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ABSTRACT 

Machine learning algorithms (MLAs) are increasingly applied to optical imaging datasets 

of oceanic plankton and marine aggregates to obtain improved image annotation efficiency 

while preserving high annotation consistency. However, this process relies on an ever-

decreasing number of expert morphological taxonomists to annotate training sets and validate 

MLA outputs. While recent attention has focused on training annotators on how to use machine 

learning algorithms, there has been limited effort to educate new annotators on how to annotate 

the datasets needed to train and verify such algorithms. By teaching new annotators how to 

create regionally-relevant and accurate training sets for MLAs, one could better utilize 

instruments, such as the Underwater Vision Profiler 5 HD (UVP), that are the basis for growing 

databases of images collected over an expanding set of temporal and regional studies. The UVP 

is a high resolution in situ camera-based instrument that samples particles above 0.064 mm up 

to ~54 mm, producing images for those particles that are > 0.5 mm. The UVP images a size 

fraction of fragile plankton and marine aggregates known to play an important role in the 

Biological Carbon Pump (BCP) and can quantify their vertical distribution, changing 

morphological characteristics, and visual interactions from the sea surface to ~6000 db. In this 

study, the UVP has been used to assess particle distributions on 14 Hawaiʻi Ocean Time-series 

(HOT) cruises between 2020 to 2023 at Station ALOHA (22.750N, 158.00 0W).  Significant 

findings from this initial effort include - (1) seasonal changes in the slope of particle size 

distributions evidence summer (June – August) increases in the abundance of large particles, 

(2) subsurface peaks of large particles were frequently observed  at the base of the euphotic zone 

between 100 to 150 db which we interpret to be the accumulation of sinking particles along 

isopycnals, and (3) in moving towards assessing organismal abundance, it became apparent that 

an annotation guide for the UVP was not available to the user community. To facilitate further 

research, we identified key classifiers for our region including 13 categories of organismal and 

detrital UVP images, including the genus Trichodesmium, Rhizaria, and marine aggregates. We 

then outlined a method and standards for development of a cooperatively annotated dataset 

with intra-annotator self-consistency. Individual annotations were made by two annotators and 

then compared to a cooperatively annotated dataset, displaying 87.6% and 88.1% agreement. 

Comparing the annotations made between annotator’s individual datasets, the agreement was 

85.2%. In comparison, predictions by a machine learning algorithm tailored to the UVP, the 

EcoTaxa random forest, had only 31% precision.  With this manually annotated dataset, the 

temporal and spatial patterns of aggregates and organisms were then assessed. One pronounced 

pattern observed was that marine aggregates were found in concentrations more than double 
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that of organismal categories with peaks in concentration at the mixed layer boundary. Further 

research will investigate co-occurrence patterns and potential relationships with regional 

hydrodynamics and climate indices as the time-series of UVP data lengthens. Importantly, the 

standardized UVP annotation schema developed herein will allow increasingly large optical 

datasets collected by the HOT program to be annotated by multiple annotators. This will reduce 

the overall time spent manually annotating images and facilitate consistency across datasets. 

The classification guide and annotation pipeline described here maximizes the potential 

research questions that can be addressed with the large datasets generated by the UVP and 

outlines a path for new users in different regions to generate their own classification guides and 

annotation pipelines. 
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1. INTRODUCTION  

1.1 The Biological Carbon Pump  

Central to the aims of modern biological oceanography are the ability to predict primary 

productivity, catalog organismal diversity, and quantify biological abundances. Each of these 

aims is inherently reliant upon a comprehensive understanding of the organisms that produce, 

transform, and export particulate organic carbon (POC) and particulate inorganic carbon (PIC). 

The processes by which these particles are produced and transformed is referred to as the 

biological carbon pump (BCP). It is through vertical settling, transport, and remineralization of 

particles that energy-rich matter reaches the deep ocean and bioelements are redistributed 

throughout the water column(Karl et al., 2012; Volk & Hoffert, 1985). Determining the size, 

concentration, and character of particles in the open ocean that are produced and transformed 

within the BCP is therefore a central aim of many oceanographic programs.  

Efforts to quantify these metrics in the open ocean have revealed that subtropical gyres 

could account for ~50% of marine organic carbon export (Emerson, 1997). In these remote open 

ocean settings, light penetration is high, nutrients are low, and the growth rates of 

phytoplankton appear tightly coupled to loss rates (Letelier, 1996). As such, the export of carbon 

is relatively low when compared to coastal environments. Current models predict that these 

open ocean regions may warm and further stratify in response to the pressures of climate 

change (Capotondi, 2012). While this may seem to imply reductions in the rates of primary 

productivity, direct measurements made at Station ALOHA (22.75 0 N, 158.00 0 W) by the 

Hawaiʻi Ocean Time-series (HOT) over the past 30 years in the North Pacific Subtropical Gyre 

(NPSG) indicate an increasing trend (Karl et al., 2021).  

Direct measurements made by net tows and sediment traps in the upper water column 

from the HOT time series provide crucial insight into the variability of zooplankton biomass as 

well as the flux of carbon at the sea surface. However, these classical methods rely on physical 

collection, altering the plankton and marine aggregates with which they interact. As such, these 

classical methods are limited in their ability to catalog the complete taxonomic diversity of the 

zooplankton community and the character of marine aggregates that contribute to either active 

or passive particle flux. As a result, there may be undiscovered patterns of plankton succession, 

vertical distribution, and community composition in response to stochastic phytoplankton 

blooms, summer export pulses, and decadal trends. 
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Marine aggregates play a significant role in all stages of the BCP, enhancing production 

by phytoplankton and bacteria (Alldredge et al., 1986; Alldredge & Youngbluth, 1985; Andrews 

et al., 1984; Blackburn et al., 1998; Prezelin & Alldredge, 1983), scavenging and depositing 

suspended PIC and POC to the deep ocean (Jackson, 1995; McCave, 1984), and contributing the 

majority of vertical carbon flux (Asper, 1985; Fowler & Knauer, 1986; Honjo, 1980; Jackson & 

Burd, 1998; McCave, 1984), with variations in magnitude based on abundance, composition, 

and size. Marine aggregates are generated through a set of processes shown so far to include 

extracellular exudation (Alldredge et al., 1998; Passow et al., 2001), cell lysis (Blackburn et al., 

1998; Passow et al., 2001), particle compaction and egestion (Alldredge, 1976; Prezelin & 

Alldredge, 1983), and accumulation through physical particle-particle interactions (Jackson, 

1995; McCave, 1984). However, the proportionate effect of these mechanisms on particle 

transport within the BCP is not always similar, with increasing importance of the biological 

components in higher productivity regimes (Guidi et al., 2008; Sheldon et al., 1972; Stemmann 

et al., 2008).  

Further, large aggregate particles are primarily biogenic (Asper, 1985; Honjo, 1980; 

Silver & Alldredge, 1981), and globally distributed, making up the bulk of particles observed in 

sediment traps used to measure passive carbon flux across ocean basins (Asper, 1985; Honjo et 

al., 1984; Silver & Alldredge, 1981). Herein, large particles are defined as those >64 μm, with 

‘marine aggregates’ defined conventionally as detrital particles > 500 μm (Alldredge & Silver, 

1988; Alldredge & Youngbluth, 1985; Fowler & Knauer, 1986; Silver et al., 1978).  These large 

particles, whether derived from biological or physical processes, remove PIC and POC from the 

water column, sequestering both high quality labile organics for deep sea consumption, as well 

as inorganic carbons, influencing atmospheric CO2 exchange (Fellows et al., 1981; Karl et al., 

2012). 

1.2 Methods of Measuring Particles 

Just as Hensen attempted to quantify changes in the productivity of the ocean through 

his invention of the quantitative net tow (Dolan, 2021; Hensen, 1891), so too has the modern 

oceanographic community invented productivity-oriented methods of particle capture and 

remote detection. Such methods of capture, from net tows to sediment traps (Asper, 1987; 

Fellows et al., 1981), and visualization, from scuba photography (Alldredge & Cohen, 1987; 

Shanks & Trent, 1979; Silver et al., 1978) to imaging flow cytobots (IFCBs) (Sosik, 2007), have 

been historically paired with morphological analysis of those particles (Alldredge & Cohen, 
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1987; Honjo et al., 1984; Orenstein et al., 2015). This has often provided insight into the method 

of production for those particles, such as in the case of densely packed fecal pellets (Alldredge, 

1976) or the taxonomic identity of collected organisms (Remsen et al., 2004).  

Methods of physical collection boast the invaluable benefit of compositional analysis, 

whereby particles may be broken down into their chemical and biological components for 

further insight into their production, fates, and contribution to the standing stock of nutrients. 

Additionally, physical collection of organisms can yield more detailed morphotaxonomic 

information than may be attained through imaging alone. However, physical collection of 

organisms and aggregates brings with it unique limitations, namely the alteration of the samples 

that they gather (Asper, 1987; Gibbs & Konwar, 1983; Honjo et al., 1984; Silver & Alldredge, 

1981). For instance, gelatinous organisms often become damaged or fragmented during the 

process of towing the net through large volumes of seawater. Further, marine aggregates are 

indelibly altered by physical collection methods as they are passed through screens, siphoned 

through tubing, and aggregated in sediment trap media (Asper, 1987; Gibbs & Konwar, 1983). 

Imaging methods have the considerable advantage that the organisms and aggregates they 

observe are minimally altered, and thus more easily and accurately identified without damage to 

taxonomically important structures. 

Optical and imaging methods range both in the size of their target populations and their 

methods of analysis. While some optical systems such as Sequoia’s Laser In-Situ Scattering 

Transmissometer (LISST) use near-forward scattering of a laser beam to gather particle counts 

in the ~1-500 µm range, imaging systems such as the video plankton recorder (VPR) can create 

dark field images of particles in the 30 µm–5 cm size range (Davis, 1992). These approaches 

therefore fulfill fundamentally different purposes in how they enumerate particles and identify 

plankton and marine aggregates. Further, in situ optical methods and imaging, which do not 

concentrate particles, face statistical limitations surrounding imaging volume and are limited in 

their conclusions pertaining to the concentration of large and/or rare particles (Forest et al., 

2012).  

