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ABSTRACT 

 

Ocean acidification (OA) is a growing global environmental concern with impacts affecting 

regions all over the world, including remote areas such as Hawai‘i. OA is gaining worldwide 

attention due to environmental impacts including the detrimental effects of OA on coral reefs. 

Increased anthropogenic release of CO2 into the atmosphere will result in increased absorption 

by the world oceans. There is a general lack of information regarding small-scale spatiotemporal 

variations in surface ocean carbon parameters, however satellites and other remote sensing 

platforms are becoming increasingly utilized for Earth system observations and can be used to 

help evaluate OA patterns around Hawai‘i. With the use of empirical algorithms, remote 

measurements of sea surface temperature (SST) and sea surface salinity (SSS) can be used to 

assess OA patterns in coastal and open-ocean waters around the state. For the purposes of this 

study, in situ data collected from mooring buoys and ship studies are used to develop empirical 

algorithms that relate satellite observations to OA conditions for the Hawaiian Islands region 

(HIR). 
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CHAPTER 1. INTRODUCTION 

 

Ocean acidification (OA) occurs when atmospheric carbon dioxide enters the ocean and reacts 

with water molecules to form carbonic acid and its dissociation products. An increase in fossil 

fuel emissions produce elevated concentrations of carbon dioxide (CO2) that enter the Earth’s 

atmosphere, which are then absorbed by the world oceans through direct chemical exchange 

(Heinze et al., 2015). The ocean acts as a natural carbon sink and ~90% of the total dissolved 

inorganic carbon in seawater is stored as bicarbonate (HCO3-), ~10% is stored as carbonate 

(CO32-) and < 1% is stored as aqueous CO2 (Barker & Ridgwell, 2012). A study from 1994-2007 

estimated the average uptake rate of global anthropogenic carbon to be 2.5 ± 0.3 Petagrams of 

Carbon per year (Pg C yr-1); the global inventory of anthropogenic carbon was estimated to reach 

159 ± 20 Pg C by 2010 (Gruber et al., 2019). 

 

When atmospheric CO2 enters the ocean surface, a series of reactions occur. The first reaction in 

this process occurs when CO2 reacts with water to form carbonic acid (H2CO3): 

 

CO2 + H2O à H2CO3   (1) 

 

Next, carbonic acid dissociates into HCO3- through the loss of a hydrogen atom: 

 

H2CO3 à H+ + HCO3-  (2) 

 

Most, but not all, of the hydrogen ions from the above reaction will bind to a carbonate ion 

(CO32-) to form bicarbonate: 

 

H+ + CO32- à HCO3-   (3) 

 

As more free hydrogen ions become available, the pH of seawater decreases. Concentration 

ratios of particular carbon species can be determined by the pH level. FIGURE 1 below 
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illustrates this concept using a Bjerrum plot. As pH decreases, carbonate ion concentrations 

decrease dramatically while bicarbonate ion concentrations increase. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As OA reduces the carbonate ion concentrations, many marine organisms that form their shells 

from calcium carbonate (CaCO3) minerals will become increasingly vulnerable to OA. Two 

commonly found mineral forms of biologically produced CaCO3 are aragonite and calcite. 

Aragonite is more soluble than calcite, meaning that it is easier for the mineral to dissolve in the 

surrounding environment, or conversely more difficult to form with rising OA (Haigh et al., 

2015). 

 

The aragonite saturation state value, represented by the symbol ΩAr, will indicate whether 

calcium carbonate is saturation (ΩAr = 1), supersaturated (ΩAr > 1) or undersaturated (ΩAr < 1) in 

certain areas. As ΩAr increases, precipitation of CaCO3 becomes thermodynamically more 

 
FIGURE 1  

A Bjerrum plot displaying concentrations of carbon dioxide, bicarbonate, and 

carbonate ions at varying pH levels. As hydrogen ions increase in seawater,  pH 

decreases resulting in lower concentrations of carbonate ions. 

(https://en.wikipedia.org/wiki/Bjerrum_plot). 
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favorable, which drives calcification rates for marine organisms (e.g., corals) (Cyronak et al., 

2016). 

 

Alternatively, when ΩAr decreases below a value of 1, CaCO3 dissolution occurs. As a result, 

organisms will need to dedicate more energy into building their shells when the rate of 

dissolution exceeds the rate of accretion (Haigh et al., 2015). ΩAr is commonly used to track OA 

because of the relationship between carbonate ion concentrations, the primary driver of ΩAr 

variations, and the stability of this important mineral produced by marine organisms (Dunne et 

al., 2013). 

 

The precipitation or dissolution of carbonate minerals, such as aragonite, can be expressed as: 

 

CaCO3 (s) à CO32- + Ca2+   (4) 

 

Equation (5) below can be used to determine the extent of aragonite saturation in seawater: 

 

ΩAr = [CO32-][Ca2+]/Ksp   (5) 

 

In Equation (5), Ksp represents the equilibrium solubility product of aragonite at a specific 

temperature, salinity and pressure. 

 

Organismal responses to increased OA will vary across many species (i.e., decreased shell sizes, 

reproductive changes, etc.), with some tolerance to changes greater than others (Kroeker et al., 

2013). For instance, as the ocean acidifies, molluscs such as oysters and scallops may find it 

more difficult to build and maintain their shells. As a result, fisheries that heavily depend on 

molluscs would likely experience negative impacts. Coral reef ecosystems, a prominent feature 

of the Hawai‘i coastline, are also susceptible to OA and other effects resulting from climate 

change. Loss of coral reef ecosystems could have profound effects on marine biodiversity by 

impacting organisms that feed and reproduce on the reefs (Doney et al., 2020). It has been found 

that as sea surface temperatures increase, a phenomenon known as “coral bleaching” can occur, 
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which impairs the ability of corals to grow their skeletons. While it has been challenging to 

directly link changes in net coral accretion rates to OA specifically, results from an alkalinity 

(AT) enrichment study found that when seawater carbonate ions are increased to preindustrial 

levels, net community calcification increases; results from this study suggest a direct correlation 

between OA and net community calcification (Doney et al., 2020). 

 

SST, SSS and ΩAr are among three of the most important factors controlling the geographic 

distribution of coral reefs in shallow waters. Habitat changes caused by global warming, OA and 

other environmental factors can negatively impact shallow-water corals. Annual and spatially 

averaged tolerance limits have been established using a diagnostic ReefHab model (Kleypas, 

1995). Responses of coral reefs to changing environmental conditions is variable and ΩAr 

tolerance limits vary depending upon environmental factors and based on species-level 

adaptability; even within the same species, factors such as minimum light tolerance can differ 

based on morphological differences. Field investigations suggest a natural ΩAr limit of 2.9; 

however, in other areas such as the Great Barrier Reef, findings suggest a lower threshold value 

of 2.82 (Guan et al., 2015). An earlier study by Kleypas et al., 1999 indicates a minimum ΩAr 

tolerance of 3.28. 

 

Due to the prevalence of marine life, widespread coral reef ecosystems, and a reliance on fishing 

in Hawai‘i, an increased intensity of effects resulting from OA on the surrounding local 

environment and population is anticipated. Seafood is a major dietary component for many 

residents and vacationers in Hawai‘i. Including noncommercial catch, 51% of the total seafood 

available for consumption is locally sources (Loke et al., 2015). Evidence suggests that elevated 

CO2 concentrations affect the physiology and survival of many marine organisms, including fish. 

A number of fish species are sensitive to the effects of OA; changes in larval physiology, growth 

and survival rates have been observed and vary on a species level (Scholey et al., 2012). Over the 

past decade, decreasing trends in ocean pH, another common parameter for monitoring OA, are 

of greater global concern, which has gained widespread attention from scientists and politicians. 

Carbon dioxide, upwelling and nutrient pollution all contribute to decreases in ocean pH. Long-

term time series analyses using Hawai‘i Ocean Time-series (HOT) program data indicate a 
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decreasing trend in ocean pH and carbonate ion concentrations (FIGURE 2) in the North Pacific 

Ocean since 1989. Since the beginning of the industrial revolution, ocean pH has dropped by 

~0.1. This value alone may not seem dramatic but is equivalent to a 26% increase in ocean 

acidity (Pidcock, 2015). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OA is not spatially constant or homogeneously distributed. Carbonate system monitoring has 

been primarily conducted from ship- and field-based studies. These approaches are limited in 

space and time and provide sparse measurements (Land et al., 2019); in order to observe more 

localized effects of OA, new studies focusing on remote observations of carbonate system 

parameters have been developed. 

 

 
FIGURE 2 

Time-series of CO32- and pH at the ocean surface (< 50 m) in the North Pacific Ocean at 

Station ALOHA from 1989-2021. Trends are based on in situ observations made available 

by the Hawai‘i Ocean Time-series (HOT) program 

(https://hahana.soest.hawaii.edu/hot/hotco2/hotco2.html). 
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Fluctuating relationships between ΩAr and other variables across ocean regimes establishes a 

need for the development of regional models. The use of satellite algorithms for data 

optimization, coverage and resolution is a relatively new development. Use of satellite 

measurements and applied algorithms are beneficial because they overcome spatial limitations 

and undersampling biases that can be challenging when working with in situ measurements. The 

developed algorithms can be used to calculate ΩAr with near real-time availability and with 

minimal spatial extrapolation. The algorithms were developed in accordance with methods 

established in the literature from similar studies in other tropical regions (e.g., Gledhill et al., 

2008). 

 

Over the past few decades, thermal cameras and microwave sensing technologies have been used 

to measure ocean sea surface temperature (SST) and sea surface salinity (SSS) from space. 

Although satellites cannot directly measure OA, the measurements collected can be exploited for 

more rapid and expansive estimates of certain OA proxies (Land et al., 2015). Utilizing satellite-

based measurements to create geospatial maps of ΩAr and other OA related parameters across the 

HIR (including remote areas surrounding the main Hawaiian Islands (MHI) will provide 

widespread and near real-time information, which has the potential to reduce uncertainties with 

respect to the local carbon budget (Lohrenz et al., 2018). This approach can provide new 

information spanning large geographic domains, allowing scientists to evaluate OA patterns and 

variations on regional and global scales. Knowledge obtained will be critical for resource 

managers and local marine industries. 

 

Incorporation of satellite measurements provides widespread coverage and near real-time 

information. Empirical algorithms derived from hydrographic measurements such as SST, SSS 

and ΔpCO2 will allow for the development of regional maps that display surface ocean 

variability of ΩAr across the HIR. Geospatial mapping of near real-time OA approximations for 

the surface ocean across the HIR can be used to define and evaluate local OA parameters and to 

make assessments about surrounding oceanic and environmental health. 
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This thesis examines the following hypotheses with respect to the spatial and temporal patterns 

of OA in the HIR, 

 

1. The calcification on coral reefs can change the linearity of the slope of the sea surface salinity 

(SSS) vs. total alkalinity (AT). 

