webs, carbon cycling, and global climate regulation 

(Falkowski, 2012). Therefore, accurate quantification and characterization of planktonic 

organisms are essential for comprehending and predicting oceanic processes. 

The introduction of automated imaging tools such as the Imaging FlowCytobot 

(IFCB) marks a significant advancement in ocean research that has allowed for a more 

thorough investigation of the diversity and ecology of microbial life in the global ocean. 

We have utilized this tool in the North Pacific Subtropical gyre (NPSG), where low 

concentrations of nutrients limit planktonic growth and the standing stocks of 

phytoplankton are relatively low. In this ecosystem, the IFCB can collect around 45,000 

images per day of particles ranging between ~4-100 µm from surface waters when run in 

near-continuous mode. However, the sheer volume of data generated by the IFCB 

presents a daunting challenge—it can be overwhelming, difficult to process, and 

impractical to manually sort through. This project aims to address this issue by 

developing an accurate, manually annotated training set to guide a machine learning 

approach (specifically a Convolutional Neural Network, CNN) to classification of IFCB 

images into distinct taxonomic categories. Therefore, the overarching goal is to quantify 

the performance of the CNN compared to manual annotations through the analysis of the 
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abundance and sizes of two taxa, the diatom Hemiaulus and ciliate phylum Ciliophora, 

collected over the course of a 14-day research cruise in the NPSG in July of 2021.  

Any machine learning approach requires a high-quality, curated training set of 

images. The ultimate accuracy of machine learning categorization is directly dependent 

of the strength and breadth of the training sets in representing the diversity of 

morphology for distinct classes. Additionally, given Hemiaulus’ change in morphology 

over time, as further discussed in this paper, it is hypothesized that these changes may 

impact the CNN’s ability to accurately classify Hemiaulus. This paper aims to (1) 

describe the development of a robust training set of images for the NPSG and (2) assess 

the accuracy of CNN-based categorization of two distinct taxa of plankton imaged over 

the course of a process cruise conducted in the summer of 2021. In addressing these aims, 

this paper will also broadly present the resulting data on abundance and sizes of these 

organisms, thereby encompassing a comprehensive evaluation of both the classification 

performance and ecological characteristics of the NPSG plankton community. 

 

1.2 The North Pacific Subtropical Gyre 

Being the largest ecosystem on the planet, the North Pacific Subtropical Gyre 

(NPSG) is a prime example of what is often referred to as an "ocean desert" due to its 

unique characteristics that contribute to a relatively low level of biological productivity 

(Dai et al., 2023). This phenomenon stems from the establishment of a permanent low-
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density cap within the 

NPSG, which hampers 

vertical nutrient mixing 

and limits essential 

nutrient availability to 

surface waters (Karl & 

Church, 2017). Climate 

change has the potential to 

exacerbate these 

conditions, with rising sea surface temperatures which can intensify stratification and 

concomitantly reduce nutrient upwelling from deeper waters (Karl et al., 2021; Gregg et 

al., 2005; Boyce et al., 2010). 

The data collected and analyzed here are a component of a larger research 

expedition to investigate the ecology and biogeochemistry of a region of the NPSG 

marked by the presence of an anticyclonic mesoscale eddy and enhanced chlorophyll 

biomass observable from satellite-based remote sensing. Initial in situ observations of this 

feature revealed high silicate levels in surface waters and elevated concentrations of N2 

associated-diatoms known to be associated with symbiotic N2 fixing microorganisms. 

Blooms of diatom-diazotroph associations (termed DDA’s) are not uncommon for the 

region in summer-fall months when waters are strongly stratified (Villareal et al., 2012 

and Grabowski et al., 2019). The growth of diazotrophs is a source of ‘new’ nitrogen to 

the upper euphotic zone, which is persistently nitrogen starved.  This newly fixed 

nitrogen can fuel the growth of non-diazotrophic species and contribute to the 

Figure 1.2.1 The North Pacific Subtropical Gyre and its surrounding 
currents. (ResearchGate, 2023) 
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enhancement of nutrient export processes (Karl et al., 2021). Therefore, these blooms 

play a pivotal role in nitrogen cycling and carbon regulation, significantly impacting the 

biogeochemical dynamics of the NPSG ecosystem. 

 

1.3 Imaging FlowCytoBot 

 In 2018, the White/Henderikx-Freitas lab began making underway measurements 

on regular research cruises in the NPSG using an Imaging FlowCytoBot (IFCB) to better 

understand the taxonomic makeup of the NPSG and surrounding oceanic region. Further 

explained in the Methods section of this paper, the IFCB is an in-flow submersible 

cytometer that is used in near-continuous mode to sample plankton populations from a 

shipboard uncontaminated flow-through system. With the help of a red diode laser, the 

IFCB is able to detect and capture all particulates ranging in size between ~4-100 µm that 

flow through. The IFCB is triggered to capture images through both light scattering and 

red fluorescence, emitted by chlorophyll and phycocyanin pigments, to allow for the 

documentation of both phytoplankton and zooplankton (Dugenne et al., 2020 and 

Dugenne et al., 2023) While all particles scatter the laser’s light, those containing 

chlorophyll will emit a red fluorescence, allowing the machine to also document the 

fluorescence of each passing particle (Olson and Sosik, 2007). The IFCB has the ability 

to capture images of particles from ~4 to 100 μm in size with the upper limit determined 

by the mesh size of screening used at the intake port. The sample volume is ~ 5 ml and 

the sample frequency is ~ 20 min. (Olson and Sosik, 2007). Through a combination of 

video and flow cytometric technology, this machine captures images of various microbes 

that ‘trigger’ the camera based on scattering or fluorescence thresholds. This allows 
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morphological descriptions of imaged particles along with their relative chlorophyll 

fluorescence and scattering signals. This data can then be used for taxonomic 

identification or cell size dynamics (Cael & White, 2020, Dugenne et al., 2020). 

