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Abstract

The Hawaiian Islands experienced record-high sea levels during 2017, which caused

nuisance flooding in vulnerable coastal communities, especially when positive sea level anoma-

lies coincided with high tides. To build toward solutions for mitigating inundation risk, the

predictability of daily-averaged sea level anomalies is investigated. The investigation fo-

cused on leveraging observed westward propagation that open-ocean anomalies exhibit over a

range of timescales to make sea level predictions. Daily near-real-time gridded altimetry was

used to specify upstream sea level at each site with propagation speeds based on mode-one

baroclinic Rossby wave speeds. An optimized observation-based forecast was created from

weighted combinations of persistence and independent propagation-based forecasts for large

(>300 km) and mesoscale (<300 km) open-ocean anomalies. Skill of the observation-based

sea level forecasts exceeds persistence at long lead times out to 180 days. The utility of the

observation-based sea level forecast was demonstrated by pairing the mean sea level forecast

with a statistical model relating mean sea level to counts of flooding threshold exceedances.

The combined model performed well in hindcasting seasonal periods of enhanced high-tide

flooding at Hilo, underscoring the benefit of economical seasonal forecasts of mean sea level.

Stakeholders can utilize the combined mean sea level and exceedance forecast model to assess

flooding risks months in advance for facilitating preparedness across economic and coastal

management sectors.
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Chapter 1

Importance of sea level forecasting in Hawaii

Large parts of the Western Pacific, including around the Hawaiian Islands, are experiencing

sea level rise (e.g., Merrifield and Maltrud , 2011; Perrette et al., 2013). Sea level rise threatens

the infrastructure and economies of coastal communities around the Hawaiian Islands (e.g.,

Fletcher et al., 2010; Rotzoll and Fletcher , 2013; Anderson et al., 2015). Moreover, the

current Intergovernmental Panel on Climate Change (IPCC) projections indicate sea levels

will be 0.28 to 0.98 m above 1986 - 2005 levels by the end of the 21st century (Church et al.,

2013). With the continuing long-term sea level rise, these elevated sea levels would increase

in occurrence and with extreme events becoming more prominent (e.g., Fletcher et al., 2010;

Thompson et al., 2019; Habel et al., 2020; Taherkhani et al., 2020). The predicted increase

in sea level would increase the frequency of nuisance flooding events and impact the coastal

communities more frequently and severely around the Hawaiian Islands and could become

physically and economically detrimental.

In what may be seen as a window into the future of Hawaiian coastlines, the Hawaiian

Islands experienced record-high sea levels during the summer of 2017. For example, August

21, 2017 marked the highest sea level recorded by the Honolulu tide gauge in its 115-year

operational history (Figure 1.1). More importantly, however, this single event was just one

of an unprecedented number of high sea level events during the year. Daily maximum hourly

water levels from the Honolulu tide gauge exceeded 35 cm above Mean Higher High Water

(MHHW) just 22 times prior to 2017 and never more than four times during a single year.
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During 2017, this threshold was exceeded by daily maximum water levels 15 times over a

five-month span (Thompson et al., 2019).

The high sea levels produced high-tide flooding in vulnerable coastal communities

across the Hawaiian Islands, which generally occurred under fair weather conditions. Despite

the lack of wind and rain, impact reports across the Hawaiian Islands included beach erosion,

minor wave inundation, and failed drainage infrastructure (Anderson et al., 2019). These

events received both local (e.g., DLNR, 2017; HNN , 2019) and global (e.g., SankeiBiz , 2017;

Mori , 2017) attention due to the notoriety of Hawaiian beaches and the tourism economy they

support. The island of Oahu alone received 6.2 million tourists in 2019 from global locations

to enjoy the island’s coastline and tropical weather (DBEDT , 2020). Understanding the

processes contributing to the high sea level events during 2017 and the ability to forecast

similar periods in the future is essential for ongoing sea-level-rise preparedness efforts. Skillful

sea level forecasts would allow stakeholders across public and private domains to better

prepare for periods of enhanced risk from high-tide flooding.