2. Sea surface ΩAr values will be higher to the west in the Hawaiian Islands Region (HIR) based 

on the movement of surface currents.  

3. Surface ocean ΩAr values will be primarily driven by changes in sea surface temperature 

(SST). 

4. There will be a long-term decrease in surface ocean ΩAr values which will cross a “coral 

threshold”, where the corals can no longer sustain themselves, within the next 30 years. 
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CHAPTER 2. METHODS AND APPROACH 

 

The study domain encompasses waters from 150.1 to 164°W and 18-24°N, here-after referred to 

as the HIR. The HIR includes islands such as Ni‘ihau, O‘ahu, Moloka‘i, Kaua‘i, Lana‘i, 

Kaho‘olawe, Maui and the Island of Hawai‘i (or otherwise commonly referred to as the Big 

Island). ΩAr values for the HIR were calculated from regionally- and empirically-derived 

algorithms developed from ordinary least squares (OLS) regression techniques. In order to 

estimate inorganic carbon variables from hydrographic measurements, the initial algorithms were 

developed from in situ measurements of SST, SSS, AT, pCO2, and in some cases, dissolved 

inorganic carbon (CT). Some of these measurements are frequently observed using autonomous 

platforms and datasets are widely available. 

 

AT is a quasi-conservative carbonate system parameter and can be estimated independently from 

SSS and SST using site-specific algorithms. SSS, however, is the largest driver of seawater ionic 

composition and is strongly related to AT (Land et al., 2019). It can be more challenging to 

estimate AT in coastal regions due to biological influence and/or from changes in AT due to 

riverine discharge, groundwater input and/or upwelling. Jones et al. (2016) found that 

incorporating SST into algorithms used for AT calculations will increase regional AT 

predictability and may serve as a proxy for AT changes that may be caused by upwelling 

processes. Algorithms were developed for AT and seawater pCO2 (pCO2, sw); next, values were 

substituted into a Python-based package called PyCO2SYS (Humphreys et al., 2022) in order to 

calculate ΩAr. 

 

Station ALOHA (A Long-term Oligotrophic Habitat Assessment, a deep-water station located 

approximately 100 km north of O‘ahu at 22.75°N, 158°W) is one of the in situ data collection 

sites used to develop the open ocean AT algorithm. Discrete measurements of carbonate system 

parameters were obtained from CTD casts and bottle samples collected from Station ALOHA 

during the Hawai‘i Ocean Time-series (HOT) research cruises from January 1989 to December 

2020 (all HOT data were obtained via the Hawai‘i Ocean Time-series HOT-DOGS application, 

https://hahana.soest.hawaii.edu/hot/hot-dogs/interface.html. Accessed in December 2022). 
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Shipboard measurements collected during the Hawai‘i Ocean Time-series cruises, the Global 

Ocean Data Analysis Project or GLODAP (Olsen et al., 2016) cruise numbers 306, 1043 and 

1044 from March 2006 and May 2015, and Surface Ocean CO2 ATlas or SOCAT (Bakker et al., 

2016) cruises were used to develop the open ocean algorithms. Data collected from local 

mooring buoys surrounding O‘ahu from 2009-2019 and from the 2019 National Coral Reef 

Monitoring Program or NCRMP (Barkley et al., 2021) were used to generate the coastal 

algorithms. TABLE 1 summarizes the data sources and parameters used for generating each of 

the open ocean algorithms. TABLE 2 summarizes the data sources and parameters used for 

generating each of the coastal algorithms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE 1. DATA SOURCES AND INFORMATION USED FOR GENERATING 

OPEN OCEAN ALGORITHMS  

Shipboard measurements collected during multiple research cruises and used as inputs for the 

generation of open ocean algorithms (SSS = sea surface salinity, SST = sea surface 

temperature, D = depth, AT = total alkalinity, ΔpCO2 = pCO2 (seawater) – pCO2 (air)). 

 

Data source Collection 
method(s) Parameters Location Dates Algorithm 

Hawai‘i Ocean 
Time-series 

Bottle 
samples; 

CTD 

AT, D, SSS, 
SST 

Station 
ALOHA 
(22.75˚N, 
158˚W) 

01/1989-
12/2020 AT 

Global Ocean 
Data Analysis 

Project 
(GLODAP – 

v2.2022) cruises 

Bottle 
samples; 

CTD 

AT, D, SSS, 
SST Variable 03/2006-

05/2010 AT 

Surface Ocean 
CO2 ATlas 
(SOCAT) 

cruises 

Bottle 
samples; 

CTD 

ΔpCO2, D, 
SSS, SST Variable 06/2008-

05/2017 ΔpCO2 
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TABLE 2. DATA SOURCES AND INFORMATION USED FOR GENERATING 

COASTAL ALGORITHMS  

Sources of measurements used as inputs for the generation of coastal algorithms. (SSS = sea 

surface salinity, SST = sea surface temperature, D = depth, AT = total alkalinity, ΔpCO2 = 

pCO2 (seawater) – pCO2 (air)). 

 

Data source Collection 
method(s) Parameters Location Dates Algorithm 

National Coral Reef 
Monitoring Program 

(NCRMP) cruises 

Bottles samples; 
CTD 

AT, D, SSS, 
SST Variable 04/2019-

09/2019 AT 

Ala Wai (MAPCO2 
mooring) Bottle samples AT, D, SSS, 

SST 
21.28˚N, 
157.85˚W 

02/2014-
08/2019 AT 

Kilo Nalu (MAPCO2 
mooring) Bottle samples AT, D, SSS, 

SST 
21.29˚N, 
157.87˚W 

01/2015-
12/2019 AT 

Kāne‘ohe (MAPCO2 
mooring) Bottle samples AT, D, SSS, 

SST 
21.48˚N, 
157.78˚W 

02/2016-
05/2016 AT 

Surface Ocean CO2 
ATlas (SOCAT) 

cruises 

Autonomous, 
bottle samples, 

CTD 

ΔpCO2, D, 
SSS, SST Variable 12/2005-

05/2013 ΔpCO2 

 

 



 11 

2.1 ORDINARY LEAST SQUARES (OLS) REGRESSION MODEL 

 

An OLS regression model was used to relate AT values within the study domain to SSS and SST 

values. Relationships between carbonate system parameters and SSS and SST are primarily 

influenced by thermodynamics (Land et al., 2019); changes in SST and SSS as a result of 

dilution, evaporation, precipitation and ice melting/freezing can influence the number of ions 

present in seawater. SST does not have a direct effect on AT but does share a correlation; as SST 

decreases, AT increases. SST values can be used to indicate where the seawater has come from 

and lower SST values can be used to identify upwelling processes, bringing colder water with 

higher AT values to the sea surface. 

 

SSS and AT share a positive linear relationship with one another in the open ocean. In coastal 

settings, relationships between AT and SSS are strongly affected by chemical processes such as 

weathering, nutrient runoff, pollution, calcification and dissolution (Land et al., 2019) – more 

specifically, the dissolution of calcium carbonate (CaCO3) can potentially alter and decouple the 

linear relationship between AT and SSS. 

 

Biological constraints on the marine carbonate system include, but are not limited to, processes 

such as primary production, calcification, respiration and remineralization (Land et al., 2019). 

Freshwater flux, changes in SST, biological activity, nutrient cycling, upwelling and other 

biological and/or physical processes can affect AT. In order to account for these constraints on 

AT, they are corrected for using site-specific algorithms based on geographic location and 

proximity to land. 

 

2.2 ESTABLISHING AN OPEN OCEAN ALGORITHM FOR AT 

 

In order to develop an empirical algorithm for calculations of AT for the open ocean, in situ 

measurements of SST, SSS, AT and D were obtained from datasets collected during HOT and 

Global Ocean Data Analysis Project (GLODAP) oceanographic research cruises; each of these 

datasets represents the open ocean regime. 
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32 measurements collected from GLODAP cruises 306, 1043 and 1044 from March 2006 and 

May 2015 were combined with 595 HOT cruise measurements in order to develop an open ocean 

algorithm for AT. FIGURE 3 below illustrates the geographic locations for each of the data 

collection sites.  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Quality flag values of 2 (good values) were accepted for AT and SSS measurements from the 

GLODAP dataset; methods for QA/QC for all HOT data were previously applied. Depth (D) was 

constrained to the upper 30 meters for all open ocean SSS and SST measurements collected 

using CTD and Niskin bottles. The GLODAP and HOT datasets were combined into a single 

dataset prior to further analyses. After an initial OLS regression was determined, a few outliers 

 
FIGURE 3 

The location of water samples collected (red circle) during the Hawai‘i Ocean Time-series 

cruises at Station ALOHA (HOT). The location of water samples collected during GLODAP 

cruises 306, 1043 and 1044 (black circles). 
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greater than 2𝜎 from the regression line were removed and a final OLS regression was 

determined. 

 

FIGURE 4 below contains values from the combined HOT and GLODAP datasets and 

illustrates the linearity between SSS and AT for the open ocean. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

An open ocean algorithm for AT was established using SSS and SST as independent inputs; the 

R2 value of the fit is 0.938, indicating that about 93.8% of the variance in AT values can be 

 
FIGURE 4 

A representation of the linear relationship between SSS and AT 

from the HOT and GLODAP datasets for the open ocean; R2 = 

0.938. HOT values (n = 595) are displayed as blue dots and 

GLODAP (n = 32) values are displayed as red dots. 
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explained by the OLS regression model using SSS and SST. Figure 5 displays the OLS 

regression model results used to generate the open ocean algorithm for AT. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Equation (6) below is the open ocean algorithm generated for calculating AT along with the 

coefficient of determination (R2) value: 

 

AT = 64.8(SSS) – 0.3(SST) + 45.6; R2=0.938   (6) 

 

SST was included in the open ocean algorithm for AT calculations in an effort to enhance the 

predictability of open ocean AT values. While SST does not have a direct effect on AT values, 

there is a correlation. As SST decreases, AT values increase (Millero et al., 1998); for that reason, 

SST can be used as a proxy for changes in AT due to upwelling (Lee et al., 2006). The inclusion 

of SST in the OLS regression model slightly reduces the standard error of the calculation.  