Over the past six years of using the IFCB, the lab has accumulated over 9 million 

images across multiple research cruises across the Pacific Ocean. With research cruises 

such as a 2021 process cruise (termed PARAGON 1) accumulating roughly 650,000 

images, manual annotations of IFCB images become time-consuming and prohibitively 

expensive from a labor perspective. As a result, machine learning classification pipelines 

are typically used to facilitate automated classification of imaged. There are currently two 

major automated learning approaches for IFCB images: support vector machine based on 

a feature selection algorithm and random forest (RF) algorithms (Juranek et al., 2020 and 

Nardelli et al., 2022). Following recent advances in deep learning techniques for 

computer vision, the IFCB community has been transitioning to CNN’s to enhance image 

classification accuracy. CNNs directly extract features from images and learn 

semantically meaningful features as they train on labeled images. These features 

correspond to relevant components of the image related to the labels, making CNNs 

highly accurate for image classification tasks (Nardelli et al. 2022). Additionally, CNNs 

offer advantages over traditional methods beyond improved accuracy. They can 

automatically learn and adapt to complex patterns within the images, eliminating the need 

for manual feature extraction and selection (González et al., 2019). This inherent 

adaptability enhances the efficiency and scalability of the classification process, making 

CNNs a promising tool for large-scale analysis of microbial communities in the marine 

environment. 
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This study aims to address the pressing challenges in the field of oceanographic 

research, particularly concerning the exploration of microbial life in the NPSG. While the 

IFCB’s images have the potential to provide great insights into the dynamics of microbial 

life in the NPSG, the large quantities of images must be accurately classified. The 

overarching goal of this research is to develop a robust training set for machine-learning-

based plankton classification, utilizing data collected from the IFCB during a research 

cruise in the NPSG. Specifically, this study seeks to quantify the accuracy of a CNN in 

categorizing two distinct taxa of plankton, Hemiaulus and Ciliophora, imaged during the 

cruise. By doing so, this study aims to contribute to a better understanding of the 

ecological dynamics and taxonomic composition of plankton communities in the NPSG. 

To achieve these goals, a diverse training set of images was meticulously curated to be 

representative of the NPSG's plankton diversity. Subsequently, a CNN-based 

classification approach was then implemented and assessed for its performance in 

accurately categorizing plankton images. This study aims to advance the field by 

providing insights into the efficacy of machine learning approaches in plankton 

classification and their potential applications in oceanographic research. 

 

 

 

 

 

 

 



 15 

2.0 METHODS 

 

2.1 Overview 

The primary objective of this study was twofold: 

1. Development of a Robust Training Set: The first goal was to create a 

comprehensive training set of images specifically tailored for the NPSG . This 

involved curating a diverse collection of high-quality images obtained from 

multiple research cruises, including the 2021 PARAGON 1 expedition. The 

training set aimed to encompass the wide range of plankton taxa and 

environmental conditions characteristic of the NPSG, serving as a foundation for 

training the CNN. 

2. Assessment of CNN-Based Categorization Accuracy: The second goal was to 

evaluate the accuracy of CNN-based categorization, particularly focusing on two 

distinct taxa of plankton imaged during the 2021 PARAGON 1 cruise: Hemiaulus 

and Ciliophora. This assessment involved comparing the CNN's classifications 

with manual annotations conducted using the Ecotaxa web application. By 

examining the performance of the CNN in accurately categorizing these taxa, 

insights were gained into the efficacy and reliability of the CNN for taxonomic 

classification within the NPSG ecosystem. 

 

2.2 Data Collection 

Data collection for this study involved the utilization of the IFCB. The IFCB 

operates by continuously sampling water from a depth of 7 meters (via the ships 
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uncontaminated seawater intake) as the vessel travels underway. The dataset used for 

training set development comprised images collected from multiple research cruises, 

including the 2021 PARAGON 1 cruise, as well as other expeditions conducted within 

the NPSG region. These images provided a diverse representation of plankton taxa and 

environmental conditions in the NPSG. Through the 2021 PARAGON 1 cruise, the IFCB 

collected an extensive dataset comprising approximately 650,000 images.  

Using the additional data collected by the IFCB, the total volume concentration of 

each particle captured could be calculated. The total volume concentration per class (µL 

L-1) was calculated by accounting for the volume sampled and individual particle 

biovolume estimates using the  algorithm developed by Moberg and Sosik (2012), 

which are both standard outputs of the IFCB raw data. The biovolume algorithm operates 

on a two-dimensional image processed to identify organism boundaries, computing the 

distance of each interior pixel to the nearest boundary. These distances are then assumed 

to apply for projection in the third dimension, with resulting volumes adjusted by a 

multiplicative factor, assuming locally circular cross-sections (Moberg and Sosik, 2012). 