Thus, to investigate planktonic and marine aggregate distributions and their role within 

the BCP, the observing method must be tailored to the scientific question at hand. Here, we aim 

to enumerate large particles including plankton and marine aggregates while preserving fragile 

structures for accurate morphological identification throughout the water column of the NPSG. 

Therefore, there is need for a large volume high resolution in situ imaging system capable of full 

ocean depth profiling. 
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1.3 The Underwater Vision Profiler 

This study used the Underwater Vision Profiler 5 HD (UVP), developed by Hydroptic 

Inc., to meet the above-described needs and investigate the concentration and character of large 

particles in the NPSG from sea surface to seafloor. The UVP acquires images of particles 

between 0.064 mm and ~ 54.0 mm from ~1-liter samples. The fraction larger than 0.500 mm is 

also captured as a vignette by an internally housed digital camera capable of capturing high 

resolution images with distinguishable morphological characteristics (Picheral et al., 2010). 

Objects in the UVP’s field of view are illuminated by dual 625 nm flashing lights and sampled 

from the sea surface to a maximum of 6,000 db at an adjustable frequency between 6-20 Hz 

while attached to either an optics array or CTD rosette, lowered at an average of 1 m/s to prevent 

overlapping images.  

Almost 9,000 profiles conducted in all ocean basins have been collected with standard or 

high-definition versions of the UVP since the instrument’s development in 2008  (Kiko et al., 

2022). Over this period, studies have explored the particle size spectrum and planktonic 

composition of nearshore and open ocean regimes in conjunction with traditional methods of 

enumeration, such as net tows, to compare with classically-derived abundances of copepods, 

appendicularia, chaetognatha, and protozoa (Forest et al. 2012). Studies that aimed to quantify 

the abundance of organisms that normally become damaged and less identifiable through net 

tows, such as Rhizaria, have been using the UVP with notable success (Barth & Stone, 2022; 

Biard & Ohman, 2020; Forest et al., 2012; Turner, 2015). For example, Biard and Ohman 

(2020) used the UVP to investigate vertical niche partitioning of Rhizaria. To classify 

morphologically distinct Rhizaria taxa, the authors defined several criteria for UVP images 

collected within the twilight zone of the California Current Ecosystem. This paper was one of the 

first to outline elements of a regional taxonomic guide for the UVP. Further, morphological 

criteria have also been developed for the UVP-based discrimination of marine aggregate 

morphotypes and their relationship to export flux (Guidi et al., 2008, 2012; Trudnowska et al., 

2021).  

Though large numbers of profiles have been collected using the UVP, many studies 

primarily or exclusively use the particle data from the UVP to reconstruct particle size 

distributions, and refrain from classifying images (Bisson et al., 2022; Kiko et al., 2022; 

Stemmann et al., 2008). This is, in part, due to the large time investment required to manually 

classify these images and the lack of standardized instructions for how to classify the images that 

are collected by new UVP users. As such, higher efficiency methods of image annotation and 

standardized guides for classifying UVP images are needed so that UVP users can address 



11 

 

questions about organismal diversity, seasonal community compositions, and basin-wide 

distributions of plankton and marine aggregates.  

1.4 Image Annotation and the Rise of Machine Learning  

Modern marine image collection has become increasingly semi-automated through 

attachment of optical instruments to floats and gliders (Ohman et al., 2019; Whitmore & 

Ohman, 2021). At the same time, the advent of complex machine learning algorithms (MLAs), 

such as convolutional neural networks (CNNs), has semi-automated the process of 

particle/organismal classification (Cheng et al., 2019; Lee et al., 2016; Luo et al., 2018; Py et al., 

2016). Such MLAs extract features from annotated image datasets and apply learned patterns in 

image structure to the recognition of unannotated datasets to predict the identity of massive 

image libraries. These approaches aim to overcome some of the limitations of manual 

annotation of images collected by in situ imaging instruments. In particular, these MLA 

processes reduce the time-to-annotate for the large datasets collected by in situ imaging 

instruments which historically have been manually annotated.  

Manual annotation of organismal and marine aggregate images also suffers from several 

human biases, including those associated with short term memory, recency, fatigue, positivity 

bias, and annotator confidence subjectivity (Culverhouse et al., 2003; González et al., 2017; 

Kenitz et al., 2023). While expert annotators reach annotation self-consistency when presented 

with replicate randomized samples of up to 99%, in some cases observed minimums can be as 

low as 68.2% (Culverhouse et al., 2014). Existing studies based on microscopy often vary in 

terms of the time-to-annotate the dataset, number of samples annotated, diversity of organisms 

in the target community, and relative level of expertise reported per annotator (Culverhouse et 

al., 2003; Culverhouse et al., 2014; Kenitz et al., 2023). Importantly, manual annotation is 

extraordinarily laborious, limiting the scope of image datasets that can be analyzed, a problem 

of particular importance to long-term ocean time series.  

Although machine learning algorithms help to automate the image annotation process, 

they still require human oversight. MLAs require a training set of images that have been curated 

by expert human annotators. MLAs also require human validation of their outputs for 

verification of annotations and tailoring of MLA performance. The quality of the MLA outputs is 

reliant on the quality of the annotated datasets that are used in their training. Further, new 

training sets are needed for MLAs when used to characterize a novel region or time series, as 

borrowing non-contextualized training sets can lead to dataset shift (González et al., 2017). The 

need for human annotators is of particular concern for ocean time-series, which can outlive the 
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career of a single expert annotator, in addition to perhaps being prone to dataset shift as a 

function of their inherent establishment as a sentinel for changing environments. Collectively, 

the requirement for human expert annotators highlights the issue of a dwindling number of 

expert morphological taxonomists in the field of oceanography (Hebert et al., 2003).  

Current repositories of UVP particle data are increasingly large and are likely beyond the 

ability to annotate manually in their entirety (Kiko et al., 2022). In addition, MLAs continue to 

improve in the accuracy of their annotations, as previously discussed. To streamline the 

annotation process, accelerate group science, and scaffold time series annotations, an onramp 

for training new annotators and a set of inheritable classification standards is needed. This 

sentiment has been echoed by a community of experts who recommend the preservation of 

human annotation at all stages of automated image annotation to ensure high-quality ecological 

data outputs from MLAs (Axler, 2020; Kenitz et al., 2020; Kenitz et al., 2023). 

1.5 This Study  

The aims of this study were to 1) provide an onramp for new annotators in the creation of 

training sets and validation of MLA outputs based on classification standards established within 

the context of their study region; 2) translate morphological descriptions of taxa to those 

characteristics observable in UVP images; and 3) establish a standard methodology for training 

new annotation experts working with the UVP, based on a set of inheritable annotation criteria. 

To establish inheritable standards, criteria for the description of novel UVP objects are 

presented that draw from morphotaxonomic descriptions brought into the imaging context of 

the UVP. Here, I aim to increase the consistency of classifications made by human annotators in 

the establishment of high-quality training sets and validation of MLA products by creating a set 

of standards for annotation. A case study from Station ALOHA in the NPSG is presented to 

illustrate the scientific questions that can be addressed using these methods. For the case study, 

UVP data from August 2020 to October 2023 (HOT cruises 321 to 345 with noted gaps due to 

UVP use on conflicting cruises) and the Simons Collaboration on Ocean Processes and Ecology 

(SCOPE) Particles and Growth in the Oceanic Nutricline (PARAGON) 2021 and 2022 cruises 

were used to illustrate the described methods with open ocean data.  
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2. METHODS 

2.1 Underwater Vision Profiler Instrument  

The underwater vision profiler 5 (HD) was developed to examine the distribution, 

concentration, and classification of large (0.064 mm - ~54.0 mm) particles in situ and in 

combination with other optical and biogeochemical instrumentation for the exploration of 

ecological diversity and particle dynamics (Picheral et al., 2010; hereafter P10).  

The UVP (shown in Figure 1) is comprised of an in-situ camera that collects images of 

particles illuminated by two flashing columnar red LEDs (625 nm) within a ~1 L volume of 

water, and with a depth rating of 6,000 db. With a weight of 30 kg, a vertical height of 1 m and a 

35 cm base diameter, the UVP is small enough for attachment to a CTD rosette, or for solo 

casting inside a dedicated optics cage. The UVP uses an internal Sony CCD camera to acquire 

images at a rate between 6-20 Hz depending on user preset modes of collection and is optimized 

for a descent speed ~1 m s-1 in keeping with conventional CTD rosette descent speeds. The UVP 

can be connected to a Seabird CTD for measurements of conductivity, temperature and depth, 

facilitating comparison of images to common ecological parameters. The UVP houses an 

internal pressure sensor of its own in case connection to an independent CTD is not feasible.  

Particles imaged by the UVP HD have a lower limit equivalent spherical diameter (ESD) 

of 0.064 mm and an upper maximum of ~54.0 mm.  Imaged particles that are larger than 0.500 

mm ESD are converted into vignettes that can be used for taxonomic classification. These 

images are collected in 4-megapixel greyscale and output by the UVP in units of pixel2, to then 

be converted to mm2 units through a method of minimization described in P10 (Picheral et al., 

2010). The application of the Picheral equation is explained later in Section 2.2 on UVP particle 

data processing.   

The UVP imaging volume is specific to each instrument and was determined via 

individual light submersion in an aquarium and analysis of the resulting light field (Picheral et 

al., 2010). The volume of the UVP used in this paper (serial number 222) was determined to be 

1.22 L but will be referred to as 1 L for simplicity going forward. The particle counts for the UVP 

were calibrated through a side-by-side cast in the Mediterranean Sea using a ‘gold standard’ 

UVP maintained by Hydroptic Inc. as described in P10 (Picheral et al., 2010). In addition, the 

UVP uses an intelligent camera setup wherein the entire image volume is kept in focus to detect 

all particles that reflect the 625 nm red light emitted into the camera lens. The pixel size of 

imaged particles was also determined by Hydroptic Inc. using reference organisms of known 

dimensions and is specific to each instrument.  
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Figure 1. UVP diagram  

Underwater Vision Profiler 5 HD (UVP) structures and attachment scheme as bound to a CTD 

rosette aboard R/V Kilo Moana during the Hawaiʻi Ocean Time-series (HOT) 349. 