 

 

 

 
FIGURE 5 

Results from an OLS regression model used to generate an 

open ocean algorithm for AT. 
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2.3 EXAMINING COASTAL AT VS. SSS RELATIONSHIPS 

 

Coastal AT vs. SSS relationships were examined using data collected from the Kilo Nalu (n = 

36), Kāne‘ohe (n = 25) and Ala Wai (n = 36) mooring buoys surrounding O‘ahu and from the 

NCRMP measurements collected along the coastlines of the MHI. FIGURE 6 below illustrates 

the NCRMP coastal measurement collection sites (n = 309) for the MHI. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

To explore how coastal AT vs. SSS relationships may differ from open ocean relationships, an AT 

vs. SSS plot was constructed to collectively compare all coastal values with the open ocean 

trend. FIGURE 7 below displays AT vs. SSS relationships for all coastal (blue) and open ocean 

(red) values. 

 

 

 

 
FIGURE 6 

NCRMP coastal measurement collection sites (blue) for the 

MHI (n = 309). 
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Although some overlap exists between the coastal and open ocean values, AT vs. SSS 

relationships appear to be more variable for coastal waters than they are for the open ocean; this 

variability could be the result of enhanced biological productivity, introduction of freshwater 

from point sources, nutrient runoff from land, etc. It was determined that all of the coastal 

measurements collected from areas surrounding the Big Island and Ni‘ihau overlapped with open 

ocean values; therefore, the open ocean AT algorithm was assigned to coastal waters surrounding 

these islands. 

 

AT vs. SSS plots for the remaining coastal waters did appear to have different slopes relative to 

the open ocean trendline (FIGURE 8). 

 

 

 

 
FIGURE 7 

AT vs. SSS plot comparing open ocean (red) with coastal (blue) values. 
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To further investigate the variability observed with respect to coastal AT vs. SSS relationships, 

the spatial distribution of coastal measurements for O‘ahu, Moloka‘i, Lanai, Kaho‘olawe and 

Maui were considered separately. Coastal measurements often appeared in clusters and were 

surrounded by gaps (where measurements were unavailable). For this reason, clusters of values 

were frequently grouped together for comparison purposes. 

 

The greatest difference between AT vs. SSS relationships occurs for measurements collected 

along the northeastern and southeastern shorelines of O‘ahu (illustrated in FIGURE 9 below). 

Values for all other islands (including coastal measurements for coastal waters surrounding the 

northwest and southwest portions of O‘ahu) are shown in blue. 

 
FIGURE 8 

AT vs. SSS plot comparing open ocean (red) with coastal (blue) values. 

Values collected from coastal waters surrounding the Big Island and Ni‘ihau 

are excluded. 
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Since AT vs. SSS relationships along the northeastern and southeastern waters of O‘ahu appear to 

express the greatest levels of variability when compared with all other coastal values, these two 

areas are considered to be distinct and as such, required the construction of separate algorithms 

for AT calculations. 

 

After identifying the areas with the greatest levels of variability, all of the remaining coastal 

measurements (blue) were then compared. FIGURE 10 below illustrates the remaining coastal 

measurements that were considered in order to determine if additional coastal AT algorithms 

were needed. 

 

 

 

 

 
FIGURE 9 

NCRMP and buoy measurement collection sites for waters surrounding O‘ahu (left). All 

coastal values were compared with open ocean values (right). Measurements collected for 

southeast O‘ahu are displayed in black and measurements collected for northeast O‘ahu are 

displayed in green. Coastal measurements for each of the other islands (including northwest 

and southwest O‘ahu) are displayed in blue. 
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All of the remaining coastal measurements were organized based on geographic proximity; in 

other words, measurements that occurred in clusters were grouped together for all remaining 

coastal areas across the MHI. AT vs SSS relationships for each group were then compared 

against the open ocean trendline; groups with values occurring within the open ocean value range 

(cyan) were assigned to the open ocean algorithm for AT calculations; groups with values 

extending beyond the range of open ocean values were further classified based on AT and slope 

value differences; groups with similar slope values were combined to form a subgroup. 

Ultimately, a total of two coastal subgroups (in addition to the subgroups established for 

southeast and northeast O‘ahu) were established using this method and are displayed in 

FIGURE 11 below. A single value (blue) occurring outside of the range of open ocean values 

was most closely aligned with values for southeast O‘ahu (right) and was assigned to the 

southeast O‘ahu subgroup. 

 
FIGURE 10 

Remaining coastal measurements that were considered in order to determine if 

additional AT algorithms were needed. 
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2.4 ESTABLISHING COASTAL ALGORITHMS FOR AT 

 

A total of four coastal subgroups were established using the grouping methods described in 2.3 

EXAMINING COASTAL AT VS. SSS RELATIONSHIPS. After each of the subgroups were 

established, outlier values > 2𝜎	from the mean distribution were removed before executing the 

final OLS regressions for each subgroup in order to generate four coastal AT algorithms. 

 

Subgroup #1: 

AT = 20.0(SSS) – 8.0(SST) + 1,786.7; R2 = 0.147   (7) 

 

Subgroup #2: 

AT = 48.6(SSS) – 0.3(SST) + 598.0; R2 = 0.622   (8) 

 

 

 
FIGURE 11 

AT vs. SSS relationships for each subgroup. Subgroups containing values occurring 

within the range of open ocean values (cyan) were assigned to the open ocean algorithm 

for AT calculations. A single value (blue) occurring outside of the range of open ocean 

values was most closely aligned with values for southeast O‘ahu (black) and was 

assigned to the southeast O‘ahu subgroup (displayed on the right). 
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Subgroup #3: 

AT = 39.7(SSS) + 3.2(SST) + 801.3; R2 = 0.622   (9) 

 

Subgroup #4: 

AT = 50.6(SSS) + 1.1(SST) + 490.5; R2 = 0.481   (10) 

 

The resulting trendlines for each of the four subgroups are displayed in FIGURE 12 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 12 

Subgroups used for constructing coastal AT algorithms. Each of the 

coastal subgroup values (blue) are displayed against the open ocean values 

(red). Statistical information is included for each group. 
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2.5 EFFECTS OF CORAL CALCIFICATION ON AT 

 

Kāne‘ohe Bay, the largest sheltered body of water in Hawai‘i, is a complex estuarine system 

consisting of patch and fringing reefs and it has been observed that intense calcification rates 

affect AT in these areas. Findings indicate that biogeochemically induced changes in AT were 

greater than they were for SSS, which modifies the AT vs. SSS relationship. This study found the 

largest scatter and change in AT vs. SSS relationship near Kāne‘ohe Bay, which is attributed 

primarily to the documented intense calcification rates in this area. Although the SSS-AT 

correlation for this region was quite low, the OLS fit was the best first approximation of AT 

possible at this time. 

 

While Kāne‘ohe Bay is uniquely characterized and contains multiple stream inputs (i.e., 

Kāne‘ohe Stream, Kawa Stream, etc.) longer residence times, etc., daily net ecosystem 

calcification (NEC) was found to be comparable to or higher than NEC at other coral reefs 

(Schamberger et al., 2011). Another study compared reef and open ocean AT concentrations at 23 

coral reef locations across the globe and considered the ΔAT value as a direct indication of 

whether net calcification or dissolution was occurring along the reef (Cyronak et al., 2018). 

Although the effects of coral reef calcification on AT are not well quantified for coastal areas 

within the MHI, coastal AT values appear to be consistently lower than open ocean values for 

subgroups #1, #3 and #4 while AT values for subgroup #2 are more similar to the open ocean. It’s 

been observed that there are fewer corals in the subgroup #2 area (later discussed in further 

detail). Thus, it appears that there is a correlation between the amount of coral cover in a region 

and a deviation of the SSS-AT relationship. This connection between the amount of coral cover 

and deviation of the SSS-AT relationship was used to infer which of the existing algorithms 

would be most appropriate to use in areas that had no available in situ carbon system 

measurements. 
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2.6 DATA DEFICIENT ZONES (DDZS) 

 

The measurement gaps that exist in areas located in between measurement clusters across the 

MHI are referred to as data deficient zones, or DDZs. Across the HIR, there are a total of 8 

DDZs. The relationship observed between coral calcification and AT (Schamberger et al., 2011; 

Cyronak et al., 2018) was considered while assigning algorithms to each DDZ for AT 

calculations. To track the abundance of coral located within each DDZ, maps estimating percent 

coral cover in Hawai‘i were obtained from the Pacific Islands Ocean Observing System or 

PacIOOS (Franklin et al., 2013, 2014). A Tier Classification System (TCS) was subsequently 

developed from these maps in order to assign a tier value to each DDZ based on estimated 

percentages of coral coverage, then related to one of the previously determined algorithms. 

 

2.7 ESTABLISHING A TIER CLASSIFICATION SYSTEM (TCS) 

 

Tier values of 1, 2 or 3 were assigned based upon the most prevalent percentage of coral 

coverage observed within each DDZ. TABLE 3 displays each of the tier values along with the 

corresponding percentages of coral coverage. Consider a zone with > 50% of coral coverage in 

certain areas; zones with this level of coverage would assume a tier 3 value if this trend is 

observed for a majority (> 50%) of the total zone area; however, if most of the DDZ is defined 

by values within the 11-50% coral coverage range, these areas were assigned to a tier value of 2. 

 

 

 

 

 

 

 

 

 

   

TABLE 3. TIER VALUES WITH CORRESPONDING ESTIMATES OF 

PERCENT CORAL COVERAGE 

 

Tier values of 1, 2 or 3 were assigned to each DDZ based on percent coral 

coverage, representing 0-10%, 11-50% and 50-100%, respectively. 

 

Tier value Percent coral coverage 

1 0-10 

2 11-50 

3 50-100 
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After assigning tier values to each DDZ, each of the 13 measurement clusters that were used to 

establish the four coastal subgroups (FIGURE 12) were similarly assigned to a tier value. 

Clusters for subgroups #1, #2 and #4 share identical tier value assignments; subgroup #3 consists 

of measurement clusters with an equal distribution of tier 2 and tier 3 values. TABLE 4 below 

summarizes the tier value assignments for measurement clusters within each coastal subgroup. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Based on tier value similarities for clusters within each subgroup and based on the average of the 

percent coral cover estimates, coverage appears to increase sequentially from subgroup #2, #4, 

#3 and #1. The correlation between tier values for clusters within each subgroup was considered 

TABLE 4. TIER VALUE ASSIGNMENTS FOR SUBGROUPS #1-4 FOR ALL ZONES 

WITH VALUES THAT DID NOT FOLLOW THE OPEN OCEAN AT VS. SSS TREND 

 

Information for each coastal subgroup including the island name, cluster number, data source 

and corresponding tier value. 