 

2.3 Approach used and model development 

In order to properly assess IFCB images through manual annotations, it was 

important to first become familiar with plankton taxonomy via literature review and study 

the types of images that the instrument detects. During this period, an annotation guide 

was developed aimed at helping define the general number of classes. As the training set 

was morphological-based, unique characteristics for each major grouping were outlined 

to aid in classification. Where taxa were difficult to differentiate, groupings were 
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aggregated to increase accuracy. These morphological groupings and their determining 

characteristics can be seen through the flowchart shown in the Appendix. Following the 

preliminary period, manual annotations were conducted through the taxonomy 

categorizing website, Ecotaxa (Picheral et al., 2024). 

Ecotaxa is a web application tailored for taxonomic sorting which was used to 

facilitate the organization and validation of IFCB images. For the purposes of building 

the training set, images were manually sorted into folders based on their taxonomic 

groups. During manual validation, each image was carefully reviewed and categorized 

either as belonging to the predicted taxonomic group or as "dubious" if there were 

uncertainties, ensuring meticulous validation and accuracy in taxonomic classifications. 

Through Ecotaxa, 654,312 images were manually annotated and classified into 12 

living groups and 6 non-living/detrital groups. As seen in the Appendix, these 18 groups 

were largely morphologically based, defined by visual characteristics such as centric, 

pennate, or crescent appearance. Following manual annotations of PARAGON 1, 

samples of each group were placed into a training set for the CNN (see section 2.4 

Convolutional Neural Network for detailed information). This training set encompassed a 

diverse array of IFCB images collected not only during the PARAGON 1 expedition but 

also from several other research cruises (PARAGON 2, G4, G5, PFIX) conducted within 

the region. Each taxonomic group within the training set was represented by varying 

numbers of images, ranging from approximately 200 to 10,000 images per group. While 

this training set aimed for equal representation from all contributing cruise data, this goal 

was limited by the availability of high-quality images from our instrument and sampling 

region. As certain taxa are more abundant than others within this region, more images are 
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available for selection into the training set. To address this imbalance, classes with a 

larger abundance were under sampled in the training set to ensure a more balanced 

representation of taxa. 

For more easily identifiable classes such as Arthopoda, Ciliophora, and Radiozoa, 

less images were needed for the training set as there was more confidence in these images 

when placed in the training set. The more heterogenous, or aggregated the class, such as 

Dinophyceae and Haptophyta, the more images were needed to accurately represent the 

range in morphologies across the large grouping. An in-depth breakdown of the number 

of images in each classifying group can be found in the Appendix. 

For the training set discussed in this paper, PARAGON 1 contributed 16,755 out 

of 75,945 images, representing 22% of the training set. All image sources and their 

percentage represented within the training set can be seen in Table 2.3.1. 

 

Image source ZIP PARAGON 1 PARAGON 2 G4 G5 PFIX 

Image amount 18,267 16,775 7,516 14,265 11,170 7,952 

Percent 
represented in 

training set 

24% 22% 10% 19% 15% 10% 

Total training set 
images 

75,945 

 

Table  2.3.1.  Breakdown of image source representation for the training set utilized by the CNN. Image source 
names refer to the names of specific cruises or expeditions. Images from these cruises can be browsed here: 

http://ifcbdb.soest.hawaii.edu/dashboard 
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2.4 Convolutional Neural Network 

The CNN employs a hold-out cross validation approach, where 20% of the 

training set is withheld for validation, while the remaining 80% is utilized for training. 

During training, the CNN iteratively refines its classification capabilities by comparing 

features extracted from the training set with those from the withheld validation set. This 

process is repeated multiple times (epochs), with the classifier adapting its parameters 

based on the performance observed on the validation set. It's important to note that the 

same split of training and validation sets is maintained for each epoch, ensuring 

consistency in evaluation. Additionally, the order in which images are presented to the 

CNN varies based on random seeds, resulting in each classifier learning slightly 

differently.  

To ensure robustness and reliability, the CNN model was run four times, each 

with a different random seed. The results from these four instances are summarized in 

Table 3.1.1. It is crucial to note that these instances provide insights into the variability in 

CNN performance due to random initialization.  
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Figure 2.4.1 Mosaic of a portion of the images included in the training set utilized for the CNN 

 

2.4.1 Confusion matrices: role and purpose 

To evaluate the performance of the CNN classification model, a confusion matrix was 

used. By examining the distribution of predictions across the matrix, one can identify 

patterns of misclassification and areas for improvement. At its base, a confusion matrix 

organizes the model's predictions into four categories: 

1. True Positives (TP): Instances where the model correctly predicts a positive 

morphological grouping. 

2. False Positives (FP): Instances where the model incorrectly predicts a positive 

morphological grouping. 

3. True Negatives (TN): Instances where the model correctly predicts a negative 

morphological grouping. 

4. False Negatives (FN): Instances where the model incorrectly predicts a negative 

morphological grouping. 
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These four categories then form the foundation for calculating various performance 

metrics such as:  

• Precision: The proportion of true positive predictions among all positive 

predictions made by the model, calculated as TP / (TP + FP). 

• Recall (also known as sensitivity or true positive rate): The proportion of true 

positive predictions among all actual positive instances, calculated as TP / (TP + 

FN). 