The most predictable component of sea level variability is astronomical tides, and

stakeholders often rely on tidal predictions to forecast periods of time when high-tide flooding

is possible. The term King Tides is often used in this context; it is a non-scientific term used

for the one to two highest astronomical tides of the year (Sea Grant Program, 2018; EPA,

2019). During summer 2017 in Hawaii, NOAA tidal analysis for Honolulu did predict that

the highest astronomical tides of the year would occur during this time, but the tides were

not predicted to be anomalously high compared to the highest tides of previous years and

cannot—in hindsight—account for the unprecedented number of high-tide-flooding events

in Hawaii during 2017. Thus, predictions of astronomical tides alone are not sufficient for

forecasting short periods (i.e., months to seasons) in Hawaii during which many high-tide

flooding events will cluster together in time.

Since astronomical tidal variability alone cannot account for the unprecedented num-

bers of high-tide flooding events around the Hawaiian Islands during 2017, additional factors

2



Figure 1.1: Daily maximum hourly sea levels (cm) for Honolulu, HI. Tide predictions (blue)
are based on harmonic analysis of the Honolulu Harbor sea level recorded during the NTDE
(1983–2001). Predictions and observations (orange) are with respect to the MLLW datum.
Residuals between the observed sea levels and the tide prediction are shown by the green line.
For reference, the 90 cm water level is shown (dashed horizontal line), which is a threshold
for coastal impacts near Honolulu.
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must have played a role. Indeed, starting in 2016, the Hawaiian Islands were surrounded by

a prolonged positive regional sea level anomaly that propagated westward across the North

Pacific, raising sea level around the islands by about 10 cm above normal (Yoon et al., 2018).

According to Long et al. (2020), the high sea level anomaly was caused by reduced cooling

of the surface by anomalously weak trade winds that altered the mixed layer density after

an El Niño in 2015.

For the Hawaiian Islands, there are numerous operational statistical and dynamical

forecast models available to predict sea level. For the multimodel seasonal sea level forecasts

hosted by the University of Hawaii Sea Level Center (UHSLC) (Widlansky et al., 2017),

the dynamical forecast models in use are the National Centers for Environmental Predic-

tion (NCEP) coupled forecast system model version 2 (CFSv2) and the Predictive Ocean

Atmosphere Model for Australia version 2 (POAMA-2); the statistical models in use are

canonical correlation analysis, principal component regression, artificial neural network, and

multivariate linear regression. At this time, only two of the models are active in the UHSLC

ensemble, the CFSv2 and POAMA-2, which are both models generating dynamical sea level

forecasts from fully-coupled operational models. However, there are barriers and limitations

with the currently available forward models for sea level forecasts. For instance, the dynam-

ical models, such as the CFSv2, are relatively coarse at the latitude of Hawaii (1◦ spatial

resolution) compared to mesoscale structures in observed sea surface height from the altime-

try data. Overall, at higher latitudes, including Hawaii, substantial mesoscale variability

associated with instability and geostrophic turbulence inhibits the skill of these models. In

addition, dynamical forecast models of the type used in the UHSLC ensemble were primarily

developed to generate seasonal climate forecasts and focus on ocean variables such as the sea

surface temperature that provide essential boundary conditions for atmospheric variability.

For this reason, most of these dynamical models do not assimilate sea surface height data.

Regardless, there are a few models that do assimilate the sea surface height, such as those

operated at European Centre for Medium-Range Weather Forecasts (ECMWF), but the ad-
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dition of sea surface height does not significantly enhance the skill of sea level forecasts at

seasonal time scales (personal communication with M. Widlansky).