 

                      SUBGROUP #1  
Island Cluster Data source Tier value 
O‘ahu 1 Kāne'ohe (discrete) 3 
O‘ahu 2 NCRMP 3 

                       SUBGROUP #2 
Island Cluster Data source Tier value 
O‘ahu 3 Ala Wai (discrete) 1 
O‘ahu 4 Kilo Nalu (discrete) 1 
O‘ahu 5 NCRMP 1 

                        SUBGROUP #3 
Island Cluster Data source Tier value 

Moloka‘i 6 NCRMP 2 
Kaho‘olawe 7 NCRMP 2 
Kaho‘olawe 8 NCRMP 3 

Lanai 9 NCRMP 3 
                      SUBGROUP #4 

Island Cluster Data source Tier value 
Maui 10 NCRMP 2 
Maui 11 NCRMP 2 

Kaua‘i 12 NCRMP 2 
Lanai 13 NCRMP 2 
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while assigning AT algorithms to each DDZ. For example, if a DDZ was assigned to a tier value 

of 2, then the AT algorithm assigned for subgroup #4 (consisting of clusters with tier values of 2) 

was used. For one DDZ containing an approximate 50/50 distribution between tier 2 and tier 3 

values, the AT algorithm assigned to subgroup #3 (with an equal distribution of tier 2 and tier 3 

values) was used. DDZs with tier values of 1 (indicating between 0-10% of coral coverage) 

assumed either the open ocean AT algorithm or the AT algorithm established for subgroup #2; if 

percent coral cover in a DDZ was closer to 0%, then the open ocean AT algorithm was assigned; 

alternatively, if a DDZ contained closer to 10% of coral coverage, then the AT algorithm for 

subgroup #2 was used. A single exception to this method occurs for a tier 2 DDZ located along 

the southern perimeter of the Big Island. Since similar patterns of coral coverage span a majority 

of the coastlines that border the Big Island and since there are no other coastal measurements for 

the Big Island that diverge from the open ocean trendline, the open ocean AT algorithm was 

assigned. There were no DDZs that assumed a tier 3 value assignment. 

 

2.8 GENERATING ΔPCO2 ALGORITHMS FOR OPEN OCEAN AND COASTAL AREAS 

 

Calculated AT values and one other carbonate system parameter, either pH, CT or pCO2, sw, must 

be input into PyCO2SYS to calculate ΩAr. For this study, pCO2, sw was the preferred second 

parameter. Previous studies (e.g., Gledhill et al., 2008) have found a strong relationship between 

ΔpCO2 and the CO2 solubility constant (k0) which can be calculated from SSS and SST 

measurements (Weiss, 1974) as shown in Equation (11) below. 

 

ln k0 = A1 + A2(100/T) + A3 ln(T/100) + S[B1 + B2(T/100) + B3(T/100)2]   (11) 

 

SSS and SST measurements from the Surface Ocean CO2 Atlas v2.2022 or SOCAT (Bakker et 

al., 2016) dataset were substituted into Equation (11) for the open ocean and coastal areas. 

Results produced from a multiple linear regression model containing ΔpCO2 and k0 variables 

were used to derive an equation for ΔpCO2 as a function of k0. Bathymetry data was used as a 

filtering mechanism to determine which SOCAT measurements were collected in coastal waters; 

bathymetry > 500 m was considered to be representative of the open ocean depths and 
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bathymetry < 500 m was considered as a coastal area. The same group pairings (subgroups #1-4) 

and outlier removal procedures that were established for coastal AT algorithms were also utilized 

for purposes of developing coastal ΔpCO2 algorithms. In this case, outlier values > 3𝜎	from the 

mean trend were removed before generating the final OLS regression model to establish open 

ocean and ΔpCO2 algorithms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 14 below displays the results from the linear fits for coastal subgroups #1 and #2. For 

all measurement clusters within subgroups #3 and #4, there were no corresponding SOCAT 

values available; NCRMP SSS and SST values for subgroups #3 and #4 were used to calculate 

k0; pCO2, sw and pCO2, atm variables were available from the NCRMP dataset and ΔpCO2 values 

were calculated by subtracting pCO2, atm from pCO2, sw values. Since there were only 15 and 19 

NCRMP measurements for subgroups #3 and #4, a subgroup-based ΔpCO2 algorithm was not 

 
FIGURE 13 

Linear fit between ΔpCO2 and k0 from the SOCAT 

v2.2022 dataset for the open ocean; R2 = 0.794. For the 

open ocean,  ΔpCO2 = -175.0k0 + 488.1. 
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established using these values; ΔpCO2 vs. k0 SOCAT values for subgroups #3 and #4 extend 

beyond the range of open ocean values but are contained within the boundaries for subgroup #2 

from the SOCAT dataset. Therefore, the ΔpCO2 algorithm assigned to subgroup #2 was also 

assigned to subgroups #3 and #4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Each of the subgroup-based coastal ΔpCO2 algorithms are displayed in Equations (12) – (13) 

below: 

 

Subgroup #1: 

ΔpCO2 = -215.7k0 + 657.0; R2 = 0.343   (12) 

 

Subgroups #2-#4: 

ΔpCO2 = -157.4k0 + 446.6; R2 = 0.230   (13) 

 
FIGURE 14 

Linear fits between ΔpCO2 and k0 from the SOCAT v2.2022 dataset for subgroups #1 (left) 

and #2 (center); for subgroup #1, R2 = 0.343 and ΔpCO2 = -215.7k0 + 657.0; for subgroup 

#2, R2 = 0.230 and ΔpCO2 = 157.4k0 + 446.6. For subgroups #3 and #4, SOCAT values were 

unavailable and NCRMP SSS and SST values were used to calculate k0. pCO2, sw and pCO2, 

atm variables are available from the NCRMP dataset and ΔpCO2 values were calculated by 

subtracting pCO2, atm from pCO2, sw values. A ΔpCO2 vs. k0 plot (right) containing SOCAT 

(subgroups #1 and #2) and NCRMP (subgroups #3 and #4) values was used to determine the 

appropriate ΔpCO2 algorithm for subgroups #3 and #4 based on value range similarities. 
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After ΔpCO2 algorithms were established for the open ocean and coastal areas, latitude-based 

pCO2, atm values were obtained from the National Oceanic and Atmospheric Administration’s 

Global Monitoring Laboratory (GML) database (https://gml.noaa.gov/ccgg/mbl/data.php); since 

pCO2, atm values provided by GML reflect dry air values (and does not account for water vapor 

pressure), corrections were applied to account for 100% humidity using the following equation 

from Weiss and Price, 1980: 

 

ln pH2O = 24.4543 – 67.4509(100/T) – 4.8489 ln(T/100) – 0.000544S   (14) 

 

where pH2O reflects the vapor pressure in atm, S represents the SSS in ‰ and T represents the 

SST in Kelvin (K). 

 

Following the calculation of pH2O, new pCO2, atm values were calculated which accounts for 

water vapor pressure using Equation (15) adapted from Dickson et al. (2007): 

 

pCO2, atm (wet) = pCO2, atm (dry) [Peq – pH2O]   (15) 

 

where pCO2, atm (dry) represents monthly atmospheric pCO2 values derived from the GML 

database, Peq reflects standard atmospheric pressure, pH2O is the vapor pressure value calculated 

from Equation (14) and pCO2, atm (wet) represents the new monthly atmospheric pCO2 values that 

have been corrected to account for water vapor pressure. 

 

Latitude was restricted to the HIR and values were averaged for each month from 2015-2020. 

pCO2, sw was calculated by adding ΔpCO2 and monthly averaged pCO2, atm values for all areas 

within the HIR. 

 

2.9 USE OF PYCO2SYS TO CALCULATE ΩAR 

 

Developed from CO2SYS software, PyCO2SYS is an open-source and Python-based scientific 

computing package used to carry out marine carbonate system parameter calculations using 
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automatic differentiation. The components of PyCO2SYS are inherited from CO2SYS-

MATLAB v2.0.5 with minimal restructuring to the aesthetic code (Humphreys et al., 2022). 

Marine carbonate system parameters are solved for following the entry of specific “input” and 

“output” conditions (i.e., pressure (P), SSS, SST, pCO2, sw and AT) into the PyCO2SYS template 

code. ΩAr is one of many output options available. 

 

2.10 FORCING EMPIRICAL ALGORITHMS WITH SATELLITE SSS AND SST 

MEASUREMENTS 

 

Satellite-based SST products like the Group for High Resolution Sea Surface Temperature 

(GHRSST) Level 4 Multi-scale Ultra-high Resolution (MUR) Global Foundation Sea Surface 

Temperature Analysis are made publicly available by the Physical Oceanography Distributed 

Active Archive Center (PO.DAAC). SST values are available on a global 0.01˚ × 0.01˚ grid. 

 

Satellite-based SSS values were accessed from the Aquarius/SMAP Sea Surface Salinity 

Optimum Interpolation Analysis product called Multi-Mission Optimally Interpolated Sea 

Surface Salinity (OISSS) Level 4 V1.0. Monthly repositories are publicly available and 

accessible via the PO.DAAC THREDDS Data Server through the NASA Jet Propulsion 

Laboratory (JPL). The OISSS Level 4 V1.0 Monthly product relies on Level-2 orbital swath data 

from the AQUARIUS/SAC-D mission in order to create a new gridded product. Using optimal 

interpolation, the OISSS Level 4 V1.0 dataset also utilizes SMAP RSS Level 2 SSS and Soil 

Moisture and Ocean Salinity (SMOS) Level 2 SSS L2OS data in order to create a grid with a 

spatial resolution of 0.25˚ and a 4-day temporal resolution (Melnichenko et al., 2021). 

 

2.11 INTERPOLATION OF SATELLITE SSS AND SST VALUES 

 

As shown in TABLE 5 below, the spatial resolutions of the MUR SST (0.01˚) and OISSS (0.25˚) 

products differ. Satellite SSS and SST measurements are the baseline parameters for mapping 

ΩAr and for this purpose, these products must share a common grid. To achieve this, satellite SST 
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and SSS data were interpolated to a 0.1˚ × 0.1˚ Cartesian grid using linear interpolation 

techniques executed by multiple Python scripts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.12 MASKED SATELLITE SSS VALUES 

 

A satellite SSS land mask extends outward from the coastline by 100 km for each month from 

2015-2020. Due to the presence of the SSS land mask, coastal satellite-based SSS values are 

unavailable. FIGURE 15 displays the area of the land mask contained within the OISSS Level 4 

V2.0 product. 