• F-1 Score: A measurement of model accuracy, calculated as the harmonic mean 

of precision and recall, calculated as 2 * (precision * recall) / (precision + recall). 

It's worth noting that similar performance metrics were also applied to the 

White/Henderikx-Freitas Lab’s previous classification tool, Random Forest, which was 

utilized for annotating IFCB images collected by the lab. This approach aimed to ensure 

consistency and enable meaningful comparisons between different classification 

methods. By evaluating these metrics across various classification approaches, a 

comprehensive understanding of the accuracy and precision of the CNN in comparison to 

alternative methods can be obtained. 

 

2.5 Manual vs. CNN: statistical analyses on observational data of abundances and 

biomass 

To compare the performance of the CNN and manual annotations, statiscual 

analyses of observational data related to abundance and biomass are conducted. The 

analyses conducted within this paper assume that all manual annotations accurately 

represent the true value, providing a reference point for evaluating the CNN annotations. 
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To assess the CNN's accuracy in classifying particles, various statistical methods 

are employed to measure the level of agreement or discrepancy between CNN 

annotations and manual annotations. One key metric used in this comparison is the 

absolute difference, which quantifies the magnitude of variation between variables 

derived from the CNN annotations (experimental values) and those from the manual 

annotations (theoretical values). Specifically, variables such as volume concentrations 

and total particle counts of specific taxa of interest obtained from the IFCB are analyzed. 

The absolute difference enables us to understand the extent of disparity between the two 

annotation sets, offering insights into the CNN's classification accuracy. 

Moreover, additional statistical tests are utilized to further examine the agreement 

between CNN and manual annotations. The t-test is employed to compare paired 

observations derived from the CNN and manual datasets, with a particular focus on 

temporal variations. Through these analyses, we aim to comprehensively evaluate the 

performance of the CNN in comparison to manual annotations, shedding light on its 

accuracy and precision in classifying planktonic particles. 
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3.0 RESULTS 

 
3.1 Overview 

As previously outlined, this work aimed to (1) describe the development of a robust 

training set of images for the NPSG and (2) assess the accuracy of CNN-based 

categorization of two distinct taxa of plankton imaged over the course of the 2021 

PARAGON 1 cruise. In doing so, this paper also aims to (3) conduct a statistical 

comparison on the abundance and sizes of these organisms. 

This analysis focuses on comparing the accuracy of the CNN against manual 

classifications of two taxa: the chain-forming diatom genus Hemiaulus which is often 

associated with symbiotic diazotrophs of the genus Richelia, and a general classifier for 

the phylum Ciliophora, providing insights into the efficacy and reliability of the CNN in 

discerning taxonomic distinctions within the NPSG region.  

Based on the F1 scores for the Hemiaulus and Ciliophora as depicted in Table 3.1.1, it 

is evident that the CNN was highly accurate in classifying these two specific taxa across 

a combined dataset. The F1 score, interpreted as a measurement of model accuracy, 

represents the harmonic mean of precision and recall, providing a comprehensive 

assessment of clarification performance. Specifically, F1 scores for Hemiaulus ranged 

from 98% to 99%, while F1 scores for Ciliophora ranged from 87% to 93%. Notably, the 

CNN exhibits a difference in prediction accuracy between the two taxa, with Hemiaulus 

demonstrating a higher range in F1 scores across all trials, or instances.  
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Hemiaulus  Instance Amount of PARAGON 1 

images used in withheld 

CNN group  

F1 

 

Withheld CNN 

1 

5075 

0.9789 

2 0.9901 

3 0.9827 

4 0.9882 

Ciliophora 

Withheld CNN 

1 

1881 

0.9294 

 2 0.8682 

3 0.9251 

4 0.9084 

All classes  

Withheld CNN 

1 

75945 

0.9146 

 2 0.8869 

3 0.9331 

4 0.9283 
 

Table  3.1.1.  Hemiaulus and Ciliophora comparison of F1 scores across the 4 epochs/trials of the CNN 

 
Figures 3.1.1 and 3.1.2a focus on the particle amount and total concentration of 

Ciliophora. Table 3.1.1 highlights a significantly lower number of images within the 

CNN training set for the Ciliophora morphological group, totaling 1,881 images. This 

lower volume of images may explain the significantly noisier data points observed in 

Figure 3.1.3 for Ciliophora in contrast to the smoother plot for Hemiaulus (3.1.4). 

Seen in Figure 3.1.1 and 3.1.2a, both the total biovolume concentration and 

particle amount for Ciliophora appear to remain consistently low. For a closer 

examination of Figure 3.1.2a, a direct comparison between CNN and manually validated 

particle amounts on a log10 scale was conducted and is illustrated in Figure 3.1.2b, 
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showing that the relationship is significant (p < 0.0001) but the variance explained (27%) 

is relatively low.  

 

 

 

 

Figure 3.1.1 Ciliophora CNN vs. manual annotations: total volume concentration on a log10 scale 

Figure 3.1.2 Ciliophora CNN vs. manual annotations on a log10 scale: particle amount over time (a) 
and linear regression model (b)  
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Shifting focus to Hemiaulus, as depicted in Figures 3.1.3 and 3.1.4, a discernible 

trend in the taxon's abundance emerges as the cruise progresses. Notably, this group 

encompasses approximately five times the number of withheld CNN images compared to 

the Ciliophora folder, totaling 5,075 images (Table 3.1.1). This increase in image 

quantity is reflected in the reduced noise observed in Figures 3.1.3 and 3.1.4. 