2.2 Deployment  

The UVP is traditionally attached to a CTD rosette or optics cage in a downward-facing 

orientation to collect images on the downcast, a practice that is intended to reduce possible 

perturbation of the imaged water volume by the frame on which the UVP is mounted. The start 

protocol that begins and terminates image collection can be accomplished by either the pressure 

protocol or the I/O shunt protocol. The pressure protocol uses the ascent and descent of the 
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UVP to start and stop image collection, whereas the I/O shunt protocol uses a shunt to start and 

stop the UVP much the same as flipping a switch, and this is done manually on deck prior to 

deployment.  While the I/O shunt protocol is more straightforward in principle, we found that 

the pressure protocol was necessary to cool the UVP camera prior to all casts. Further details of 

the two protocols can be found in the UVP 5 User Manual. 

During deployment the UVP was lowered at ~1 m s-1 to prevent the overlap of 1-liter 

images, which occurs at speeds < 0.3 m s-1 because of the 3.5 cm vertical dimension of the 

imaged volume and the 9 cm inter-image gap at an acquisition rate of 11 Hz (Picheral et al., 

2010). However, due to ship movement, swells, and the necessary initial ascent in the pressure 

protocol, a constant rate of ~1 m s-1 in deployment was often unattainable and required post-

processing to remove images from periods of descent below the 0.3 m s-1 threshold. Overlapping 

images collected at speeds below the threshold result in duplications of large particles and 

overestimation of organismal abundance and particle concentrations (Barth & Stone, 2022). 

Heave compensation was used on all cruises to smooth the descent of the UVP and reduce 

instances of image overlap.  

2.3 Particle Data Analysis  

Once the data were downloaded from the UVP following recovery, the vignettes were 

processed using Zooprocess (https://sites.google.com/view/piqv/softwares/uvp5) and uploaded 

to EcoTaxa following the guidelines outlined in Supplemental 1. Prior to discrimination of the 

image identities, all particles collected by the UVP were converted from pixel2 to mm2 to provide 

context for organismal size when manually annotating the images. To calculate the size of the 

images in mm2 space (Sm) from pixel2 space (Sp), equation 1 is used.  

𝑆𝑚 = 𝐴𝑎 × 𝑆𝑝𝐸𝑥𝑝 

1 

This equation was derived in P10 (and adapted to this format in Kiko. et al, 2022) with Aa being 

the area of a single pixel in square millimeters, and Exp being a dimensionless adjustment factor 

(Kiko et al., 2022; Picheral et al., 2010). Both constants were determined experimentally by 

Hydroptic for this UVP 5 (serial number 222) via comparison to samples sourced from the 

Mediterranean by the Laboratoire d’Océanographie de Villefranche-sur-Mer (LOV). Further, 

using a log transformed minimization of subsampled particles and a subsequent jackknife 

procedure to estimate error, optimal values for Aa and B were determined. For additional 

information regarding the details of the two procedures, refer to P10 (Picheral et al., 2010). As a 

https://sites.google.com/view/piqv/softwares/uvp5
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result, by applying the Aa and Exp constants to the surface area in pixels2 (Sp) for each particle 

such as is described in Eq. 1 above, the surface area of the particle in mm2 (Sm) is found. While 

images captured by the UVP are not perfectly spherical, such as in the case of copepods, 

siphonophores, alciopids, and many others, the approximate ESD of these vignettes was used 

for comparison to conventional descriptions of UVP data. As such, ESD was found using the 

millimeter area of the imaged object following ESD = √4 × 𝑆𝑚 .  

To evaluate the abundance of organisms in classified images the data were binned by 

depth, and the liters imaged within those bins were summed. The number of classified images 

was then divided by the liters imaged in those bin widths to provide a measurement of 

concentration in units of counts per liter (#/L). At this point it is essential that pauses, ascension 

periods, and duplicate images have been removed from the dataset to mitigate over- or 

underestimation of particles by double counting or over-dilution. The accuracy of the 

concentrations for the classified images is limited at the lower bound by the resolution of the 

UVP 5 (HD) camera, and at the upper bound by the maximum volume imaged, in this case, 

1.22L. As such, it is important to consider the size of the target image category, for example 

siphonophores, which often exceed the dimensions of the imaged water volume, when 

considering the accuracy of the concentration determined by the UVP.  

2.4 Building a Training Set  

Training sets built for MLAs provide a set of images from which object features will be 

extracted and associated with pre-allocated or discovered image categories. For this reason, it is 

ideal that a training set be representative of the spatial and temporal ecological context to which 

the MLA will be applied (González et al., 2017). Furthermore, modern MLAs often require large 

quantities of image data, on the order of tens of thousands of images, to correctly define classes 

depending on the diversity of image categories in the dataset (Luo et al., 2018). This is, in part, 

due to the large range in orientations, sizes, and resolutions of the images provided to the MLA 

from an instrument such as the UVP. However, changes to the quality and consistency of the 

provided images could improve the performance of the MLA when quantity is lacking (Pei et al., 

2021). Finally, the distribution of the image categories provided to the MLA should be similar to 

the distribution of those categories in the larger dataset to which the MLA will be applied. 

Considerations taken here, and suggested for future studies, concerning each of these aspects in 

an ideal training set are described.  

 

Quantity vs. Quality 
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Conventionally, thousands of images per object category are required to optimize the 

performance of the modern MLA (Rangineni, 2023). This poses an issue for large particle 

annotation in the oligotrophic NPSG due to the natural rarity of most image categories. The 

most feasible solution was to improve the quality and consistency of the images provided in the 

training set. Higher quality images included representations of unique characteristics (such as 

copepod antennae), and therefore provided a consistent set of features from which to extract 

categories. To be clear, images that are not perfect should be included as they are representative 

of the true distribution of UVP images that the MLA will encounter. The distinction here is that 

images that the annotator is not confident belong to the category should not be included in the 

name of increased image quantity, as they may bias the training set feature associations. 

Further, by presenting consistent representations of images in their categories, feature 

extraction should be more consistent. It is therefore a priority that categories are 

morphologically homogenous, as categories that are too broad will introduce inconsistent 

structural information during training. Categories must also not be too narrowly defined, as this 

may not provide enough images for MLA training. Finding this balance involves evaluation of 

the MLA outputs and subsequent re-training with broader or narrower categories to increase 

MLA performance.   

 

Distribution  

 Image categories provided in the training set should have a representative distribution in 

comparison to the larger datasets to which the trained MLA will be applied (González et al., 

2017; Rangineni, 2023). This prevents minority categories and highly morphologically variable 

categories from disproportionately biasing feature extraction. Additionally, multiple 

orientations, sizes, and qualities of images that are still within the bounds of image annotation 

criteria should be provided. The MLA is likely to encounter the full range of image qualities 

within a category when processing the larger dataset, and as such, these should be represented 

appropriately in the training set.  

 

Contextualized Data  

 The training set should include data that is contextually relevant to the larger dataset 

that the MLA will process. This prevents the phenomenon of dataset shift as described by 

Gonzalez (2017). Dataset shift describes how the regional or temporal morphotypes and relative 

distributions of the imaged populations in the training set can bias an MLA towards the 

population upon which it was trained, leading to poor performance within novel temporal and 
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regional settings. For this reason, training sets should be created using data from the region or 

temporal setting to which the MLA will be applied. In the context of a changing regime, such as 

a time series, it is recommended that the performance of the MLA is assessed periodically to 

determine when new training data needs to be curated and applied.  

To ensure that training sets include a consistent quality of images that have been 

annotated within the context of the study region, it is necessary to create classification 

standards. By providing standards with contextualized criteria for image validation one can 

improve the quality of the training set, and thus potentially the performance of the MLA that is 

being trained. Including criteria for training set standardization also improves the efficiency of 

MLA product validation. Further, this keeps the validation process consistent with the 

annotations included in the training set. This is of particular concern for time series, which may 

have large periods of time between MLA trainings, or overturn in annotators who perform 

validations and create new training sets.  

2.5 Classification Standards 

To begin classifying the images that were collected by the UVP (example image shown in 

Figure 2), it is helpful to have a guide that describes the possible and important classifications 

for the region of study accompanied by images and descriptions for comparison to facilitate 

internal and inter-annotator consistency (González et al., 2017). This guide is not intended to 

provide a ‘gold standard’ to which all classified objects must be identical, but rather to highlight 

criteria that can be referred to for identifying the critical qualities of organisms in various 

orientations, sizes, and resolutions of collected images. The intention behind using geometric 

language (Figure 3) in morphological criteria is to allow easier feature extraction by MLA’s and 

the ability to efficiently redesign classifications based on MLA performance. In addition, a 

guide-based schema, such as represented in Figure 4, is intended to increase project longevity 

by allowing annotators to hand off annotation criteria to future generations of annotators for 

extended image annotation projects, such as time series. This method also provides criteria for 

annotators to reference during classification rather than relying on subjective thresholds, such 

as the arbitrary 75% confidence for validation suggested for experts to internally regulate 

(Kenitz et al. 2023). Further, the detailing of classification standards allows communication in 

published manuscripts and to MLA developers, as to the morphological reasoning behind 

individual image validations.  
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Terminology 

1. Object - The individual particle that is captured in the image by the UVP. 

2. Image - The vignette of the object that was downloaded from the UVP after processing 

with Zooprocess. 

3. Category - The identity group of the image as it is grouped taxonomically  

(e.g., copepod or marine aggregate). 

4. Classification - The process of identifying the category to which an image belongs.  

 

 

Figure 2. UVP image layout 

Image from the UVP with description of the image attributes after processing through 

Zooprocess. Scale bar = 2; station and cast = s2c04; liter image = 6650; depth = 12.7 m.  

 

Image pre-processing  

When manually removing those duplicates that escape the post-processing of UVP 

ascension periods and pauses, it was decided that images that include the most complete and 

accurately identifiable criteria of the object imaged were to be included and used in the 

determination of the concentration for that object’s occurrence. However, it must be noted that 

the most complete image of an object does not always contain the most identifiable 

characteristic of the object. An example being an image that contains most of a cnidarian but is 

imaged once more with less of the organism visible. In such a case, the image may now include a 

taxonomically unique feature that allows for a positive identification for which the first image 
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would not. Here, the less complete but higher accuracy image was used, prioritizing image 

classification accuracy over object completeness or size. The issue of duplication is common and 

described in detail in Barth et al., (2022).  