To address the lack of skill in forecasting sea level using operational dynamical mod-

els, the analysis that follows outlines the development of an observation-based seasonal sea

level forecast for the Hawaiian Islands. This comparatively simple approach prioritizes the

initial conditions of the sea surface height field over sophisticated dynamics and assimilation

schemes and leverages the natural propagation direction of ocean height anomalies. It is a

computationally economical proof-of-concept tool that provides reasonably accurate sea level

forecasts for areas with high risk of inundation. This work forms the basis for developing

useful, community-facing tools for stakeholders with interest in coastal communities. The

study focuses especially on the islands of Oahu and Hawaii, and in particular on the sites

of federally-maintained tide gauges in Honolulu Harbor and Hilo. Oahu was chosen due

to its high demand in sea level forecasts for its tourist-driven economy, and Hawaii due to

the location of the Hilo tide gauge in the planetary wave regime east of Hawaii Island (see

Chapter 2.6.2), which may contribute to the predictability of sea level. There is also ample

anecdotal evidence of frequent high-tide flooding in Hilo, suggesting this location can benefit

from accurate sea level forecasts.

To produce the observation-based sea level forecasts, we investigated the potential

to increase non-tidal sea level predictability for high-profile areas in the Hawaiian Islands

by leveraging the natural westward propagation of sea level anomalies in the open ocean.

We first investigate the various mechanisms contributing to sea level variability around the

Hawaiiian Islands and determine the fractions of variability captured by each process (Chap-

ter 2). We then develop an approach to forecasting sea level anomalies that is computa-

tionally economical and primarily relies on observations of sea surface height from satellite

altimetry instead of dynamical models (Chapter 3). The satellite altimetry data are used to

estimate phase speeds and propagate the large-scale sea level anomalies from east to west

towards the Hawaiian Islands using the estimated phase speeds. The skill of hindcasted
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anomalies using this approach exceeds the baseline performance of a persistence forecast,

suggesting that the methods developed here may have utility in operational coastal manage-

ment. Finally, we test the ability of the forecasted sea level anomalies to improve forecasts of

high-tide flooding frequency on seasonal time scales (Chapter 4). The findings from the study

resulted in other study potential around the Hawaiian Islands to increase understanding in

generating sea level predictions with a higher skill (Chapter 5).
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Chapter 2

Drivers and potential predictability of sea level

variability in Hawaii

Sea level variability around the Hawaiian Islands reflects a variety of dynamic processes.

The most extreme sea levels are often associated with periods of time when multiple factors

contribute to higher sea level simultaneously, producing a stacking effect that has been

termed Nu‘a Kai (Figure 2.1; Yoon et al., 2018). Nu‘a Kai is an Hawaiian term meaning

“piled ocean” and conveys the sense of multiple components of sea level variability stacking

together to produce impacts at the coastline. Primary contributors to sea level around

the Hawaiian Islands include long-term sea level rise, astronomical tides, oceanic planetary

waves, oceanic mesoscale eddies, and the inverse-barometer effect. The contributors represent

diverse scales in both space and time, and each contributor could be a source or barrier of

sea level predictability depending on the timescale of interest.

2.1 Long-term sea level rise

Sea level rise due to climate change has contributed to recent high sea levels and high-tide

flooding in coastal areas of the Hawaiian Islands. The effect of long-term sea level rise is

evident in long tide gauge records around the Hawaiian Islands, but it is important to note

that tide gauges record relative sea level change, meaning sea level change relative to a fixed
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Mean tidal range

Sea level rise

Tidal anomalies
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Figure 2.1: The stacking effect of the contributors at the Hawaiian Islands for two high sea
level events in 2017 on April 29 (left) and Aug 21 (right). The figure shows that propagating
sea level anomalies, such as the large scale and mesoscale anomalies, had a large impact on
the total stacking effect.

point on land. Thus, sea level trends from tide gauge data include changes in the absolute

level of the ocean related to climate change and oceanographic processes, as well as the

effect of vertical land motion. For this reason, long-term sea level trends from tide gauges

in Hawaii differ depending on location. Tide gauge data obtained from the National Ocean