Additionally, Hemiaulus exhibits an R-squared value roughly tripled that of the 

Ciliophora equivalent with a value of 0.79.  This significant difference underscores a 

much stronger agreement between manual and CNN validated particles for Hemiaulus 

compared to Ciliophora. The R-squared value of 0.78 indicates that approximately 78% 

of the variance in the number of CNN particles validated for Hemiaulus can be explained 

by the number of manual particles validated. To further validate this observation, the f-

test for Figure 3.2.5b shows a p < 00001. Such a high level of agreement suggests a 

robust consistency between the two methods in classifying Hemiaulus, affirming the 

reliability of the CNN in accurately identifying this taxon.  

Figures 3.1.3 and 3.1.4 unveil two significant time periods in Hemiaulus 

abundance throughout the cruise duration: an increase between July 22 and July 29, 2021, 

followed by a decrease or plateau between July 29 and August 6, 2021. This trend aligns 

with PARAGON 1’s timing, as this cruise captured the decline of an algal bloom. 
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Figure 3.1.3 Hemiaulus CNN vs. manual annotations: total volume concentration 

 

Figure 3.1.4 Hemiaulus CNN vs. manual annotations: particle amount over time (a) and linear 
regression model (b)  
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A summative perspective of this analysis can first be seen through proportional 

difference plots, which illustrate the difference between two variables over time. The 

proportional difference was calculated by: 

𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 (𝑚𝑎𝑛𝑢𝑎𝑙) –  𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 (𝐶𝑁𝑁)

𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 (𝑚𝑎𝑛𝑢𝑎𝑙)
 

Figures 3.1.5a and 3.1.6a reveal that during the initial phase of the cruise (July 22-29, 

2021), both Ciliophora and Hemiaulus exhibit relatively small differences in total volume 

concentration. Similarly in Figure 3.1.5b, depicting Ciliophora’s proportional difference 

in particle amount, the difference value remains relatively stable until an increase 

following July 31, 2021. Figure 3.1.6b shows a contrasting perspective as the 

proportional difference for Hemiaulus’ particle amount appears to decrease in the second 

phase of the cruise (July 29-August 6, 2021). It should be noted that while the F1 results 

provide insight into the accuracy and recall of the CNN’s classifications, the absolute 

proportional difference plots compare the CNN’s classifications with manual 

classifications in the context of field concentration measurements. These analyses serve 

different purposes and should not be conflated. 
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Figure 3.1.5 Ciliophora proportional difference from actual: total volume concentration (a) and 
particle amount (b). 

Figure 3.1.6 Hemiaulus proportional difference from actual: total volume concentration (a) and 
particle amount (b). 
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Given Hemiaulus's change in morphology over time, as depicted in Figure 3.2.8, 

it is then hypothesized that these changes may impact the CNN's ability to accurately 

classify Hemiaulus. While highly-degraded cells as seen in in Figure 3.2.8 were not used 

within the training set, “empty” cells, or those without fluorescence, were included. Due 

to the clear trends exhibited by Hemiaulus between July 22-29 and July 29-August 6, 

2021, further analysis can be conducted to assess the agreement between manual and 

CNN annotations.  

 

Figure 3.1.8 Comparison of Hemiaulus cells depicting the loss of fluorescence and structure over time. 

 

Figure 3.1.7 Size comparison of a Hemiaulus and Ciliophora (Tintinnids) 
(http://ifcbdb.soest.hawaii.edu/timeline?dataset=IFCB_KM2112_PARAGON)  
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To further understand the differences between manual and CNN annotations, the 

distributions of the differences between the two sets of measurements at different 

timepoints, must be analyzed. This analysis involves comparing whether the means of 

these distributions differ between the two timepoints, essentially asking if there is a 

significant difference in the patterns of differences observed between the manual and 

CNN annotations across different phases of the cruise. While this comparison shares 

similarities with a paired t-test, it represents a more nuanced approach, focusing on the 

distribution of differences rather than directly assessing paired measurements. 

Figure 3.2.9 illustrate box plots for both particle amount and total concentration 

corresponding to the two time periods of interest for Hemiaulus, utilizing data collected 

from both the CNN and manual annotations. Examination of these figures reveals that 

both selected time periods’ values demonstrate a median close to 1. Additionally, Figure 

3.2.9a (July 29 – August 6, 2021) demonstrates a significantly smaller interquartile range 

than Figure 3.2.9b. This difference arises because when both the CNN and manual 

annotations did not detect or classify any Hemiaulus, the resulting value was zero. 

Therefore, Figure 3.2.9b is not a useful determinant of the CNN’s accuracy. This is 

further demonstrated in Figure 3.2.10, which depicts the difference between the CNN and 

manual annotations over time. Through this time series, a notably large amount of zero 

values are observed, further emphasizing the need to modify the dataset to accurately 

determine CNN accuracy. 
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 To better examine Figure 3.1.9b, all the data points where the manual annotations 

equaled zero were removed. In doing this, this prevented the plotting of any points that 

Figure 3.1.10 Hemiaulus particle amount differences over time (July 29- August 6, 2021) 

Figure 3.1.9 Hemiaulus concentration amount differences proportion distribution box plot for the two 
time periods of: July 22-29, 2021 (a) and July 20-August 6, 2021 (b) 
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were being classified as zero due to the lack of particle presence at any given time. The 

resulting values are then depicted in Figure 3.1.11. This then shows that the second half 

of the cruise had much less outlying data points while still retaining a consistent 

proportion of 1, indicating a more consistent performance of the CNN during that period. 