2.5.1 Taxonomic Specificity 

The taxonomic level to which images could be classified was largely determined by the 

resolution of the images collected by the UVP. As such, characteristic morphological features 

had to be unique to the classification category and describe a category of images numerically 

abundant enough to be scientifically relevant. In addition, objects quickly pass by the UVP and 

are imaged in various orientations. For this reason, criteria for classification had to be either 

universally apparent from all sides of the object imaged, or meet a combination of presented 

criteria, allowing certain identifiers to be absent. For example, copepods, primarily calanoids, 

are here described by the presence of a perpendicular antenna, a fusiform overall body shape, 

and a constriction separating the urosome from the prosome. While all three of these features 

are discernable in the ideal image collected by the UVP of a copepod, not all images were ideal. 

As such, it was determined that when two out of these three criteria were present, the image 

could be classified as a copepod while maintaining accuracy of the annotation. This is supported 

by the comparison of the copepod classifications by two annotators in the confusion matrix 

presented in Section 3.4.3.  

While many images did not contain sufficient morphological uniqueness to consistently 

discern phylogenetic level beyond phylum, others presented distinct features that could easily be 

discerned to the genus level, such as in the case of the colonial form of the diazotrophic genus  

Trichodesmium. However, occasionally there would be morphologically unique features that 

allowed for order or even genus level classification, but a paucity of organisms in those 

categories, requiring a grouping at a higher phylogenetic level after classification to draw 

scientific conclusions with statistical merit. Such was the case with the Rhizaria category, within 

which Phaeodaria could be distinguished, in addition to Collodaria and Acantharia, but for 

whom the abundances of these more specific categorizations were not numerous. They were 

given a more general morphological description that could be applied across the phylum 

Rhizaria. 

Additionally, in some cases there was a morphological disparity between two or more 

categorizations that were numerically low yet shared higher-level taxonomy. For example, if one 

were to find low numbers of copepods, amphipods, and euphausiids it might be tempting to 

group them into the subphylum crustacea. However, these three organismal categories did not 

share appreciable similarities in their morphological appearance as seen by the UVP, and to 
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include them together for the purposes of training an MLA would have provided vastly different 

features under the same categorization. Thus, they were best grouped individually, yet at low 

abundance. Broadly, it was found that the level of specificity most useful for UVP training set 

classification was at the phylum or class level, with a few exceptions for notably abundant 

organisms (e.g., the genus Trichodesmium). 

2.5.2 Reference Images 

Within the UVP classification standards, reference images from the UVP, microscopy, 

and illustration were used to provide a point of comparison for the annotator. The purpose of 

using reference images in this guide was to establish criteria for various image orientations, 

resolution qualities, size, internal morphological dissimilarity, regional appearances, and 

potential identifiers.  

Each category of image was listed with example UVP images collected using the UVP 

serial number 222 in the North Pacific. The images from the UVP were intentionally selected to 

vary in their rotation, degradation (such as in the case of broken or incomplete objects), and 

resolution. The UVP reference images included instances with clear appearance of the criteria 

for annotation, but also instances of images that were blurry, occluded, or absent of certain 

criteria, yet nevertheless accurate to the category. This inclusion of imperfect images alongside 

more exemplary images allowed for annotators to see the range of acceptable categorization, as 

well as learn what the thresholds were for an unacceptable image.  

Secondarily, reference images from a higher order of clarity, in this case a light 

microscope and illustration, were included for reference. This allowed annotators to anticipate 

and identify features of objects which had not previously been imaged by the UVP, and thus 

could not be used for reference. In cases where no sample was able to be collected for imaging by 

light microscope, historical illustrations were used. The illustrated images that were included in 

the guide were sourced from Marine Plankton by Castellani, C., & Edwards, M. (2017). The 

references that were from light microscopy were collected via 333 µm net tow on HOT-

345. Providing reference images from the same region as the UVP sample dataset serves the 

same function as creating contextualized training sets for MLAs intended to be used in a specific 

region (González et al., 2017).  

2.5.3 Labels 

To label each image descriptor such that a new annotator could learn the relative 

importance of the identifying criteria, three labels were created: critical criteria (CC), 

supplemental descriptors (SD), and possible confusions (PC). These labels helped to determine 
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which descriptors were being employed for positive validation of images and how to discern 

between categories that were visually similar.  

 The critical criteria include those identifiers that were necessary to include for all 

images of the described category, with certain exceptions where only a specified amount of the 

critical criteria was present at once but were interchangeable, such as in the previous example of 

the copepod identifiers in section 2.4. For each critical criteria the required number of CCs, 

presence of certain shape confirmations (such as colonial or solitary), and a brief description of 

the identifier was given.  

 For some images there were extra pieces of information, such as thoracic segmentation 

or seminal vesicles, that may be present in an image, but which were not critical to the 

identification of the category. Such descriptors were referred to as supplemental descriptors 

(SDs). SDs were intended to provide additional context to confirm the identity of an organism if 

the critical criteria were poorly resolved, unclear, but not absent. Additionally, these SDs helped 

to identify structural components that may have confused the annotator in their presence, but 

which were now noted as a possible feature that should not exclude the image from being 

categorized as the predicted identity.  

 Certain categories may have hard to distinguish descriptors that overlap with another 

category’s descriptors. In such cases, explicitly denoting the delineations between the two 

categories was helpful. For this reason, the descriptions of categories that could be commonly 

confused with one another were denoted as possible confusions in the descriptions under 

PC’s. 

2.5.4 Descriptions 

One of the principal tasks in creating annotation standards for the UVP was to translate 

the more detailed illustrations and descriptions based on primarily light microscopy into the 

more limited discernible features captured by the UVP. For example, while Marine Plankton by 

Castellani, C., & Edwards, M. (2017) describes the general morphology of chaetognatha using, in 

part, its tripartite body, its lateral fins, and eyes, not all of these descriptors may be useful for 

classifying UVP images. Based on our images, the tripartite body segments were consistently 

visible, and were thus included in the CC. The lateral fins were occasionally visible depending on 

image resolution and thus were labeled SD. Finally, the eyes were not resolved in any images 

and thus were not included in the standards for identification of chaetognatha by the UVP. 

These feature descriptions were reached through discussion of the most easily recognizable and 

consistently apparent qualities of the UVP images by the annotators and then compared to the 

necessary descriptors indicated by taxonomic reference material. The following are descriptions 
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of those parameters used here to convey to annotators common taxonomic guidelines for UVP-

collected images.  

 

Perimeter  

The margins of an imaged object, whether interrupted or smooth, was helpful in 

communicating the transition between external and internal structures. For example, the 

delineation of the gelatinous sheath which encapsulates the irregular silica shells of the colonial 

radiolarian collodaria from the background of the image by the appearance of its smooth and 

complete surrounding perimeter. This helped to create a distinction between collodaria and a 

collection of small aggregates.  

 

Gray level 

Used as a proxy for the density or translucence described in taxonomic guides, 

descriptions of mean gray level helped to communicate the contrast between object structures. 

In addition, this provided a visible metric for the translucency of gelatinous organisms versus, 

say, the higher opacity of crustacean shells. An example of this variation in the mean grey level 

of dense and translucent structures is shown in the grey level box of Figure 3. The magnitude of 

an image’s gray level also helped to identify the blurriness of an image by way of smooth gray 

level gradients, and the patterns created by repeating structures.  

 

Blur 

A quality that is readily apparent in many UVP images, and yet not included in classical 

criteria for identifying imaged objects was blur. Blur presented in images not as a binary quality, 

but as a gradient of image resolution and contrast which pushed certain images beyond the 

ability to recognize critical criteria, and thus made them unclassifiable. To describe blur as a 

quality in and of itself, and not as the absence of critical criteria it was thus described as such: 

the smooth transition from the external background gray level to a higher internal gray level 

leaving open the possibility for existing structures at the background gray level whether inside 

or outside the observed object perimeter.  

 

Geometry 

Geometric patterns and symmetry formed by object structures in their silhouettes were 

used to convey identifiable features of organisms and detritus. For example, the appearance of 

concentric 2-dimensional circles that denoted the ectoplasm and endoplasm of most Rhizaria 
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was simply communicated and replicated between annotators. In addition, the use of geometric 

language, such as perpendicularity or parallelism, in describing the relationship of object 

structures to one another within an image helped to denote the orientation of spines, tails, 

banding, and other such features. The use of geometric descriptions allowed annotators to 

identify structures that may move in 3-dimensional space, as the UVP does not constrain the 

orientation of the particles it images. This can provide, at times, limiting angles of observation. 

As such, the use of geometric language to establish a system of planar orientation which is 

specific to the organism and irrespective of its imaged orientation proved to be a more 

comprehensive method. This contrasts with descriptions built off the most ideal orientation of 

an organism, as is often the case with illustrated references. For example, establishing copepod 

antennae as being perpendicular to the longitudinal axis of the organism allows the description 

to hold true even when the copepod is imaged head-on, as the longitudinal axis does not change 

for the copepod, even though its longest visible dimension may change based on the orientation 

of the image.  

 

Size 

The length and width of object structures was a critical consideration for many images, 

not only in their total dimension, but also in the dimensions of structures relative to one 

another. For instance, the description of endoplasm or nucleus size relative to their ectoplasm 

size helped to distinguish the identity of different orders of Rhizaria.  
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Figure 3. Descriptor visualizations 

Visual representation of the parameters used to describe the appearance of objects imaged by 

the UVP in terms of relative sizes, blur, perimeter, geometry, and mean grey level. The scalebar 

in the top right corner of each image corresponds to 2 mm. The vertical gradient with the rho 

symbol in the ‘grey lvl.’ box indicates the decreasing progression of density with lighter mean 

grey level, which is used a density proxy, here shown with a cnidarian for presentation of its 

lighter mean grey level translucent bell, and its denser high mean grey level gonadal and oral 

organs. 
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Figure 4. Classification Standards Guide Example  

UVP classification standards guide section for the copepod category, including (from left to 

right) a section for the categorical name, UVP images, reference photos, and descriptors (CC, 

SD, and PC). DOI of classification guide used in this study: 10.5281/zenodo.10038893. 