 

 

 

 

 

TABLE 5. SATELLITE-BASED DATA COLLECTION SOURCES AND 

PARAMETERS 

 

Information regarding satellite sources, data type, parameter, original spatial 

resolution, temporal resolution and citations are provided. Note: gridded datasets 

were interpolated to a 0.1˚ × 0.1˚ Cartesian grid. 

 

Satellite sources Data type Parameter 
Original 
spatial 

resolution (˚) 

Temporal 
resolution Citation 

Multi-scale Ultra-high 
Resolution (MUR) Level 

4 V4.1 

 
Grid 

 
SST 

 
0.01 × 0.01 

 
Monthly 

JPL MUR 
MEaSUREs Project, 

2015 

Multi-Mission Optimally 
Interpolated Sea Surface 

Salinity (OISSS) 
Level 4 V1.0 

 
 

Grid 

 
 

SSS 

 
 

0.25 × 0.25 

 
 

Monthly 

 
Melnichenko et al., 

2021 
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2.13 SUBSTITUTION OF REGIONAL OCEAN MODELING SYSTEM (ROMS) SSS 

VALUES IN COASTAL AREAS COVERED BY THE SATELLITE SSS LAND MASK 

 

Due to the presence of a satellite-based SSS land mask, coastal SSS measurements were 

unavailable; therefore, coastal SSS values from a Regional Ocean Modeling System (ROMS) for 

the Hawaiian region were used in coastal areas covered by the satellite SSS land mask (Friedrich 

et al., 2021). Coupled to the planktonic Carbon, Ocean Biogeochemistry and Lower Trophics 

(COBALT) ecosystem model, the ROMS is an assimilation model based on observations which 

simulates ocean physics and biogeochemical conditions for waters around the main Hawaiian 

Islands. The ROMS output incorporates physical forcing mechanisms such as rainfall rate, wind 

speed, etc. provided by a high-resolution Weather Regional Forecast (WRF) model. ROMS 

values are available at a 0.036˚ (approximately 4 km) horizontal resolution and the ROMS 

configuration includes a vertically stretched grid offering higher resolution at higher latitudes 

(Friedrich et al., 2021). In order to generate a map of ΩAr for the HIR, gridded values of SSS and 

SST were interpolated to a 0.1˚ Cartesian gride in order to match the resolution of interpolated 

grid points for satellite SSS and SST. 

 

 
FIGURE 15 

Land mask extending outward from the 

coastline by 100 km contained within the OISSS 

Level 4 V1.0 product. 
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It has been shown that model results demonstrate good agreement between observed and 

simulated values at Station ALOHA as well as capturing seasonal cycles for many variables 

(Friedrich et al., 2021); additionally, there appears to be good agreement between the ROMS 

SSS and satellite SSS values for the open ocean. FIGURE 16 below displays the average 

difference for each month between satellite and ROMS SSS values for the open ocean. 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Average monthly differences between satellite and ROMS SSS values for the open ocean are 

greatest during the summer months from April-September. The mean value with respect to the 

average monthly differences is approximately 0.23˚C; although the uncertainty for OISSS values 

is approximately 0.2˚C, there appears to be relatively good agreement between satellite and 

ROMS SSS values for the open ocean; therefore, it is assumed that ROMS SSS values for the 

coastal areas would be similarly expressed. 

 

 

 

 
FIGURE 16 

Average difference for each month between satellite and ROMS SSS values for 

the open ocean. 
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2.14 INTEGRATING SATELLITE AND ROMS VALUES TO PRODUCE HYBRID MAPS 

OF ΩAR 

 

Following the interpolation of satellite and ROMS SSS values to a 0.1˚ Cartesian grid, values 

were then substituted into the empirical algorithms to calculate AT and ΔpCO2 across the HIR. 

 

Latitude-dependent pCO2, atm values were retrieved from the GML database and since other 

variables are provided in a monthly format, pCO2, atm values for each month were averaged in 

order to produce a single monthly value. ΔpCO2 and pCO2, atm values were additively combined 

to produce pCO2, sw values. 

 

P, SSS, SST, pCO2, sw and AT values were substituted into PyCO2SYS for the generation of ΩAr 

values across the HIR. The spatial resolution of the hybrid maps (produced using satellite and 

model-derived values) is 0.1˚ or approximately 11.1 km. 

 

2.15 IN SITU DATASET UNCERTAINTIES 

 

2.15.1 HAWAI‘I OCEAN TIME-SERIES (HOT) 

 

In order to evaluate field precision, approximately 20% of the samples collected during each of 

the HOT cruises are used for duplicate or triplicate sample testing. The typical precision of SSS 

during replicate analyses using the same water sample is 0.0003 ‰; the typical precision of SSS 

during triplicate analyses is < 0.001 ‰; for purposes of approximating uncertainty, a bias of 

0.0003 ‰ was assumed. The CTD temperature sensors are adjusted between each cruise and 

each of the HOT cruise data reports provide a set of suggested temperature corrections. For 

purposes of this study, the estimated average SST adjustment value is 0.0001 ˚C.  The precision 

of AT sample titrations is approximately 3 µeq kg-1 (information obtained from the Hawai‘i 

Ocean Time-series HOT-DOGS program affiliated with the University of Hawai‘i at Mānoa). 
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2.15.2 GLOBAL OCEAN DATA ANALYSIS PROJECT (GLODAP) 

 

The Global Ocean Data Analysis Project (GLODAP) is a synthesized data product consisting of 

surface ocean biogeochemical measurements (Lauvset et al., 2022). GLODAP v2.2022 is an 

updated version of GLODAP v2.2021 (Lauvset et al., 2021). A crossover analysis for the 

GLODAP v2.2022 dataset includes a maximum bias estimate of 4 and 6 µmol kg-1 for AT; these 

uncertainty values represent the maximum bias that exists between different instruments. A 

comprehensive uncertainty budget (consisting of a combination of bias and standard deviation of 

all measurements against an observable standard) is not provided or available. Given the absence 

of uncertainty information, a nominal uncertainty of 0.2% is assumed for all in situ AT values 

collected from the GLODAP dataset; 0.2% of the average GLODAP AT value (2,307.94 µmol 

kg-1) is approximately 5 µmol kg-1 (Olsen et al., 2016). Uncertainties with respect to the input 

(forcing) data are unavailable (Land et al., 2019); uncertainty values for SST and SSS are 

estimated at 0.0001 ˚C and 0.003 ‰, respectively. 

 

2.15.3 NATIONAL CORAL REEF MONITORING PROGRAM (NCRMP) 

 

The uncertainty bias reported for in situ SST recorded from the CTD (ITS-90 scale) is 0.005 ˚C; 

the uncertainty bias reported for in situ SSS calculated from conductivity recorded by the CTD 

(using the Practical Salinity Scale of 1978) is 0.0005 S/m (Barkley et al., 2021); for purposes of 

this study, an uncertainty bias of 0.005 ‰ is assumed. The total uncertainty for AT values was 

reported to be 0.1% (Barkley et al., 2021). 

 

2.15.4 DISCRETE MEASUREMENTS 

 

Discrete measurements collected from moored buoys surrounding O‘ahu were used in 

conjunction with NCRMP measurements to construct the subgroup #1 and subgroup #2 coastal 

algorithms for AT calculations. For subgroup #1, discrete measurements were obtained from the 

Kāne‘ohe mooring beginning in February 2016 through January 2019; for subgroup #2, discrete 
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measurements were obtained from the Kilo Nalu and Ala Wai moorings beginning in February 

2014 through December 2019. 

 

Uncertainty values reported for bottle data collected from January 2016-September 2019 indicate 

an uncertainty bias of 0.05 (SBE) or 1% for conductivity (SSS), 0.01 ˚C for SST and 3 µmol kg-1 

for AT measurements (Knor et al., 2018). The same uncertainty approximations are assumed for 

all discrete measurements collected prior to January 2016. 

 

2.15.5 SURFACE OCEAN CO2 ATLAS (SOCAT) 

 

SOCAT Version 2022 is a global product synthesized from many different data collection 

sources. A nominal uncertainty bias of 0.001 ˚C and 0.005 ‰ is assumed for SST and SSS. 

Accepted quality control flags include flags with an ID from A-D. 

 

TABLE 6 below summarizes uncertainties for in situ measurements used to calculate open ocean 

AT and ΔpCO2 values. 
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Table 7 below summarizes the uncertainty bias associated with each of the in situ measurements 

used to calculate coastal AT and ΔpCO2 values. 

 

 

 

 

 

 

 

 

 

 

TABLE 6. UNCERTAINTIES FOR IN SITU MEASUREMENTS USED TO 

CALCULATE OPEN OCEAN AT AND ΔPCO2 VALUES 

 

Information regarding the open ocean data source, parameter, uncertainty and total 

uncertainty values for in situ measurements used to calculate open ocean AT and ΔpCO2 

values. 

 

Open ocean data 
source Parameter Uncertainty Total uncertainty 

HOT SSS 0.0003 ‰ 0.007 ‰ GLODAP V2.2022 SSS 0.005 ‰ 
SOCAT v2.2022 SSS 0.005 ‰  

 
HOT SST 0.0001 °C  

0.001 °C GLODAP V2.2022 SST 0.001 °C 
SOCAT v2.2022 SST 0.001 °C 

 
HOT AT 3 μmol kg-1 5.83 μmol kg-1 GLODAP V2.2022 AT 0.2% or 5 μmol kg-1 

 
SOCAT v2.2022 ΔpCO2 2 μatm 2 μatm 
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For the open ocean and for subgroups #1 and #2 in TABLE 6 and TABLE 7, the total 

uncertainty value was calculated after taking the square root of the sum of the squares for each 

parameter within the dataset. 

 

 

TABLE 7. UNCERTAINTIES FOR IN SITU MEASUREMENTS USED TO 

CALCULATE COASTAL AT AND ΔPCO2 VALUES 

 

Information regarding the coastal data source, parameter, uncertainty and total uncertainty 

values for in situ measurements used to calculate coastal AT and ΔpCO2 values. 