Moreover, this reduction in outlying points suggests reduced variability in the CNN's 

classifications during this time frame. 

 

Examining Figures 3.2.11a and 3.2.12a, which focus on the peak abundance of 

Hemiaulus during the cruise, both the total concentration and particle amount exhibit p-

values < 0.0001, signifying a statistically significant difference between the CNN and 

manual annotations. Conversely, Figures 3.2.11b and 3.2.12b, which highlight the decline 

in Hemiaulus abundance, demonstrate higher p-values compared to Figures 3.2.11a and 

Figure 3.1.11 Hemiaulus concentration amount differences proportion distribution box plot for the 
time period of: July 20-August 6, 2021 where Manual = 0 is removed 
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3.2.12a. Despite Figure 3.2.11a displaying a higher p-value than Figure 3.2.11b, it was 

determined that the difference between the CNN and manual annotation values remained 

significant. 

Among the four plots within Figures 3.2.11 and 3.2.12, only Figure 3.2.12b 

exhibits a p-value higher than 0.05 of 0.2291, indicating that there is no statistically 

significant difference between the CNN and manual annotations in this specific case. 

 

Figure 3.1.12 Hemiaulus particle amount agreement t-test for: July 29, 2021 (a) and July 20-August 6, 
2021 (b) 
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Figure 3.1.13 Hemiaulus concentration agreement t-test for: July 29, 2021 (a) and July 20-August 6, 
2021 (b) 
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3.2 Discrepancies 

There appears to be a consistent spike in biovolume concentration and particle 

amount between July 28 and July 31, 2021, as observed in Figures 3.1.2 and 3.2.6. Upon 

closer examination of the images within this time period (Figure 3.3.1), it was found that 

they predominantly consisted of clusters of Hemiaulus and detrital material. Notably, one 

cluster documented a diameter of 109 microns. In images such as those seen in the 

Hemiaulus mosaic in Figure 3.3.1, detritus accounts for a significant portion of the 

image. However, these images are still classified as Hemiaulus within manual 

annotations and training set as it is the dominant taxa within these clusters, affirming that 

the CNN is indeed classifying these Hemiaulus and detritus clusters as Hemiaulus. 

 

 

 

 

Figure 3.3.1 Hemiaulus mosaic from July 30, 2021 
(http://ifcbdb.soest.hawaii.edu/timeline?dataset=IFCB_KM2112_PARAGON) 
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4.0 DISCUSSION 

 
The PARAGON 1 cruise was conducted at the end of an algal bloom, where an 

abundance of detrital material was expected. As time advanced, Hemiaulus followed a 

consistent pattern of decreasing abundance (Figures 3.2.7 and 3.2.8). Additionally, as 

discussed in section 3.3, Hemiaulus was frequently found within detrital clusters. As the 

IFCB was only sampling at a consistent depth of 7 meters throughout the cruise, it is 

unclear whether these Hemiaulus clusters sank or aggregated with other material to 

account for the decrease in biovolume and particle amount over time. However, this 

observation aligns with the trend of decreasing Hemiaulus abundance over time, as the 

taxa likely sank along with the detrital material (Farnelid et al., 2019).  

This hypothesis can be further analyzed through a comparison of Particulate 

Carbon (PC) export rates from PARAGON 1 and the average summer season at Station 

ALOHA. It has been consistently observed that PC export occurs at Station ALOHA, 

with the 30-year mean for PC export during summer recorded at 33.5 mg C m−2 d−1 (Karl 

et al., 2021). In comparison, the recorded PC export for PARAGON 1 was 49.5 mg C 

m−2 d−1, showing an increased PC export rate from the average summer value. 

In contrast, Ciliophora did not exhibit a similar trend of decreasing abundance 

over time. Although we have no reason to expect this taxa to follow the same temporal 

trends as Hemiaulus, this discrepancy could be attributed to the lower abundance of this 

grouping compared to Hemiaulus, coupled with the potential impact of limited image 

quantities on the CNN's accuracy. 

It was initially hypothesized that as time progressed, the morphological changes 

of Hemiaulus would impede the CNN's capability to accurately classify the taxon. 
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However, the analysis conducted in the Results section revealed slight differences in 

results between the two stages of Hemiaulus, contrary to expectations. Despite the 

structural decline of Hemiaulus cells over time and their association with detrital 

material, which was expected to pose challenges for accurate classification by the CNN, 

the analyses demonstrated a slight increase in CNN accuracy as the cruise progressed. 

This unexpected finding suggests several possibilities: the training set provided a 

reasonable amount of Hemiaulus and detrital clusters for the CNN to accurately classify 

this unique grouping, the decline in taxa variability and abundance at the end of the cruise 

allowed for easier identification of Hemiaulus, or that there are factors beyond 

morphological changes may have influenced the CNN's performance, warranting further 

investigation. The observed discrepancy in model performance between Hemiaulus and 

Ciliophora, especially in post-bloom phase, prompts and inquiry into the underlying 

factors driving these differences. Notably, while the Hemiaulus model maintains 

accuracy even after the bloom (July 29 – August 6, 2021), the performance of the 

Ciliophora model diminishes. Despite the lower abundance of Ciliophora compared to 

Hemiaulus post-bloom, the CNN’s accuracy appears to plateau. This observation 

suggests the existence of a potential threshold at which the CNN’s accuracy diminishes. 