2.6 Process Study  

The above standards, workflow, and terminology were designed to limit common biases 

and inconsistencies that currently exist in UVP image analysis (Culverhouse et al., 2003; 

Culverhouse et al., 2014; Kenitz et al., 2023). This new approach was intended to facilitate a 

higher inter- and intra-annotator classification consistency and better communicate 

categorization parameters during training and in publications. To provide evidence for the 

efficacy of the recommended approaches, a comparison of two annotators was conducted to 

evaluate their self-consistency and cooperative agreement. Two annotators cooperatively 

https://zenodo.org/doi/10.5281/zenodo.10038893
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annotated an entire dataset, referred to as the ‘Main’ set, from a single cruise (HOT-345) using 

the classification standards and workflow described above. They then returned to the dataset 

individually to re-annotate a randomized ‘Subset’ of the cruise data. The results were then 

compared by category with a confusion matrix, much like how one would assess the 

performance of an MLA product (Culverhouse et al., 2014), to visualize the agreement and 

discordance between annotators by image category. 

2.6.1 Data Collection 

The UVP images for the process study were collected using a UVP 5 (serial number 222) 

attached to a CTD rosette during the period of October 7th to October 11th of 2023 over 11 

profiles aboard R/V Kilo Moana as part of HOT cruise 345 at Station ALOHA in the NPSG. The 

image data was collected via the pressure protocol deployment scheme and processed in 

Zooprocess according the UVP 5 Manual, and was subsequently uploaded to an image 

annotation application, in this case, EcoTaxa. UVP profiles collected on HOT-345 spanned 

depths from the surface to ~ 4000 m, although most profiles were in the upper 1000 m. From 

the 11 profiles conducted, 43,849 images of particles above 500 µm ESD were collected by the 

UVP. HOT 321-341 (excluding HOT 328-334 where the UVP was not onboard) images were 

used for random forest (RF) training and were collected following the same protocols as 

described above. Data for particle analysis also was collected during the 2021 and 2022 

PARAGON phytoplankton bloom cruises. The deployment scheme and processing were identical 

to those performed on the HOT cruises, except an optical cage was used to mount the UVP 

during PARAGON 2021.  

2.6.2 Annotation Overview 

The Main set contained the full catalog of images from the HOT-345 cruise and was 

annotated in its entirety by both annotators. To determine the ability of the annotators to 

reproduce their annotations, and to compare those classifications to another annotator working 

on the same data set, a Subset of the main set was created. The Subset was created by random 

sampling of the Main set without replacement, selecting 1,000 images from each profile for an 

even distribution among casts. This provided 11,000 images, or ~25% of the Main set, for 

inclusion in the Subset. The 25% threshold was decided for two reasons. Firstly, the relative 

differences in the number of images collected by each profile limited the upper boundary of how 

many images could be sampled evenly. Secondarily, the fully annotated HOT-345 Main set 

included 28.83% of total images that could be validated positively to image categories. 25% was 

thus chosen to include an even distribution of sampled images from all casts.  
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 Annotator expertise is an important factor in providing confident and accurate 

annotations for training sets and validation of MLA outputs (Culverhouse et al., 2003). The 

more experienced annotator, A1, created the classification standards. A1 then trained the second 

annotator, A2, on how to use the classification standards and image annotation application. A1 

and A2 cooperated in annotating the Main set of UVP images collected from HOT-345. First, A2 

reviewed the image categories and validated those images that matched the criteria from the 

classification standards set by A1. Secondarily, A1 reviewed all images, reassigning images where 

necessary. A1 and A2 then annotated their respective Subsets in isolation. The images in each 

Subset were identical and in the same order of appearance as presented in the image annotation 

application. Both annotators individually followed the classification standards for categorizing 

the images, as was done in the Main set.  

2.6.3 Image Annotation Application 

EcoTaxa was chosen for the annotation of the UVP datasets used here due to its use 

within the UVP community, its established documentation, and its compatibility with the native 

UVP data formatting (Barth & Stone, 2022). However, other such applications exist, such as 

Morphocluster (Schröder et al., 2020). Morphocluster may be used for the same image 

annotation purposes as EcoTaxa, but with differences in user interface, data formatting, and 

integrated classification algorithms. EcoTaxa was created and is operated by Hydroptic Inc. 

which manufactures the UVP and utilizes a RF algorithm for native image prediction.  

Images uploaded to an EcoTaxa project are labeled with the initial status ‘unclassified’. 

These images have not been run through the random forest algorithm to predict their identity, 

nor have they been validated as their predicted classification. To assign a predicted classification 

to the image, the project must be run through the RF algorithm in EcoTaxa or uploaded to the 

EcoTaxa application after being processed through a non-native image classifier. Here, the 

native RF in EcoTaxa was used to bin images before manual review.  

13 HOT cruises which had been previously annotated following these methods were used 

to train the EcoTaxa RF. During the feature selection phase, all feature options in EcoTaxa were 

used for prediction. Once run through the RF, the images were under the status ‘predicted’ and 

had been assigned to the image category which the RF estimated their highest likelihood of 

belonging. The RF was therefore limited to making predictions which align with the existing 

categories of images in its training set. These initial RF predictions were later compared to the 

manually validated Main set to ascertain the precision of the algorithm following equation 2.  
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

2 

Here, the ‘true positives’ were defined as those images which the RF predicted as belonging to a 

category that was later validated as such in the Main set. ‘False positives’ were defined as those 

images which the RF predicted to belong in a category that the validated Main set had later 

assigned elsewhere. The precision of the RF thus communicated the proportion of correctly 

predicted images.  

2.6.4 Image Status  

 In EcoTaxa, after prediction by its RF, there exist three image status categories: 

‘predicted’, ‘validated’, and ‘dubious’. A fourth status, ‘unknown’, has been manually included 

here through the creation of an image category named Unknown. Below is a description of each 

status as they were used in the current Process Study.  

 

Predicted  

Images with the ‘predicted’ status were assigned by the RF into categories for each 

annotator to assess. The annotator then reviewed the ‘predicted’ images, comparing each to the 

classification standards, and determined if the image belonged to one of the following statuses: 

validated, dubious, unknown, or predicted. If an image was found not to match any of the 

categorical criteria in the classification standards, it remained under the ‘predicted’ status. 

 

 

 

Validated  

An image was ‘validated’ when it met the criteria for classification in an image category 

as described in the classification standards. If the image was identifiable as a new category not 

yet included in the EcoTaxa predictions, then the new category was created, and the image was 

classified as ‘validated’ in that category. For this study, images were only validated if they 

belonged to an existing category in the classification standards. 

 

Dubious  

Dubiously labeled images were those which the annotator was unsure of in classification, 

requiring further review, but to which a category had been tentatively assigned and not 
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validated. These images often lacked appropriate resolution of critical criteria or contained 

multiple objects of interest and would be reassessed with more scrutiny later in the annotation 

process before being validated or left in the dubious category. Images left in the dubious 

category for this study were treated as ‘predicted’ since they were not validated.  

 

Unknown  

Images that contained unique features, such as long antennae, enormous eye stalks, or 

other such distinguishing features which were likely identifiable, but to which no classification 

standard matched in description would be categorized as ‘unknown’. These images are distinct 

from the ‘dubious’ classification in that they are possibly identifiable with additional reference 

outside the described categories of images and are not tentatively or otherwise assignable to 

existing categories. The unknown status was thus used to hold images for future classification 

into novel categories. This is a notable designation as well in that it is not a native EcoTaxa 

status and was created by designation of a category called ‘Unknown’ within the EcoTaxa 

taxonomic list and was not to be used in RF training sets but only as a repository for novel 

images until their proper classification. 
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3. Results and Discussion 

3.1 Large Particle Abundance, Distribution, and Seasonality  

 Particles larger than 53 µm are generally assumed to be ‘sinking’ particles (Buesseler et 

al., 1995), and thus contribute heavily to the flux measured by other in situ devices such as 

Particle Interceptor Traps (PITs). Shown in Figure 5 below is the vertical profile of large particle 

abundance (#/L) from 13 HOT cruises spanning August 2020 to October 2023. The highest 

particle counts were routinely measured in the summer (June, July, and August), and 

occasionally fall (September, October, November), cruises, as evidenced by particle peaks on the 

order of the 50 – 125 #/L present in the upper 75 db of the water column. Winter (December, 

January, February) cruises showed low particle counts throughout the water column, while 

spring (March, April, May) profiles showed occasional subsurface maxima around 100 to 150 

db. Regardless of season, the presence of a particle peak was often associated with higher 

standard deviation values. This high variability of the large particle stock at Station ALOHA 

during the summer and fall indicates that events that produce or consume these particles are 

ephemeral. The high abundance and variability of large particles in the summer-fall are 

consistent with the known timing of phytoplankton blooms in the region (White, 2007). 

Utilizing UVP data as such could help connect time series observations of eddy fields and 

chlorophyll to the ongoing sediment trap flux measurements carried out by the HOT program by 

describing with fine scale resolution these pulses of fast sinking large particles as they are 

transformed through the water column.  
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Figure 5. Particle Abundance with Seasonality 

Profiles of particle concentration from sea surface to 250 db covering 13 HOT cruises conducted 

from 2020 to 2023. Concentration presented in units of particle counts per liters of water 

imaged by the UVP. Shaded portions of each graph represent 1 standard deviation from the 

average particle abundance plotted in each graph. Average abundances are colored by season.  

 

The slope of the particle size distribution (PSD) can help describe perturbations to the 

relative concentrations of particles in specific size-classes, which have been tied to changes in 

the biological activity of the water column (Sheldon et al., 1972). Increasing the abundance of 

small particles increases the slope of the PSD whereas increased abundance of large particles 

decreases this slope. A PSD was derived using UVP data in the upper 150 db of Station ALOHA 

during HOT-345 and found to have slope of -3.33 ± 0.09 (Figure 6). This is roughly aligned with 

the global mean value of -3.57 ± 0.56 reported in Kiko et al. (2022) for the upper 200 db of casts 

exceeding 3000 db. However, as is shown in Figure 7, the slope of the HOT-345 PSD varies with 

depth, at times reaching values as steep as -3.76 in the twilight zone of the water column. 