 

Subgroup Coastal data Source Parameter Uncertainty Total uncertainty 

1 

NCRMP SSS 0.005 ‰ 0.35 ‰ Kāne‘ohe (Discrete) SSS 1% 
NCRMP SST 0.005 °C 0.01 °C Kāne‘ohe (Discrete) SST 0.01 °C 
NCRMP AT 0.1% 3.76 μmol kg-1 Kāne‘ohe (Discrete) AT 3 μmol kg-1 

SOCAT v2. 2022 ΔpCO2 2 μatm 2 μatm 

2 

NCRMP SSS 0.005 ‰  
0.35 ‰ Kilo Nalu (Discrete) SSS 1 % 

Ala Wai (Discrete) SSS 1 % 
NCRMP SST 0.005 °C  

0.015 °C Kilo Nalu (Discrete) SST 0.01 °C 
Ala Wai (Discrete) SST 0.01 °C 

NCRMP AT 0.1 %  
3.77 μmol kg-1 Kilo Nalu (Discrete) AT 3 μmol kg-1 

Ala Wai (Discrete) AT 3 μmol kg-1 
SOCAT v2. 2022 ΔpCO2 2 μatm 2 μatm 

3 

NCRMP SSS 0.005 ‰ 0.005 ‰ 
NCRMP SST 0.005 °C 0.005 °C 
NCRMP AT 0.1 % 2.26 μmol kg-1 

SOCAT v2. 2022 ΔpCO2 2 μatm 2 μatm 

4 

NCRMP SSS 0.005 ‰ 0.005 ‰ 
NCRMP SST 0.005 °C 0.005 °C 
NCRMP AT 0.1 % 2.27 μmol kg-1 

SOCAT v2. 2022 ΔpCO2 2 μatm 2 μatm 
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2.16 ALGORITHM UNCERTAINTIES 

 

2.16.1 UNCERTAINTIES ASSOCIATED WITH THE AT ALGORITHMS 

 

Results from the OLS regression models used to derive the open ocean and coastal group 

algorithms were obtained for quantifying the AT and ΔpCO2 algorithm uncertainties. FIGURE 

17 below displays the algorithm uncertainty value for open ocean AT calculations. The mean AT 

value is 2,307.94 µmol kg-1 and the total uncertainty value associated with open ocean 

calculations is 7.59 µmol kg-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 17 

Results from the OLS regression model for the 

combined GLODAP v2.2022 and HOT datasets 

indicate a total algorithm uncertainty value of 7.59 

µmol kg-1 (demarcated by red lines) for AT calculations. 

The mean AT value is 2,307.94 µmol kg-1 and the fit for 

the measured values are indicated by the blue line. 
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The same approach was applied for each of the coastal subgroups. FIGURE 18 displays each of 

the values used to generate each of the coastal subgroup algorithms plotted against the open 

ocean values for comparison along with the uncertainty values for each of the coastal subgroup 

AT algorithms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The mean and total uncertainty values for each coastal subgroup AT algorithm are summarized in 

TABLE 8 below. 

 

 

 
FIGURE 18 

Coastal values used for generating the coastal subgroup algorithms for AT 

calculations. Uncertainty values associated with each of the coastal 

subgroup AT algorithms are provided. Inset maps displaying geographic 

locations of measurement collection sites are included for each subgroup. 
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2.16.2 UNCERTAINTIES ASSOCIATED WITH THE ΔPCO2 ALGORITHMS 

 

FIGURE 19 below displays the algorithm uncertainty value for open ocean ΔpCO2 calculations. 

The mean ΔpCO2 value is -5.38 µatm and the total uncertainty associate with open ocean 

calculations is 22.10 µatm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE 8. MEAN AND TOTAL UNCERTAINTY VALUES FOR EACH COASTAL 

AT SUBGROUP 

 

Mean AT and total uncertainty values for each coastal subgroup AT algorithm are provided. 

Uncertainty values were obtained from the results of each OLS regression model. 
Coastal subgroup Mean AT value Total uncertainty 

1 2267.86 μmol kg-1 24.89 μmol kg-1 
2 2288.46 μmol kg-1 21.82 μmol kg-1 
3 2256.12 μmol kg-1 9.95 μmol kg-1 
4 2267.86 μmol kg-1 11.50 μmol kg-1 
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FIGURE 20 displays the uncertainty values associated with each of the subgroups used to 

develop the coastal ΔpCO2 algorithms. It is important to note that for subgroups #3 and #4, the 

uncertainty value for subgroup #2 is assigned since the subgroup #2 algorithm was used due to a 

lack of available measurements for all zones in subgroups #3 and #4. The mean ΔpCO2 value for 

subgroup #1 and #2 is 38.37 and 8.13 µatm, respectively; the total uncertainty associate with 

subgroup #1 and #2 calculations is 91.95 and 69.33 µatm. For coastal subgroups #3 and #4, the 

subgroup #2 algorithm was assigned for ΔpCO2 calculations. 

 

 

 

 

 

 

 
FIGURE 19 

ΔpCO2 vs. k0 for the open ocean. The mean ΔpCO2 value 

is -5.38 µatm and the total uncertainty associated with 

open ocean calculations is 22.10 µatm. 
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The mean and total uncertainty values for each coastal subgroup ΔpCO2 algorithm are 

summarized in TABLE 9 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 20 

Uncertainty values associated with each of the subgroups used to develop the 

coastal ΔpCO2 algorithms. 

TABLE 9. MEAN AND TOTAL UNCERTAINTY VALUES FOR EACH 

COASTAL ΔPCO2 SUBGROUP 

 

Uncertainty values were obtained from the results of each OLS regression 

model. Note: subgroups #3 and #4 assume the subgroup #2 mean and total 

uncertainty values due to a lack of measurements for all zones in subgroups #3 

and #4. 

 
Coastal 

subgroup Mean ΔpCO2 value 
Total 

uncertainty 
1 38.37 μatm 91.95 μatm 
2 8.13 μatm 69.33 μatm 
3 8.13 μatm 69.33 μatm 
4 8.13 μatm 69.33 μatm 
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2.17 SATELLITE DATASET UNCERTAINTIES 

 

2.17.1 MULTI-MISSION OPTIMALLY INTERPOLATED SEA SURFACE SALINITY 

(OISSS) 

 

The Multi-Mission Optimally Interpolated Sea Surface Salinity (OISSS) product combines 

global observations from NASA’s Aquarius/SAC-D and Soil Moisture Active-Passive (SMAP) 

missions. All satellite SSS data from January to March 2015 originated from the Aquarius 

satellite; products are available on a 0.25˚ grid following Optimum Interpolation analysis 

(Melnichenko et al., 2016). The OISSS product also includes SMAP satellite-based SSS data 

from Remote Sensing Systems (RSS); SSS fields are generated from Level-2 swath data using 

the OI algorithm. Further adjustments are made to SMAP SSS fields through spatial filters, 

reducing small-scale noise and to ensure consistency across the time series. During an overlap 

period from April-May 2015, data from SMAP and Aquarius/SAC-D satellites were averaged 

together. A gap in SMAP observations occurs from June-July 2019 while the satellite was in safe 

mode; to fill the gap in SSS observations, measurements from ESA’s Soil Moisture and Ocean 

Salinity (SMOS) satellite were used (Melnichenko et al., 2021). 

 

The consistency and accuracy of the OISSS product has been evaluated against SSS 

measurements from Argo floats and mooring buoys. The root-mean-square-difference (RMSD) 

between the Aquarius/SMAP OISSS dataset and global in situ data is approximately 0.2 psu 

(Melnichenko et al., 2016). Uncertainty estimates incorporate random and systematic 

uncertainties, Argo data sampling errors on gridded map scales and mapping errors (Meissner et 

al., 2019).  

 

2.17.2 MULTI-SCALE ULTRA-HIGH RESOLUTION (MUR) SST ANALYSIS 

 

Each of the empirically derived algorithms were forced with monthly mean satellite SST values 

collected from the Multi-scale Ultra-high Resolution (MUR) SST Analysis. These products are 

provided by the NASA Jet Propulsion Laboratory (JPL) and are supported by the NASA 
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MEaSUREs program. The MUR SST monthly means are created by the National Oceanic and 

Atmospheric Administration (NOAA), National Marine Fisheries Service (NMFS), Southwest 

Fisheries Science Center (SWFSC), Environmental Research Division (ERD) and are based on 

daily MUR SST values. The source dataset consists of JPL MUR climatology products and 

multi-sensor L4 Foundation SST analysis products; this dataset is part of the Group for High-

Resolution Sea Surface Temperature (GHRSST) project (JPL, 2015). Global SST values from 

this dataset are provided at a 0.01˚ resolution and contains a bias of approximately 0.07 ˚C (Chin 

et al., 2017).  

 

2.17.3 REGIONAL OCEAN MODELING SYSTEM (ROMS) SSS VALUES 

 

For areas otherwise covered by the satellite land mask, ROMS SSS values were used to calculate 

ΩAr. ROMS SSS values contain a bias of 0.001 ‰ for SSS values and 0.28 ˚C for SST values 

(Friedrich et al., 2020).  

 

2.18 PYCO2SYS 

 

Uncertainty propagation is calculated internally by PyCO2SYS when provided with an 

appropriate input argument. Uncertainty calculations are carried out using Equation (14) below: 

 

𝜎2(r) = Σ(𝜕r/𝜕ai)2 𝜎2(ai)   (14) 

	

𝜎 represents the uncertainty as a standard deviation. Equation (14) is valid as long as all 

uncertainties are independent and as long as there are no instances of co-variance (Humphreys et 

al., 2022).  

 

2.19 HYBRID MAPS OF ΩAR 

 

Hybrid maps with calculated ΩAr values were constructed using satellite SSS and SST and 

ROMS SSS values. 
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Following the entry of parameter uncertainty values in PyCO2SYS for AT, pCO2, sw, SSS and 

SST for the open ocean and for each coastal subgroup, the total uncertainty values are 0.12, 0.48 

and 0.36 for the open ocean, subgroup #1 and subgroups #2-#4 ΩAr calculations. 

 

2.20 LONG-TERM TRENDS IN ΩAR 

 

In order to determine the long-term trend in ΩAr across the HIR, a plot containing monthly mean 

ΩAr values was generated for all months from 2015-2020 (FIGURE 21). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

An OLS regression model consisting of sine and cosine components was used for fitting monthly 

mean ΩAr values. The model establishes a trendline based on dual fits between the monthly mean 

ΩAr values and a sine wave component along with the monthly mean ΩAr values and a cosine 

wave component. Since the frequency of the sinusoid is a known value, only amplitude and 

phase are determined by the fit which yield the cosine and sine coefficients; the OLS model 

 
FIGURE 21 

Monthly mean ΩAr values for all months from 2015-2020. 
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determines the best combination of model components to describe the dataset while 

simultaneously finding a solution that most greatly reduces model residuals. Results from the 

OLS model fit along with corresponding residual values are displayed in FIGURE 22 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Components of the model matrix were constructed in order to derive sine and cosine coefficients 

for determining the rate of change per decade. Linear regression techniques were used to plot a 

decadal trendline using fitted model parameters. 