Service (see Section 3.2.2) show a linear sea level trend in Honolulu, Oahu during 1914–2019

of 1.35 ± 0.05 mm/yr, while the long-term trend for Hilo, Hawaii during 1946–2019 is 3.05 ±

0.09 mm/yr. For comparison, the trend in Honolulu during the period overlapping the Hilo

record is 1.51 ± 0.08 mm/yr. The factor-of-two difference between the trend in Honolulu

and Hilo is largely due to the fact that Hawaii Island is subsiding at a much faster rate

than Oahu. Recent rates of subsidence from long global navigation satellite system (GNSS)

records show that the rate of subsidence in Honolulu is near zero (0.4 ± 0.3 mm/yr during

1997–2018), while the rate of subsidence in Hilo is 1.2 ± 0.2 mm/yr during 1997–2018 (Yang
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and Francis , 2019). The remaining difference between the trends at the two sites may be

due to interdecadal variations in upper ocean temperature (Caccamise et al., 2005).

For the purposes of this work, which focuses on seasonal forecasting, the contribution

of long-term, multidecadal sea level trends to near-term mean sea level variability and high-

tide flooding events can be considered highly predictable. Most often, high-tide flooding

events are defined by water level relative to the Mean Higher High Water (MHHW) tidal

datum defined over the National Tidal Datum Epoch (NTDE), which is 1983–2001. Since the

midpoint of the NTDE, the long-term trend in sea level has resulted in approximately 4 cm of

sea level rise in Honolulu and approximately 8.5 cm of sea level rise in Hilo. These values can

be interpreted as the contribution of sea level rise to present-day high-tide flooding events

when defined relative to current tidal datums. The contribution of sea level rise to high-tide

flooding in the near future can be predicted by simply extrapolating the multidecadal trend

over the forecast period.

2.2 Astronomical tides

Astronomical tides are generated by harmonic gravitational forcing upon the ocean within

the Earth-Moon-Sun system. Other planets in the solar system also exert gravitational forces

upon the ocean, but the tidal amplitude produced by other planets is too small to observe.

Astronomical tides have been extensively studied and observed throughout human history.

Due to the harmonic nature of tidal constituents and available long-term sea level time series

in Hawaii, the astronomical tides are a highly predictable—approximately deterministic—

component of sea level around the Hawaiian Islands (e.g., Schureman, 1941; NOAA, n.d.c).

The tidal regime in Hawaii is mixed (i.e., not purely diurnal or semidiurnal) with

two unequal high tides per day. Tidal ranges are small to moderate around the islands with

great diurnal ranges—defined as the difference between Mean Higher High Water (MHHW)

and Mean Lower Low Water (MLLW)—of less than one meter. The great diurnal range
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defined over the NTDE (1983-2001) is 58 cm for the Honolulu, Oahu tide station, 69 cm

for the Kahului, Maui station, and 73 cm for the Hilo, Hawaii station (NOAA, n.d.a). It is

important to note, however, that the tidal range is not constant in time. Tidal amplitude

varies seasonally in Hawaii with astronomical high tides in Honolulu, for example, regularly

exceeding 20 cm above MHHW during the summer months of June-August, as well as the

late fall and winter months of November-January. The Highest Astronomical Tide (HAT)

datum is defined as the highest predicted astronomical tide during the NTDE, which is

useful as an estimate of the maximum possible contribution to water level from astronomical

forcing. The HAT is 25 cm above MHHW for the Honolulu station, 26 cm above MHHW

for the Kahului station, and 27 cm above MHHW for the Hilo station (NOAA, n.d.a).

As mentioned earlier (Chapter 1), coastal flooding in the tropical Pacific Islands often

occurs when positive sea level anomalies coincide with high tides. The hope of this study is

to increase sea level predictability of the non-tidal components of the oceanographic features

to use in combination with the tidal predictions to increase predictability of total sea level

for the purpose of forecasting periods of enhanced high-tide flooding.