Exploring this threshold and its implications could provide valuable insights into the 

factors influencing the CNN’s classification accuracy and offer a nuanced understanding 

of the observed variations in model performance. 

Regarding the development of a training set for the CNN, our findings highlight 

the critical role of incorporating diverse morphological characteristics and environmental 

conditions representative of the study area. While acknowledging the dynamic nature of 
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certain taxa, such as Hemiaulus, and their ability to undergo morphological changes over 

time, it is important to ensure adequate representation of these images within the training 

set. This facilitates accurate CNN classification across all stages of NPSG bloom events. 

Notable, the CNN’s ability to consistent identify Hemiaulus throughout its morphological 

variations underscores the significance of abundance in driving model performance.  

Iterative training of the IFCB with updated datasets could enhance the CNN's 

ability to accurately classify taxa, particularly in dynamic environments such as post-

bloom conditions encountered during the PARAGON 1 cruise. By continuously refining 

the training set based on new data and insights gained from ongoing analyses, the CNN's 

performance and robustness can improve over time. 
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5.0 CONCLUSION 

 
This study aimed to develop a precise training set for a CNN to effectively 

classify IFCB data obtained from the NPSG. The significance of this research lies in 

addressing the challenge posed by the vast volume of IFCB data, which can be laborious 

to manually sort and classify. Through harnessing the capabilities of the CNN, this study 

has demonstrated the potential to expedite the sorting process for future IFCB datasets, 

particularly in the context of ocean microbiology research. The labor undertaken to 

generate the training set was extensive, detailed, and requiring cross-validation by 

multiple experts (the author included), reflecting the necessity for such datasets to be 

highly curated. 

The process of generating a training set for the CNN involved meticulous 

annotation and classification of thousands of images across several research cruises 

conducted in the NPSG. For the CNN to produce accurate results, large quantities of 

high-quality images were manually selected from each of the various cruises in order to 

best represent the region’s particle diversity. Notably, our dataset may suggest that 

species prone to blooming are more suitable candidates for these models, while those 

persisting at low abundances may present challenges for classification. As a related point, 

capturing bloom events effectively trains the models, a concept that this study 

demonstrates. Furthermore, the necessity for this training set to be highly curated is 

underscored by the unique characteristics of the NPSG ecosystem. Algal blooms, 

particularly diatom blooms, are a prominent feature of this region's ecological dynamics 

(Villareal et al., 2012). Understanding and accurately classifying these blooms are crucial 

for comprehending the biogeochemical processes occurring in the NPSG. By creating a 
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training set tailored to the specificities of the NPSG, this study enhances the ability to 

monitor and analyze algal blooms in this region, thereby advancing understanding of its 

ecological dynamics. 

The results revealed successful classification of taxa, particularly Hemiaulus and 

Ciliophora, with varying degrees of accuracy across different time periods of the cruise. 

Despite the challenges posed by morphological changes and the presence of detrital 

material, the CNN demonstrated an overall improvement in accuracy as the cruise 

progressed, particularly in the context of Hemiaulus. 

In summary, this study has demonstrated the efficacy of CNNs in taxonomic 

classification of IFCB data from the NPSG region. By providing a streamlined approach 

to data sorting, the CNN has the potential to significantly enhance the efficiency and 

scalability of ocean microbiology research, paving the way for future advancements in 

our understanding of marine ecosystems. 

 

5.1 Future research 

Moving forward, the CNN has demonstrated remarkable effectiveness and 

accuracy, as evidenced by its latest F-1 scores averaging 0.916 (Table 3.1.1). With this 

significant improvement in the classifier's capabilities within the North Pacific 

Subtropical region, the analysis of IFCB data from this area can be conducted faster and 

with greater accuracy. However, it's essential to recognize that the true value of the 

training set lies not only in its performance compared to the PARAGON 1 dataset but 

also in its role as the foundation for future classification efforts within the NPSG.  
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While the high F-1 scores reflect the CNN's proficiency in classifying particles, it 

is essential to juxtapose these scores with the results of the comparison between manual 

and CNN outputs. This comparison provides valuable insights into the degree of 

agreement or divergence between the CNN's annotations and manual annotations, thereby 

enhancing the interpretability of CNN-generated classifications. Addressing the 

discrepancies observed between manual and CNN outputs should be a priority for future 

research efforts, involving more detailed analyses to identify specific types of particles or 

environmental conditions that pose challenges for accurate CNN classification. 

The training set developed along with this study serves as the cornerstone for 

building classifiers that will be used to categorize all other cruises within the NPSG 

region. This dataset, meticulously curated and tailored to the unique characteristics of the 

NPSG ecosystem, provides the framework upon which future research can rely. 

Although this paper primarily utilizes IFCB data from PARAGON 1, focusing on 

the end stages of an algal bloom event, there remains a wealth of IFCB data available 

from various stages of these blooms for classification. By leveraging the CNN and robust 

training set for future research cruises, more detailed documentation of the stages of algal 

blooms in the NPSG can be accounted for, providing valuable insights into the dynamics 

of these ecosystems.  