 

In order to establish an uncertainty value for long-term trends in ΩAr, individual uncertainty 

values for AT, pCO2, sw, SST and SSS were entered into PyCO2SYS. The total uncertainty value 

generated for the open ocean was determined to be 0.12 and is displayed against the decadal 

trendline in FIGURE 23. 

 

 

 
FIGURE 22 

Results from the OLS model fit (top) with corresponding residual values 

(bottom). 
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FIGURE 23 

Fit of monthly mean ΩAr values with decadal trendline and error 

shading representing a value deviation of 0.12. 
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CHAPTER 3. RESULTS 

 

3.1 INFLUENCE OF CORALS ON THE AT VS. SSS RELATIONSHIP 

 

The first hypothesis suggests that the presence of coral reefs changes the slope of the total 

alkalinity (AT) vs. sea surface salinity (SSS) relationship. When compared to the tightly coupled 

linear AT vs. SSS relationship for the open ocean (FIGURE 4), coastal AT vs. SSS relationships 

are more variable and appear to vary with coral coverage patterns. Consider each of the coastal 

subgroup AT vs. SSS plots – based on the results from this study, a correlation exists between the 

percentage of coral coverage and the AT and/or slope values. 

 

3.2 ZONAL DIFFERENCES BASED ON THE CLIMATOLOGICAL ANNUAL CYCLE 

IN ΩAR 

 

To quantify east-west differences in ΩAr, values across the HIR, month-based averages of ΩAr 

were calculated across the HIR from 2015-2020. For example, all of the calculated ΩAr values for 

the month of January were averaged together at each grid point and displayed as a single map 

representing an average of all ΩAr values for the month of January. According to a map of the 

canonical current system around the MHI (FIGURE 24(A); Powell, B. S. (2017)), the 

easternmost extent of the HLCC occurs at approximately 157˚W; therefore, a meridional transect 

was inserted at 157˚W to demarcate the boundary separating the east and west components of the 

study domain; FIGURE 24(B) displays the average month-based ΩAr values calculated for the 

east and west components of the study domain. 
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Based on the results in FIGURE 24(B) – from January to March, value differences are 

approximately 0.03; the greatest difference in values (0.05) is observed during the month of 

August. The average difference between east and west values is approximately 0.04. 

 

3.3 ASSESSMENT OF ALGORITHM PARAMETER SENSITIVITIES AND EFFECTS 

ON  CALCULATED ΩAR VALUES 

 

Monthly averages of SSS, SST, pCO2, sw and AT were included as input parameters in 

PyCO2SYS in order to calculate surface ocean ΩAr for the HIR. To determine the parameter that 

has the greatest effect on surface ocean ΩAr for the HIR, the sensitivities of each of the four 

carbonate system input parameters – AT, pCO2, sw, SSS and SST – were investigated. All four of 

these input parameters were considered independently in order to identify the parameter with the 

 
FIGURE 24 

(A) Map of the canonical current system around the MHI from Powell, B. S. (2017). 

(B) A meridional transect is inserted at 157˚W to demarcate the easternmost extent of 

the HLCC and serves as the boundary separating the east and west components of the 

study domain. Average month-based ΩAr values calculated for the east and west 

components of the study domain are included. 
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greatest influence on  calculated surface ocean ΩAr values – specifically as it relates to the 

spatiotemporal range established for this investigation. 

 

Each of the four input parameters recorded for February 2017 were autonomously modified. For 

example, only the monthly mean SSS values recorded for February 2017 were modified to 

reflect September 2017 values; the corresponding change in ΩAr reveals the effect of SSS on ΩAr; 

similar procedures were followed for SST, pCO2, sw and AT to observe how changes to each 

parameter contribute to the change in ΩAr. The change in ΩAr following each single parameter 

modification is referred to as ΔΩAr, which reflects the difference between the new ΩAr value and 

the ΩAr value recorded for February 2017. 

 

Sites H (northeast O‘ahu) and I (northwest Moloka‘i) were selected for comparison. Results from 

this comparison are provided in FIGURE 25. For Site H, upon recalculating ΩAr after 

implementing stepwise changes to each of the four input parameters, the greatest ΔΩAr 

value of 0.36 occurs with the modification of SST, which is sequentially following by pCO2, sw (-

0.19), AT (-0.05) and SSS (~0). Similarly, for Site I, the greatest ΔΩAr value occurs with the 

modification of SST and reflects the same order of influence for pCO2, sw (-0.15), AT (0.05) and 

SSS (0.01). It is important to note that while changes in SST appear to produce a much larger 

seasonal cycle, the magnitude of this change is offset by negative corrections from pCO2, sw and 

AT. 
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A similar analysis was performed for the open ocean at Station ALOHA (FIGURE 26). Similar 

to the results obtained for Sites H and I, the greatest ΔΩAr value at Station ALOHA occurs with 

the modification of SST (0.38) and reflects the same order of influence for pCO2, sw (-0.18), AT (-

0.02) and SSS (~0). 

 

 
FIGURE 25 

Results from single parameter value modifications from February to September 2017 at Sites H 

(northeast O‘ahu) and I (northwest Moloka‘i). The change in ΩAr from February 2017 to 

September 2017 following each single parameter modification is referred to as ΔΩAr, which 

reflects the difference between the new ΩAr and the ΩAr value recorded for February 2017. 

Value differences were evaluated to identify the parameter with the greatest influence on 

consequent ΩAr values. 
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3.4 LONG-TERM TRENDS IN ΩAR 

 

In order to determine the long-term trend in ΩAr across the HIR, a plot containing monthly mean 

ΩAr values was generated for all months from 2015-2020 (FIGURE 21). Results from a linear fit 

produced by an OLS model using fitting techniques (FIGURE 22) reveal a mean value of 3.46 

and a decadal trend of -0.21. Since the open ocean algorithm represents the primary algorithm 

used across the domain (used across 99% of the total domain area), FIGURE 23 displays the 

decadal trendline along with error shading reflecting the uncertainty associated with open ocean 

values (0.12).  

 

To determine the uncertainty with respect to the decadal trendline, a OLS regression model was 

constructed and contained monthly mean ΩAr values and model matrix components. Uncertainty 

with respect to the decadal trendline was calculated to be 0.02. Covariance testing indicated that 

 
FIGURE 26 

Results from single parameter value modifications from February to September 2017 at Station 

ALOHA. The change in ΩAr from February 2017 to September 2017 following each single 

parameter modification is referred to as ΔΩAr, which reflects the difference between the new 

ΩAr value and the ΩAr value recorded for February 2017. Value differences were evaluated to 

identify the parameter with the greatest influence on consequent ΩAr values. 
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each of the model components were independent and the correlation coefficient (R2) as 

determined by the model was 0.937. 

 

3.5 HYBRID MODEL EVALUATION 

 

3.5.1 MONTHLY MEAN VALUE COMPARISONS FOR AT AND ΩAR AT STAION 

ALOHA 

 

Hybrid model results were compared with HOT values using time-series plots containing 

monthly mean values for AT and ΩAr at Station ALOHA (FIGURE 27). ROM values are also 

included for reference. AT values produced by the hybrid model appear to share good agreement 

with HOT values; the average difference is approximately 3.06 ± 7.68 µmol kg-1. Since the 

standard deviation of the difference (7.68 µmol kg-1) is larger than the average difference, there 

is no statistically significant bias between the hybrid and HOT values. ΩAr values produced by 

the hybrid model share similarities with respect to the seasonal cycles produced from HOT 

values; the average difference between the hybrid model and HOT ΩAr values is approximately 

0.08 ± 0.05. In this case, the mean is larger than the standard deviation (0.05), but still larger than 

the total uncertainty value for hybrid model open ocean values (0.12). The average ΔΩAr is also 

close to the HOT ΩAr uncertainty value (0.07), which suggests there is likely no statistically 

significant bias. 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 27 

Hybrid model results (black line) compared with ROM (blue line) and HOT values (pink dots) 

using time-series plots containing monthly mean values for AT and ΩAr at Station ALOHA. 
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3.5.2 COMPARISON OF DECADAL TRENDS IN ΩAR BETWEEN THE HYBRID AND 

ROMS VALUES 

 

Similar methods were followed as discussed in 2.20 LONG-TERM TRENDS IN ΩAR for 

generating a decadal trendline using ROMS values. Compared to the slope of the decadal 

trendline produced from hybrid values (-0.21), the ROMS model produced a slightly lower slope 

of -0.16, which is not significantly different. 
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CHAPTER 4. DISCUSSION 

 

4.1 CORAL AND COASTAL AT VS. SSS RELATIONSHIPS 

 

Coastal AT vs. SSS relationships appear to vary with percent coral coverage. Consider each of 

the coastal subgroups – for subgroup #1, each of the clusters are defined by a tier value of 3, 

indicating there are greater percentages of corals (> 50%) in these areas; when compared with 

the AT vs. SSS relationships for all other subgroups (with average tier values of 1, 2 and 2.5), 

subgroup #1 contains the most noise. Additionally, the average AT value for subgroup #1 is 

2267.86 µmol kg-1 which is less than the average AT value (2307.94 µmol kg-1) for the open 

ocean. The average tier value assignment for subgroup #3 is 2.5; although the AT vs. SSS slope 

values are nearly the same (differ by 0.001) between subgroup #3 and the open ocean, the 

average AT value (2288.46 µmol kg-1) for subgroup #3 is less than the average open ocean AT 

value across similar SSS ranges. Each of the clusters in subgroup #4 contain tier 2 values; when 

comparing AT vs. SSS relationships between subgroup #4 and open ocean values – although 

approximately 50% of values overlap, the AT vs. SSS slope is shallower for subgroup #4 than it 

is for the open ocean; the average AT value for subgroup #4 is 2267.86 µmol kg-1, the same as 

was calculated for subgroup #1. 

 

Although there are significant differences between coastal and open ocean algorithm 

performances across the region, these findings emphasize the differences that exist between open 

ocean and coastal water AT vs. SSS relationships, the latter of which are likely influenced by 

coral reef activities or other nearshore processes.  