2.3 Oceanic planetary waves

Oceanic planetary waves are large-scale oceanographic features that occur due to latitudinal

changes in the planetary vorticity field associated with the rotation and curvature of the earth

(LeBlond and Mysak , 1981). Atmospheric planetary waves may only have a few wavelengths

around the planet, which is where they get their name (LeBlond and Mysak , 1981). Oceanic

Rossby waves are the class of planetary waves that is most relevant for sea level variability

in Hawaii, which, at the latitude of Hawaii, have a minimum period of roughly 3 months

corresponding to a minimum wavelength of a few hundred kilometers.

Before the altimetry data from TOPEX/POSEIDON (T/P) were available, the al-

timeter data were insufficient to detect Rossby waves (Chelton and Schlax , 1996). The de-
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velopment of T/P significantly increased the availability to study such large oceanographic

features. Planetary waves can be generated locally by the wind field due to local downwelling

or upwelling (Ekman pumping) that generates freely propagating open-ocean Rossby waves.

Alternatively, oceanic Rossby waves can originate from perturbations of the thermocline

level at the eastern boundary (e.g., from Kelvin waves propagating along the eastern bound-

ary). Rossby waves originating from local wind forcing and boundary perturbations have

been studied as drivers of the low-frequency sea level variability at midlatitudes, where the

Hawaiian Islands are found. Chelton and Schlax (1996) observed that the energetic sea level

near the eastern boundary has a surprisingly weak westward propagation, which is thought

to be due to the seasonal wind forcing. Fu and Qiu (2002) confirmed by using a 2-layer dy-

namic model that in the mid-latitudes, the wind-driven planetary waves are more dominant

compared to the boundary-driven planetary waves. This does not mean that the boundary-

driven planetary waves are insignificant, as when the modeled wind-driven planetary waves

were removed, the residual did show evidence of the boundary-driven planetary waves Fu

and Qiu (2002).

Unfortunately, at the latitude of Hawaii, the application of the 2-layer dynamic model

was not successful in recreating the coastal sea level observed by Hawaiian tide gauges with

the available wind forcing (Firing and Merrifield , 2004). Moreover, Chelton and Schlax

(1996) noted that there is phase speed variation along the latitude of Hawaii, which is a

consequence of the deepening of the thermocline. Such results show that regardless of the

demand for coastal sea level forecasts, it is not a simple task to even hindcast sea level, let

alone forecast sea level, at the latitude of Hawaii.

Hovmöller plots of sea surface height anomaly were generated from altimetry data at

the latitude of the Honolulu Harbor tide gauge (Figure 2.2) to assess propagation of anoma-

lous sea levels around Hawaii during 2017 (see Chapter 1). The Hovmöller plots show features

propagating westward towards the Hawaiian Islands producing a continuous sequence of sea

level highs and lows. Estimating the propagation speed as the slope of these propagating
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features in the Hovmöller plots is close to Chelton’s theoretical propagation speed is 6.94

cm/s. The consistency of this propagation speed suggests that sea level anomalies observed

to the east of the Hawaiian Islands could be used to predict sea level at Hawaii.

Figure 2.2: Time vs longitude (Hovmöller plot) of CMEMS satellite altimetry observed sea
surface height anomalies at the latitude of the Honolulu harbor tide gauge location (21.3◦N).
The longitude of the Honolulu harbor tide gauge is noted with the black dashed line at
(201.1◦E).

The long wavelengths, O(1000 km), of these oceanic planetary waves can give the

impression that planetary waves propagate in a purely zonal direction. However, Glazman

and Weichman (2005) showed in their study that there is a significant meridional component

to the propagation of planetary waves. There are areas in the ocean where the propagation of

the planetary waves are close to purely zonal; however, in mid-latitudes when the periods are

shorter than two years, the planetary waves are dispersive in nature and have a meridional

component that deviates from zonal propagation towards the equator or the pole by 30◦

(Glazman and Weichman, 2005). Moreover, in Figure 2.2, we see that the sea level anomalies

originating from the eastern boundary appear to dissipate within 10◦ of the boundary. This
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is prominently shown in the 1997–98 El Niño, when a large-amplitude sea level high at the

coast of Mexico does not propagate across the Pacific Ocean to the Hawaiian Islands, which

suggests that most of the zonally propagating sea level anomalies reaching Hawaii are forced

by open-ocean Ekman pumping. Assuming that the planetary waves are purely zonal can be

an oversimplification; however, as the majority of the energy is known to propagate zonally,

this study assumes that the planetary waves are propagating in a purely zonal direction.