Particle production, advective fluxes, aggregation and disaggregation may all serve to alter the 

observed slope of the PSD with depth (Asper, 1985; McCave et al., 1984; Sheldon et al., 1972). To 

track how upper water column PSD slopes change in response to season, the PSD of the upper 
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150 db was compiled (Figure 8).  HOT 321 and HOT 337, both summer cruises, have PSD slopes 

closer in line to the PARAGON 2021 and 2022 phytoplankton blooms, also observed in the 

summer. The stochastic increases in PSD slope only being observed in summer shows the 

importance of this period at Station ALOHA for production of large particles, and perhaps 

contributions to the ‘summer export pulse’ observed by deep-moored traps (Karl et al., 2021). 

The remaining HOT cruises had PSD slopes between -3.3 and -3.6, with summer cruises having 

slightly shallower PSD slopes than winter cruises on average.  

 

 

Figure 6. HOT 345 Particle Size Distribution 

Distribution of large particles imaged by the UVP during HOT cruise 345 from sea surface to 150 

db, plotted on a log-log scale. HOT cruise 345 conducted during October in 2023 at Station 

ALOHA.  The slope of the PSD roughly equates to -3.33± 0.09.  
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Figure 7. Vertical Profile of Particle Size Distribution Slopes 

Particle size distribution slopes binned in 5 db intervals over the upper 150 db of the water 

column. Data was compiled from HOT cruise 345 during the month of October in 2023 at 

Station ALOHA. Variability in the slope of the PSD with depth indicates possible biological or 

physical perturbations of suspended and sinking particles.  
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Figure 8. Seasonal Change in Particle Size Distribution 

Particle size distribution slopes from 13 HOT cruises spanning August 2020 to October 2023, 

and PARAGON 2021 and 2022 phytoplankton blooms. Slopes here presented on the Y-axis as 

positive values derived from negative PSD slopes. Note that anomalous shallow PSDs occur 

exclusively during summer months, shown in orange circles. Winter cruises, as shown in dark 

blue diamonds, have steeper slopes (indicative of a greater influence from small particles) than 

summer cruises.  

                  

Perturbations to the particle size distribution, as shown above, have been tied to 

fluctuations in the biological activity of the ecosystem (Sheldon et al., 1972). Since the UVP 

creates images for those particles that are > 0.500 mm it was possible to describe changes to the 

populations of plankton and marine aggregates, and perhaps identify the changes to community 

composition that may perturb the PSD at the larger size range. To understand the changes that 

may be transforming the proportion of smaller particles, particularly those below 0.500 mm 

ESD, future studies should combine UVP particle analysis with other imaging systems that 

capture the < 0.500 mm size range, such as the IFCB and/or the Scripps Plankton Camera 

(SPC).  
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3.2 Image classification – Random Forest Performance 

 The EcoTaxa RF was evaluated through a comparison of its predictions to the eventual 

categorizations made in the Main set by both annotators. If the EcoTaxa RF was as able to 

discern organismal identity as confidently as manual annotations, one could theoretically use its 

predictions to curate training sets for more accurate and efficient MLAs down the line. The 

precision of the EcoTaxa RF was calculated using equation 2. Training the EcoTaxa RF with the 

images from 13 HOT cruises led to an overall precision of 0.3091, or ~ 31%, when applied to the 

HOT-345 Main set. The precision of individual object categories is shown in Table 1, alongside 

the image counts used in the training of the RF. While one would expect that an increased 

quantity of images would lead to increased precision, this is not always the case. Trichodesmium 

had the highest precision (64%) in terms of RF prediction and utilized 5000 training set images 

in feature extraction. Similarly, copepod prediction was also trained using 5000 images, and 

came in at 16% precision. This contrasts with the 459 images used to train the Eumalacostraca 

category, with a ~21% precision output. With such low confidence in object annotation, it would 

be inadvisable to rely on EcoTaxa’s RF categorizations alone as training sets for MLAs. The RF 

would therefore serve a better purpose as a prescreening to roughly bin images before manual 

annotation and curation of a training set.  

 

Table 1. Precision of EcoTaxa Random Forest Algorithm 

The precision of the EcoTaxa random forest algorithm presented as a percentage and listed by 

the categories included in the Main set. Image counts per category are included to show the 

relationship between RF precision and abundance of images included in the training set per 

category.  

 

Category Precision (%) Images in Training Set (#) 

Chaetognatha 5.7 147 

Cnidaria sp. 2.1 459 

Eumalacostraca 21 456 

Ostracoda 0.7 160 

Rhizaria 2.6 5000 

Siphonophorae 4.4 90 

Trichodesmium 64 5000 

Copepod 16 5000 
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Diatom Mat 13 62 

Fecal Pellet 55 5000 

Larval-Fishes 14 251 

Marine Aggregate 35 5000 

Phyllosoma 0 4 

 

 One may argue that the RF is being trained on inconsistent data annotations, and thus 

providing a variable categorization irrespective of image quantity. In such a case, the manual 

annotations between annotators, if based on inadequate classification standards or inconsistent 

annotator performance, should not be consistent. To ascertain such information, the 

performance of both annotators in their ability to replicate the annotations of the Main set, and 

comparison to one another, was evaluated.  

3.3 Process Study Efficacy 

Should manual annotation prove a better method of classifying images for training sets 

and MLA outputs than reliance upon the EcoTaxa RF alone, then the agreement of A1 and A2 

with the Main set should be higher than the precision of the RF. Further, if time series or other 

extended projects were to make use of such methods such that annotations might be inherited, 

then the agreement of A1 and A2 should be commensurate with intra-annotator consistency. 

Both assertions are here addressed through the application of classification standards as 

described above and evaluated for performance below. Classifications were compared based on 

intra-annotator consistency, as described by agreement of A1 and A2 Subsets with the Main set 

of cooperatively annotated images, and inter-annotator consistency, as described by the 

agreement of classifications between annotator A1 and A2 Subsets. The categories included 

cover 13 classifications, as listed in Table 2 below. During the annotation process there appeared 

several images of organisms and detritus for which annotators could identify unique structures 

but for which no annotation standard yet existed, and thus were not included in the results of 

the annotations as ‘predicted’ or as ‘validated’ objects and were labeled as ‘unknown’. These 

images were not included in the counts presented in Table 2.  

3.4 Dataset Annotation Comparisons  

3.4.1 Annotation Counts  

Within the randomized Subset marine aggregate, Trichodesmium, Rhizaria, fecal pellets, 

and copepods dominated the abundance of image counts, with marine aggregates reporting the 
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largest (Main - 1728 : A1 - 1586 : A2 - 2400) count by an order of magnitude. Except for those 

images counted in the Trichodesmium category, A2 classified higher counts for each category of 

image. With the context of the A2 being a more novice annotator, one could interpret this as 

overconfidence in the ability to annotate certain categories of images. By looking at the mean of 

the three subsets, the over-annotation by A2 can be assessed, as for all categories except marine 

aggregate (standard deviation = 434.8), Trichodesmium (standard deviation = 51.4) and fecal 

pellets (standard deviation = 53.1) the counts of A2 were within 1 standard deviation of the 

mean. The most likely explanation is that A2, in their relative inexperience, annotated images 

that were below the level of confidence applied cooperatively in the Main set and by A1 in their 

Subset. This is evidenced by the lower number of images left in the ‘predicted’ category by A2 in 

their Subset than in the Main set and A1 Subset. 

 

Table 2. Subset Annotation Counts 

Abundance of subset HOT-345 UVP images by category as classified by both annotators 

cooperatively (Main set) and individually by Annotator 1 (A1 Subset) and Annotator 2 (A2 

Subset). Counts presented here from the Main set are those which correspond to the images 

randomly selected for annotation in the individual A1 and A2 Subsets, and do not include all 

annotated image counts from the Main set. 

 

Category Main A1  A2  

Chaetognatha 3 2 2 

Cnidaria sp. 9 7 11 

Eumalocastraca 17 12 15 

Ostracoda 2 1 1 

Rhizaria 144 122 154 

Siphonophorae 2 2 2 

Trichodesmium 882 922 820 

Copepod 115 73 100 

Diatom mat 1 1 1 

Fecal pellets 486 488 579 

Larval fishes 5 6 6 

Marine agg. 1728 1586 2400 
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Predicted 6708 6880 6011 

 

3.4.2 Annotation Size Thresholds 

The Subsets’ consistency was analyzed by percentage of images with the same 

classification, including all image categories, as shown in Table 3. The Subset contained 11,000 

images that were selected randomly from the Main set. The total Subset images above 1 mm 

ESD sums to 10,103 images. 1 mm was chosen as a threshold for image analysis based on Barth 

& Stones 2022 findings that objects below this ESD were not reliably identifiable (Barth & 

Stone, 2022). This was consistent with the observations of both annotators during the 

classification of images. If one compares the overall agreement for those images above 1 mm 

ESD, both the inter-annotator and intra-annotator comparisons fall above 80% similarity. 

Perhaps intuitively, as the size of images is increased to >2 mm ESD and >3 mm ESD fractions, 

the similarity of classified images increased to > 90% and > 95 % respectively. As images 

become larger, it becomes easier to identify the structures of the objects being imaged as a 

function of resolution, and therefore the agreement of annotation standards being applied 

properly to the classification of objects increases.  

 

Table 3. Subset Annotation Agreement 

Comparison via percent agreement in Subset image classifications as shown through size 

fractions of annotated images in equivalent spherical diameter (ESD). Images here classified by 

both annotators cooperatively (Main set) and individually by Annotator 1 (A1 Subset) and 

Annotator 2 (A2 Subset). 