 

4.2 ZONAL DIFFERENCES IN ΩAR VALUES 

 

It appeared likely that the transport of warmer water from west to east across the Pacific via the 

HLCC would introduce water with higher ΩAr values; to further elaborate, SST values are higher 

to the west and with higher temperatures, there is a decrease in CO2 solubility. The reactions that 

occur between CO2 and seawater to produce carbonic acid decreases, which decreases the 
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amount of free hydrogens released after carbonic acid dissociates to H+ and HCO3-. Ultimately, 

there are less H+ ions available to bind with free CO32- compounds. The increased availability of 

CO32- ions will result in increased ΩAr values as they bind to calcium (Ca2+) ions in seawater. It 

appears to be warmer on the west side of O‘ahu, therefore it seemed likely that ΩAr values would 

be higher on the western portion of the study domain. The average difference between east and 

west values was calculated to be 0.04; while zonal differences may occur, these differences are 

not statistically significant (< 0.12) and do not conclusively support hypothesis #2.  

 

4.3 ANALYSES OF ALGORITHM PARAMETER SENSITIVITIES 

 

For Sites H and I, changes in SST produced the largest ΔΩAr value; therefore, changes in SST 

appears to have the greatest effect on calculated surface ocean ΩAr values. From February to 

September 2017, pCO2, sw increased at Sites H and I by 43.33 and 28.55, which may be result 

from a warming of the waters and thermodynamic changes in the carbon system equilibrium 

(Takahashi et al., 2002). The decrease in AT at Site H, located in a tier 3 region, is likely due to 

biological sequestration of CO32- by marine calcifiers (such as coral). SSS appears to have the 

smallest effect on resulting ΩAr values, increasing ΔΩAr by ~0 at Site H and 0.01 at Site I. 

Similarly, SST appears to have the greatest effect on calculated ΩAr values for the open ocean 

followed by pCO2, sw, AT and SSS using the empirically derived algorithms. 

 

SST appears to have the greatest effect on calculated ΩAr values due to the effects of SST on CO2 

solubility and pCO2, sw concentrations. In Equation (5), warmer SSTs would reduce the 

denominator, Ksp, which increases the ratio of the numerator to denominator and increases ΩAr. 

SST has the opposite effect on pCO2, sw; as SST increases, pCO2, sw increases. Increasing pCO2, sw 

decreases the concentration of CO32-; since the concentration of CO32- is in the numerator, this 

leads to a decrease in ΩAr values. In this case, SST effects on pCO2, sw only effect the numerator 

and not the denominator, but are smaller than the direct effect of increasing SST on the 

denominator leading to a net effect of increasing ΩAr. 

 

 



 57 

4.4 LONG-TERM DECREASE IN ΩAR AND CORAL TOLERANCE LIMITS 

 

The continuation of anthropogenic emissions to the atmosphere will likely impact the marine 

carbonate system and affect the local marine environments around Hawai‘i. As atmospheric CO2 

concentrations continue to rise and as surface ocean ΩAr concentrations continue to decrease, it’s 

likely that long-term, progressive decreases in coral calcification rates and growth will occur. 

Additionally, differences in species-level responses could lead to changes in reef community 

structure (Guinotte et al., 2003). The significance of these applications are observed through 

impacts most notably recognized among calcifying organisms such as corals. Decreased 

calcification rates and modifications to the food web structure has the potential to affect 

productivity and ocean biodiversity (Kleypas et al., 2006). Since coral ΩAr tolerance limits are 

influenced by factors such as geographic and species-level differences, it is assumed that a coral 

ΩAr tolerance limit of about 3.0 will likely induce coral stress in the shallow coastal waters 

around the MHI (Guan et al., 2015).  

 

While a nonlinear decrease in ΩAr may occur, a roughly approximated linear extrapolation based 

on a decadal decrease of -0.21 indicates that monthly mean ΩAr values will drop below a value of 

3.0 by 2041, supporting the supposition that ΩAr values will cross the coral threshold within the 

next 30 years. Following a similar approach using ROMS values and based on a decadal 

decrease of -0.16, monthly mean ΩAr values are projected to drop below a value of 3.0 by 2055. 

A 10% to 20% reduction in ΩAr represents a significant deficiency for calcifying organisms like 

corals. While monthly mean ΩAr values are projected to decrease below a value of 3.0 by 2041, 

the primary effects caused by reductions in ΩAr include weakened skeletal structures, decreases 

in coral cover and increased susceptibility to erosion (Kleypas et al., 1999).  

 

4.5 QUANTIFYING ADDITIONAL UNCERTAINTIES 

 

Biologically-induced perturbations of the marine carbonate system could result in uncertainties 

in the proxy estimates. The degree of photosynthesis and respiration occurring at or near the sea 

surface will affect the marine carbonate system through the removal or addition of CO2 (Land et 
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al., 2015). The level of biological activity can be approximated for using estimations of 

chlorophyll and/or nitrate but unfortunately, these values were extremely limited within the study 

domain and were unable to be used for widespread approximations of biological activity at the 

ocean surface. 

 

Due to resolution differences between satellite SSS and SST measurements and SSS values from 

the ROMS, interpolation techniques were utilized in order to rebroadcast each dataset onto a 0.1˚ 

Cartesian grid. Each dataset was interpolated prior to manipulation via algorithm forcing. While 

this interpolation technique enhanced the resolution of the satellite SSS dataset (originally 0.25˚), 

it consequently reduced the original resolution of the satellite SST (0.01˚) and ROMS SSS 

(0.036˚) datasets. The uncertainty associated with these interpolations is unknown, however it is 

assumed that these uncertainties are negligible. 

 

4.6 ALGORITHM VALIDATION 

  

Assessing the effectiveness of regionally constructed empirical algorithms requires quantifying 

ΩAr predictability for each region. In order to assess this approach, in situ patterns of surface 

water carbonate system variables must be reproducible from satellite-based measurements and 

calculations. Unfortunately, due to the limited availability of in situ measurements, all available 

measurements were used to construct each of the empirical algorithms; therefore, these 

measurements were unable to be used for algorithm validation. 

 

4.7 HYBRID MODEL EVALUATION 

 

Based on the results provided in FIGURE 27, hybrid model AT values appear to be in good 

agreement with AT values at Station ALOHA; the average difference in values is approximately 

3.06 ± 7.68 µmol kg-1. The slight offset in ΩAr values (0.08 ± 0.05), however, between the hybrid 

and HOT values is minimal and as such, does not indicate a significant difference between the 

hybrid and HOT values. The slight offset could be due to small differences in pCO2, sw; the 

average difference in values is approximately 12.35 ± 6.65 µmol kg-1. Although differences in 
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pCO2, sw may be the primary cause of this offset, additional investigations are needed. 

Additionally, the difference between the slope values of the decadal trendline for ΩAr between 

the hybrid and ROM (0.05) is minimal but may be indirectly related to differences in pCO2, sw 

values; additionally, ΩAr uncertainties between the HOT and hybrid models could be 

simultaneously contributing to this difference, however additional studies are needed before 

establishing conclusive findings. 
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CHAPTER 5. CONCLUSIONS 

 

This study demonstrated the effectiveness of utilizing satellites for evaluating OA across the 

HIR. Methods for downscaling satellite measurements could be similarly applied to other regions 

across the globe. One of the caveats to this approach, however, is a reliance on the availability of 

in situ measurements for synthesizing empirical algorithms. 

 

5.1 THE NEED FOR ADDITIONAL IN SITU MEASUREMENTS ACROSS THE HIR 

 

Empirical algorithms developed from in situ measurements will require periodic retraining in 

order to more accurately predict AT, ΔpCO2 and ultimately, ΩAr values in waters across the HIR. 

Unfortunately, recurrent measurements of AT and ΔpCO2 are limited across the HIR (especially 

for coastal areas (i.e., DDZs). With more frequent measurements of parameters such as AT and 

ΔpCO2, empirically-derived algorithms can be generated from a larger pool of in situ values. 

 

While many oceanographic variables are more consistently observed in places like Station 

ALOHA, more frequent measurements of other in situ parameters (i.e., chlorophyll, nitrate, 

calcification rates, etc.) would have greatly contributed to this study. Use of calcification rates 

instead of estimated percentages of coral coverage, for example, may prove to be a more 

accurate method of estimating the effects of calcification on the AT vs. SSS relationship. 

Additionally, carbon concentrations are strongly affected by surrounding biological activity (i.e., 

planktonic primary production), which is related to the amount of chlorophyll or nitrate located 

at the surface ocean. For some near-shore and high nutrient marine environments, these types of 

measurements may be used to enhance the predictability of marine carbonate chemistry 

parameters than can be used to calculate ΩAr with PyCO2SYS. 

 

5.2 IMPLEMENTATION STRATEGIES 

 

Access to near real-time oceanographic data has the potential to revolutionize current research 

strategies; by forcing empirical algorithms with near real-time satellite measurements, valuable 
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information can be obtained and used to direct the placement of autonomous platforms around 

the MHI; for example, moored buoys could be strategically placed (i.e., in areas with lower ΩAr 

values) as a way to closely monitor changes in surface ocean biogeochemistry in certain 

locations. Furthermore, understanding biogeochemical changes at a local level will support 

policies that govern and sustain fisheries. These kinds of data can be used to inform companies 

and corporations focused on maintaining and improving environmental health; additionally, 

existing policies and guidelines established by government agencies (i.e., NOAA) could be 

revised and/or updated based on new environmental data. 

 

5.3 IMPORTANCE OF DOWNSCALING REMOTE MEASUREMENTS FOR REGION-

SPECIFIC ANALYSES 

 

Satellite-based estimations of surface ocean parameters like ΩAr are useful for widespread spatial 

extrapolations of surface ocean properties. Through increased coverage over extended temporal 

and spatial scales, assessments using satellite data will improve the precision of carbon exchange 

estimates (Lohrenze et al., 2018); through advancements in technology, widespread coastal 

satellite SSS fields and/or higher resolution products may become available; the need for high 

resolution SSS fields and/or higher resolution products may become available; the need for high 

resolution satellite SSS output is critical for determining small-scale changes occurring within 

targeted areas (such as the HIR). These small-scale changes will allow scientists to explore how 

regional effects resulting from OA are likely to impact the local economy, both from a biological 

and economic perspective. 

 

Given the limitations imposed by sparse in situ measurements, methods for developing 

regionally tuned algorithms from in situ observations for mapping surface ocean parameters like 

ΩAr are important when it comes to small-scale climatological evaluations; additionally, methods 

used for developing satellite algorithms from in situ measurements can be implemented for other 

regions. 
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The information and data obtained from this study are important given current climate conditions 

and increasing atmospheric CO2 concentrations; as the oceans continue to absorb CO2, ΩAr 

values are expected to decrease in response to the lower availability of carbonate molecules. 

While large-scale trends have been established, regional trends are not as well defined and vary 

by location. The practice of downscaling and forcing in situ algorithms with satellite 

measurements has the potential to reveal the full breadth of surface ocean dynamics for smaller 

geographic areas. 
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