 43 

APPENDIX 

 
Final CNN training set and image distribution: 

 
ZIP P1 P2 G4 G5 PFIX Total 

Arthropoda_Arthropoda 58 38 10 18 12 26 162 

Arthropoda_Arthropoda-fragments 26 114 15 7 5 36 203 

Bacillariophyceae_Bacteriastrum-like 0 0 0 58 18 0 76 

Bacillariophyceae_Diatom-bac-chae-cor 140 178 45 84 317 376 1140 

Bacillariophyceae_Diatom-centric 1494 19 35 82 130 4 1764 

Bacillariophyceae_Diatom-centric-cylindrical 104 323 20 4 26 10 487 

Bacillariophyceae_Diatom-pennate 1545 558 87 1902 725 1114 5931 

Bacillariophyceae_Diatom-pennate-chain 76 0 0 961 169 37 1243 

Bacillariophyceae_Diatom-pennate-long 25 0 0 0 0 383 408 

Bacillariophyceae_Diatom-stacked 149 21 32 70 187 20 479 

Bacillariophyceae_Hemiaulales 40 83 23 3 1 416 566 

Bacillariophyceae_Hemiaulus 299 2841 1841 4 0 91 5076 

Bacillariophyceae_Leptocylindrus 36 40 9 76 15 5 181 

Bacillariophyceae_Planktoniella 2 3 0 28 77 0 110 

Bacillariophyceae_Rhizosoleniales 406 483 101 15 52 7 1064 

Bacillariophyceae_Richelia-diatom-association 40 130 69 0 0 1 240 

Bacillariophyceae_Thalassionema-like 9 20 0 2 2 5 38 

Beads 2824 0 0 23 0 63 2910 

Bubbles 1739 0 0 123 1 0 1863 

Chlorophyta_Chlorophyceae 1191 6 0 11 18 2 1228 

Chlorophyta_Oocystis-like 1 157 1 0 0 0 159 

Chlorophyta_Pyramimodales 211 58 263 586 450 0 1568 

Chrysophyceae_Chrysococcus 20 0 0 6 4 1 31 

Ciliophora_Oval 58 36 34 108 73 199 508 

Ciliophora_Strombidiids 142 144 113 113 107 40 659 

Ciliophora_Tintinnids 87 32 28 46 29 8 230 

Ciliophora_Tintinnids-empty 0 45 7 6 2 431 491 

Cryptophyta_Cryptomonas 56 831 67 20 17 1 992 

Cryptophyta_Cryptophyceae 153 200 418 134 175 26 1106 

Cyanobacteria_Bright_molecule 0 0 0 0 0 51 51 

Cyanobacteria_Crocosphaera-like 1322 23 58 0 8 4 1415 

Cyanobacteria_Cyanophyceae 801 165 8 1 0 1 976 

Cyanobacteria_Cyanophyceae-disorganized-clusters 36 27 11 67 70 58 269 

Cyanobacteria_Cyanophyceae-organized-clusters 31 2 0 211 142 2 388 
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Cyanobacteria_Encapsulated-cells 0 0 0 0 0 1000 1000 

Cyanobacteria_Trichodesmium 358 165 256 8 2 183 972 

Cyanobacteria_richelia-free 405 150 97 1 0 2 655 

Dictyophyceae_Dictyocha 79 46 5 159 133 4 426 

Dinophyceae_Ceratium 294 30 23 43 68 9 467 

Dinophyceae_Dino-maybe 0 1 4 1 0 0 6 

Dinophyceae_Dinophycea-crescent 3 4 1 0 0 0 8 

Dinophyceae_Dinophyceae 1868 1949 1401 2547 1968 273 10006 

Dinophyceae_Dinophyceae-star 0 2 8 3 1 0 14 

Dinophyceae_Noctiluca 2 0 0 1 1 0 4 

Dinophyceae_hanger 0 0 0 4 5 0 9 

Euglenozoa_Diplonema 0 1929 0 2 2 2 1935 

Euglenozoa_Euglenozoa-like 0 692 0 0 10 0 702 

Haptophyta_Acanthoica-or-chrysochromulina 296 79 122 185 229 1 912 

Haptophyta_Prymnesiophyceae 300 729 772 948 665 17 3431 

Haptophyta_Prymnesiophyceae-parts 0 164 418 221 220 0 1023 

Haptophyta_Prymnesiophyceae-spherical 211 122 43 575 831 72 1854 

Haptophyta_Rhabdosphaera 126 150 65 209 500 1 1051 

Haptophyta_Syracosphaera 456 0 2 7 8 0 473 

Nonliving_Detritus 369 1867 846 1874 1662 898 7516 

Nonliving_Foram-spines 0 609 0 0 0 0 609 

Nonliving_Microplastics 16 299 35 264 58 409 1081 

Radiolaria-maybe 74 0 0 0 0 0 74 

Radiozoa_Acantharia 253 190 117 164 247 0 971 

Radiozoa_Nassellaria 27 12 0 7 10 2 58 

Radiozoa_Polycystinea 7 13 6 2 2 0 30 

Radiozoa_Solitary-radiolaria-maybeDino 2 0 0 0 1 140 143 

unidentifiable 0 996 0 2271 1715 1521 6503 
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Training set category breakdown
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