 

Subset Comparisons >1 mm ESD (%) >2 mm ESD (%) >3 mm ESD (%) 

A1 / Main 87.6 93.5 97.8 

A2 / Main 88.1 95.4 96.7 

A1 / A2 85.2 92.8 96.5 

Total Subset Images  10103 2858 1121 

 

 

Shown by the total counts in Table 2, the filtering of those images above 2 mm ESD and 

3 mm ESD decreases the total count of images being annotated by ~78% and ~89% respectively, 

in comparison to the >1 mm ESD dataset. As such, only including images above a 2 mm ESD or 
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3 mm ESD threshold for the purposes of creating a higher quality training set would decrease 

the quantity of images, and thus orientations, morphotypes, and taxonomic diversity of images 

from which a potential MLA would extract features. Given the large image quantities needed for 

many MLAs, this would greatly increase the number of datasets for which human annotation is 

needed such that thousands of images in each category could be provided to a training set. This 

translates to increased time, and thus cost, of creating a training set. Additionally, it is possible 

that this bulk, and rather rough, analysis of agreement could be biased towards a specific 

category of images, and thus, a more discreet level of analysis is required which looks at the 

classification of individual images, as is explored below.  

3.4.3 Comparing Annotator Classifications 

To analyze the categorical classification of images by A1 and A2 a confusion matrix 

(Figures 9 - 11) was created for which the results were presented as percentages normalized by 

the counts from A2. Looking at the confusion matrix for annotated images >1 mm ESD there 

was a majority consensus on most image categories between annotators. Those categories with 

100% agreement consist primarily of categories where <10 images were categorized, such as in 

the case of the chaetognatha category which contains 2 images annotated. Generally, the 

confusion matrix shows that more of A1’s classifications were left in the ‘predicted’ category 

across the classification spectrum. In the case of Trichodesmium 15% of objects were left in the 

predicted category for A1 when classified elsewise by A2; this difference was 36% for Cnidaria. 

The previous bulk percentage agreement in Table 2 showed that there was likely over-

annotation by A2. The confusion matrix in Fig. 9 shows that this over-annotation was not of a 

single category, but rather a general trend across categories. As such, there is not a singular 

problem category in need of re-description, but possibly a realignment of general classification 

standard applications between A1 and A2. However, in the case of a cooperative annotation 

process, over-annotation by a more novice annotator who carries out a first pass of the dataset is 

preferable to under-annotation.  

By looking at the categories from which the most dominant classifications were 

attributed, a wider spread in agreement can be seen. Rhizaria (75%), copepods (63%), fecal 

pellets (77%), and marine aggregates (64%) all fall below 80% in inter-annotator classification 

agreement. However, the Trichodesmium category, which is also amongst the dominant taxa 

has an 85% agreement between annotators. By identifying the categories that low percentage 

(<80%) classifications were confused with, the underlying morphological structure overlap or 

ambiguity in morphological description can be inferred. For example, the fecal pellet category 

was most frequently confused with Trichodesmium (3%) and marine aggregate (3%). During 
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HOT-345 there was an observation of larger Trichodesmium colonies than are usually observed, 

and as such, the tuft shape of Trichodesmium had a larger overlap with the visual structure of 

the elongated fecal pellets than on other cruises. This observation was made by both annotators. 

As such, clarification in the ‘possible confusion’ section of the classification standards for 

Trichodesmium was made to help distinguish the two categories. Further, since fecal pellets and 

marine aggregates are both detritus, it is not surprising that the two were also confused, as they 

share a certain amorphous quality which creates categorization overlap when marine aggregates 

are elongated in silhouette. Understanding where these confusions lie helps to re-define 

categories in classification standards and assess overall annotator inter-comparison and 

confidences, as well as being an important diagnostic tool regularly employed in the validation 

of MLA products.   

When the confusion matrix is resolved by size, in >2 mm ESD and >3 mm ESD images, 

we can see a broad trend of increasing percent agreement across classification categories. Most 

notable is the jump in percent agreement in the marine aggregates category, from 66.54% in the 

>1 mm ESD matrix to 80.26% in the >2 mm ESD fraction and 85.71% in the >3 mm ESD 

fraction. While this is caveated by the large decreases in image quantities per group, it speaks to 

the consensus in which categorizing marine aggregates is dependent on the size of the object 

imaged. As such, the expertise associated with annotating UVP images may not rely solely on the 

experience of the annotator, or the clarity of the taxonomic description, but also largely upon the 

resolved size of the target object in question within UVP datasets.  

The level of expertise established in previous studies (Culverhouse et al., 2014), which 

review the threshold for annotator proficiency and the biases associated with morphological 

annotation, typically do not include images of the quality produced by the UVP, especially with 

respect to representation of marine aggregates. Further studies including a wider range of 

annotators, both in number and level of experience, may be helpful to the UVP community to set 

instrument specific expertise thresholds. It is likely from the results presented here, when 

compared to higher resolution optical imaging systems and the physical collection of certain 

organisms, that the UVP will have a lower threshold for what is considered expert annotation. 

This may set an upper limit on the accuracy of annotations feasible for certain categories of 

image. An upper limit on taxonomic confidence should thus be considered when designing 

scientific questions that include MLA training on datasets created with UVP images like those 

included here. However, to utilize the unique benefits described above for UVP image datasets 

in training automated image classifiers and validating MLA products, it is imperative that UVP 

specific limitations, reference standards, and morphological descriptors be considered.  
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Figure 9. Confusion matrix 1 mm ESD 

Confusion matrix of UVP images comparing the subset annotations by category of A1 and A2 in 

terms of A2 normalized percent agreement. The images categorized here include those which 

were above 1 mm ESD. 
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Figure 10. Confusion matrix 2 mm ESD 

Confusion matrix of UVP images comparing the subset annotations by category of A1 and A2 in 

terms of A2 normalized percent agreement. The images categorized here include those which 

were above 2mm ESD. 
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Figure 11. Confusion matrix 3 mm ESD 

Confusion matrix of UVP images comparing the subset annotations by category of A1 and A2 in 

terms of A2 normalized percent agreement. The images categorized here include those which 

were above 3mm ESD. 
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3.5 Community Composition  

 Investigation of the Main set validated images reveals that most identifiable images were 

in the upper 100 db of the water column with a steep drop off in the count of validated images 

below this depth (Fig. 12). This is likely due to the exponential decline in abundance of larger 

organisms with depth in the NPSG. UVP-collected images were predominantly from surface 

populations that were imaged more frequently than those from deeper in the water column and 

this trend in the data may be considered a bias when evaluating MLA performance.   

 

Figure 12. Abundance of Validated Objects 

Abundance of Main set validated images shown over the top 1000 db of the water column, 

binned in 20 db intervals and collected during HOT-345 during October of 2023 at Station 

ALOHA. Images are separated by taxonomic category, with the majority of images validated in 

the upper 100 db.  

 

Overall, most classified images belong to the marine aggregate category (Fig. 13). While the 

upper 50 db is comprised primarily of fecal pellets and the colony-forming cyanobacteria 
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Trichodesmium, all other depth intervals are dominated by marine aggregates. An increase in 

copepods relative to surface peaks in Trichodesmium and fecal pellets is evident in the twilight 

zone (Figure 14). Because the data here were not segregated by day and night cycle, it is possible 

that diel vertical migration (DVM) behavior could lead to these distributions; further 

partitioning of the datasets by photoperiod would need to be explored to address this pattern. 

The increase in the relative abundance of Rhizaria between 75-275 db could also be related to 

migratory behavior of Foraminifera, or perhaps be indicative of niche portioning of Rhizarian 

subgroups as was described in Biard & Ohman, (2020). Future UVP studies may correlate 

particle distributions, diel patterns, and higher phylogenetic specificity of Rhizarian populations 

than is described here to investigate their temporal variability.  

 

Figure 13. Percent Abundance of Validated Objects 

Percent abundance of Main set validated images shown over the top 1000 db of the water 

column, binned in 20 db intervals and collected during HOT-345 during October of 2023 at 

Station ALOHA. Images are separated by taxonomic category, with marine aggregates 

dominating abundances below 100 db.   
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Figure 14. Percent Abundance of Validated Objects: Marine Aggregates Excluded 

Abundance of Main set validated images, excluding marine aggregates, shown over the top 1000 

db of the water column. The data were collected during HOT-345 during October of 2023 at 

Station ALOHA. Images are separated by taxonomic category and binned in 20 db intervals. 

While fecal pellets and Trichodesmium dominate the upper 100 db of the water column, a 

transition is then made with depth to an increased percent abundance of copepods and Rhizaria.  

 

 The ESD size ranges of the validated categories were plotted to visualize the categories 

that trend towards larger or smaller ESD sizes or that show a wide range of observed sizes 

(Figure 15). While detrital categories (fecal pellets and marine aggregates) were shifted towards 

a median of 1 mm, other objects such as Eumalacostraca and Larval-Fishes were spread more 

broadly into the 5 and 10 mm ESD sizes. However, almost all categories had median values 

below 5 mm with outliers in the 5 to 42 mm ESD range. Such an analysis could help to 

illuminate phenological size changes within each category across season, depth or 

environmental gradients.  
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Figure 15. Size Range of Validated Objects 

Box plot showing the size ranges of Main set validated objects collected during HOT-345 during 

October of 2023 at Station ALOHA. Most categories show median values below 5 mm ESD, with 

exceptions in the case of Larval-Fishes, Phyllosoma, and Diatom Mats. These larger categories 

found in the oligotrophic NPSG were also lower in abundance.  

 

3.6 Individual Object Insights 

 To understand the vertical niches of major categories their abundances across all casts 

were enumerated and normalized by the volume of water which was collected in 15 db bins. This 

normalization helped to control for depths that were imaged more frequently. These values were 

presented as concentrations in units of counts per liter (#/L) (Figs. 16 – 18). Certain 

photosynthetic organisms, such as Trichodesmium (Fig. 16), were distributed as expected 

throughout the euphotic zone (at Station ALOHA top of nutricline ~91 db in winter, ~117 db in 

summer) with a sharp peak here seen within the mixed layer (<50 db) (Letelier et al., 2004). 

Some images of Trichodesmium were found much deeper, at times in the 200 db range. As the 

UVP cannot distinguish between living and non-living material, these organisms may be 

migrating, dead and sinking as clumps or have been subducted rapidly from the surface by 
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downwelling (White et al., 2006). Marine aggregates (Fig. 17) showed highest concentrations in 

the euphotic zone as well but peaked at the mixed layer boundary (~50 db). Peak concentrations 

of marine aggregates were more than double those for copepods and dominated the signal in the 

upper water column across all profiles, as is consistent with findings elsewhere (Trudnowska et 

al., 2021; Turner, 2015). As aggregates showed a peak at the mixed layer boundary, it is possible 

that aggregates accumulate here during settling, providing a region of nutrient-rich material for 

organismal particle trophy or a site for particle colonization by bacteria. Below this marine 

aggregate peak there was a notable depression in aggregate concentrations (Fig. 16), which is 

consistent with particle remineralization and disaggregation with increasing depth. However, 

the subsequent uptick in aggregate concentrations at the 350 db depth interval is currently 

unexplained but could be explained by a density feature. In this case the aggregates may become 

suspended on account of their neutral buoyancy at this depth. This may reveal a more 

complicated and changing story for ‘sinking’ vs. ‘suspended’ particle discussions based on size 

and warrants further investigation.  

Lastly, the copepod vertical profile of abundance is shown in Figure 18. The low total 

counts of copepods below 50 db likely reflects real declines in animal abundance with depth. 

While it is unlikely that the UVP can be used to probe questions regarding copepod niche 

partitioning alone, on account of its taxonomic resolution, this instrument may be used in 

tandem with methods of physical collection that concentrate large volumes and reveal more 

morphotaxonomic detail. By comparing the high-resolution in-situ analysis of the UVP with 

more taxonomically specific methods of analysis, such as by net tow, VPR, or Zooscan image 

analyses, the true diversity underneath this vertical profile may be better interrogated.  
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Figure 16. Trichodesmium Concentration 

Mean concentration of Trichodesmium (green) and total Trichodesmium (blue) imaged by the 

UVP over 11 profiles, binned at 5m depth intervals down to 500db within the water column. 

Error bars (grey) represent 1 standard deviation from the mean. Data collected during HOT 345 

during October of 2023 at Station ALOHA 
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Figure 17. Marine Aggregate Concentration 

Mean concentration of marine aggregates (green) and total marine aggregates (blue) imaged by 

the UVP over 11 profiles, binned at 5 m depth intervals down to 500 db within the water column. 

Error bars (grey) represent 1 standard deviation from the mean. Data collected during HOT 345 

during October of 2023 at Station ALOHA. 
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Figure 18. Copepod Concentration 

Mean concentration of copepods (green) and total copepods (blue) imaged by the UVP over 11 

profiles, binned at 5 m depth intervals down to 500 db within the water column. Error bars 

(grey) represent 1 standard deviation from the mean. Data collected during HOT 345 during 

October of 2023 at Station ALOHA 

 

 Within categories, mean object size can also change with depth. While Figure 15 shows 

the overall size range of object categories, Figures 19-21 extend this analysis with vertical 

resolution for individual objects. Marine aggregates largely do not deviate from the smaller 1-2 

mm median size with depth (Fig. 19). However, marine aggregate outliers in the 3 – 10 mm 

range are more common in the euphotic zone, and within the mixed layer. This is likely a 

signature of large particle production in surface waters, and subsequent remineralization or 

disaggregation with depth. In the case of copepods (Fig. 20), there is a slight subsurface (~160 - 

360 db) peak in organismal sizes. Additionally, Rhizaria (Fig. 21) show a slightly bimodal size 

profile with larger organisms being found in the surface and again around 280 db. The 

Rhizarian diversity includes large (a few micrometers to a maximum of three meters) light-

dependent populations (e.g., collodaria), which may explain upper ocean size ranges (Biard et 
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al., 2017). Further, the secondary peak could be explained by Foraminifera, Phaeodaria, or other 

such larger migratory Rhizaria that have been shown to venture into the twilight zone (Biard & 

Ohman, 2020).   

 

 

Figure 19. Size Range of Marine Aggregates with Depth 

Box plot of Marine Aggregates validated in the Main set over the upper 500 db of the water 

column. The median size for MA remains relatively constant, but outliers in the upper maxima 

of reported ESDs are more common above 100 db. Data was collected during HOT 345 during 

October of 2023 at Station ALOHA. 
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Figure 20. Size Range of Copepods with Depth 

Box plot of Copepods validated in the Main set over the upper 500 db of the water column. The 

median size for copepods reaches a maximum in the twilight zone of the water column. Data was 

collected during HOT 345 during October of 2023 at Station ALOHA. 
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Figure 21. Size Range of Rhizaria with Depth 

Box plot of Rhizaria validated in the Main set over the upper 500 db of the water column. The 

median size shows bimodal peaks around 60 db and 260 db and is perhaps indicative of 

underlying taxonomic complexities. Data was collected during HOT 345 during October of 2023 

at Station ALOHA. 
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4. Conclusion 

The Underwater Vision Profiler for Particle Imaging  

 Through analysis of images collected throughout the water column in the oligotrophic 

NPSG it is clear that the UVP 5 is proficient in the acquisition of images for populations of 

particles, particularly marine aggregates, that would otherwise be altered or undercounted by 

other methods of observation (Asper, 1987; Gibbs & Konwar, 1983; Honjo et al., 1984; Silver & 

Alldredge, 1981). By imaging a larger volume than that of other optical systems, performing 

such data collection in situ, and acquiring images with high depth resolution, the UVP is 

arguably the state of the art for morphological identification and enumeration of particles > 500 

m (Forest et al., 2012). However, due to the limitations of its imaging resolution, the non-

orientation of particles, and the lack of compositional analysis inherent to a non-destructive 

method of collection, the UVP would benefit from comparisons to other measurements. 

Measurements from methods of physical collection, such as net tows, and higher resolution 

imaging, such as from the VPR and IFCB, would supplement the accuracy of morphological 

classification possible with the UVP. These instruments could also provide chlorophyll 

fluorescence, such as for the identification of diatom mats, and higher phylogenetic specificity, 

such as through DNA barcoding of collected organisms. Further, the ability to provide a unique 

perspective on the size and structure of large fragile particles and in situ enumeration of such 

populations makes the UVP an ideal instrument with much benefit to wholistic studies of 

organismal and marine aggregate size, diversity, and spatial distribution.  

 

Findings from the Hawaiʻi Ocean Time-series 

 Particle data presented here show an increase in the abundance and variability of large 

particles during the summer-fall of 2020 to 2023, and a PSD slope of -3.33 ± 0.09 for HOT-345. 

These findings are in line with previously described timing of phytoplankton blooms in the 

NPSG and provide further evidence supporting the impact of the summer export pulse at Station 

ALOHA from the high-resolution perspective of the large particle size spectrum. Shallow PSD 

slopes (~ -2.80) seen in exclusively summer cruises further support the trend of increasing large 

particle stocks during the summer. Comparing the vertical profile of marine aggregate sizes 

described here at Station ALOHA to biogeochemical measurements routinely made during HOT 

cruises could provide further insight into the nature of large particle export. Particularly, the 

presence of subsurface spikes in large particle abundance, which may hint at an evolving 

definition of ‘sinking’ and ‘suspended’ particles dependent on density features and 
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disaggregation.  Additionally, the changes to plankton community composition with depth, 

particularly increases in Rhizaria, here supports the need for deeper (>200 db) casts to 

illuminate open ocean organismal dynamics. Further, observations of deep water 

Trichodesmium may indicate migrating populations that could be investigated further through 

analysis of photoperiods, physical collection and speciation, and colony shape identification.  

 

Classification Standards for Building and Validating Training Sets  

 With increasingly large UVP image data sets and the growing popularity of automated 

image classification it is necessary that there be a standardized onramp for new annotators to 

produce MLA training sets and validate MLA products. To harness the improving accuracy of 

contemporary MLAs and image classification efficiency that is beyond human annotation, the 

current schema of MLAs requires human annotators to establish contextualized training sets 

and validate MLA products. It has been acknowledged in recent works that more attention has 

been given to the education of annotators on how to use MLAs, while the process of curating the 

training sets and validating classifications which MLAs are reliant upon has been neglected. As 

such, with dwindling numbers of expert morphological taxonomists who could properly curate 

and validate datasets, there will become an increasingly tight bottleneck at the point of human 

annotation.  

I present here a novel method that uses classification standards to build contextualized 

and consistent training sets, while providing criteria for the validation of MLA outputs. 

Classification standards provided increased inter- and intra-annotator consistency and laid a 

foundation for better communication of image validation criteria for annotator training, 

manuscripts, and MLA performance troubleshooting. When compared to the native EcoTaxa 

RF, annotators using the classifications standards were better able to reproduce the 

categorizations of objects made in the Main set. As such it is recommended that manual 

annotation with classification standards, following RF pre-binning, be used to provide the 

highest quality of training sets and most accurate validations of MLA outputs. While annotation 

agreement for certain categories fell below previously reported levels of expertise (~80%) as 

established by net tow and Zooscan studies, the argument is made that the resolution of UVP 

images may require re-assessment of such thresholds within the context of individual 

instrumentation (Culverhouse, 2003). Further, while inter- and intra-annotator consistency has 

been investigated in previous studies, though not for the UVP, it is here extended to 

cooperatively annotated datasets. Findings here imply that annotations made across multiple 

annotators can be comparable to self-consistency when using classification standards. This 
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provides both feasibility and a framework for long-term UVP image annotation projects such as 

by time series.  

 

Applications to Future Studies  

 While stated previously above, it bears repeating in service of future efforts that a high 

resolution in situ particle imaging instrument such as the UVP is particularly suited to 

investigate the concentrations and characteristics of large particles in the oligotrophic NPSG, as 

shown here through various applications of UVP imaging data. However, the large volume of 

imaging data required to properly categorize the broad diversity, distribution and variability of 

plankton and marine aggregates in the open ocean requires an automated imaging scheme 

beyond that which is possible by human annotators alone. To make use of machine learning 

algorithms for this purpose, it is shown here how a new UVP user may develop contextualized 

training sets, validate images, and apply their results to oceanographic questions. Through use 

of classification standards future studies may implement time series observations of plankton 

and marine aggregates using the UVP, and more accurately and consistently describe the 

organisms and aggregates which constitute the biological carbon pump.  
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