2.4 Oceanic mesoscale surface eddies

The oceanic region around the Hawaiian Islands is characterized by complex circulation re-

lated to oceanic mesoscale surface eddies. Spatial scales of mesoscale surface eddies vary

greatly, though they are typically smaller than 300 km and can persist for months (Chen

and Qiu, 2010). Oceanic mesoscale surface eddies can be formed due to baroclinic insta-

bilities under the influence of Earth’s rotation (Gill et al., 1974; Wyrtki et al., 1976; Qiu,

1999). The Coriolis force on the north and south side of the mesoscale surface eddies are

different and thus to maintain geostrophic balance, a velocity difference occurs making the

eddy drift westward (Cushman-Roisin and Beckers , 2011). These mesoscale surface eddies

consist of water of their original location and can carry water with varying nutrient content

from its current surroundings (McDonald , 1999). Cyclonic eddies with cold cores and coun-

terclockwise rotation in the Northern Hemisphere are associated with negative sea surface

height anomalies. Anticyclonic eddies with warm cores and clockwise rotation in the North-

ern Hemisphere are associated with positive sea surface height anomalies (Cushman-Roisin

and Beckers , 2011).

Mesoscale surface eddies that approach close to the Hawaiian Islands are known to

increase or decrease coastal sea level along the archipelago. Firing and Merrifield (2004) in-

vestigated the extreme high sea level around the Hawaiian Islands that occurred in September

2003. Their findings showed that the anomalous high sea level was generated in large part
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due to a mesoscale anticyclonic eddy (i.e., an eddy with clockwise circulation in the Northern

Hemisphere) that propagated towards the Hawaiian Islands. These findings are consistent

with the sea-level high observed at the Hononlulu tide gauge on April 29, 2017, which is

currently the second largest hourly tidal residual anomaly ever recorded at the Honolulu

Harbor tide gauge (Figure 1.1). As part of the stacking effect, the anticyclonic eddy that

propagated through the Hawaiian Island in April 2017 was a large contributing factor (about

10 cm) to the high sea level event (Figures 2.2 and 2.3, left). The combined effect of the

eddy on top of the persisting regional sea-level high related to an oceanic planetary wave

and large spring tide made the April 2017 sea level high an even larger event than that of

September 2003 studied by Firing and Merrifield (2004). Until recently, studies have also

not been able to show any clear seasonal pattern for the oceanic mesoscale surface eddies

around the Hawaiian Islands; however, Lindo-Atichati et al. (2020) found that eddy genesis

is higher in spring than fall. The eddies generated during spring and potentially reaching

the Hawaiian Islands during the summer months have an amplified effect on coastal sea level

due to overlap with the high spring tide events in Hawaii that occur in the summer months.

Figure 2.3: Daily mean sea surface height from satellite altimetry (CMEMS) of April 29 (left),
July 23 (middle), and August 21 (right) from 2017. The spatial mean has been removed
over the spatial domain of each map to highlight mesoscale structures. At all locations, the
mesoscale structures are erratic and can increase (right and left) or decrease (middle) the
sea level around the Hawaiian Islands.

14



It is important to note that eddy activity can also mitigate coastal impacts. In

summer 2017, July was anticipated to experience the highest sea levels of the year due to

coinciding with the highest tides of the year. However, it turned out to be the only month

during the April–August period that did not reach the threshold of nuisance flooding (35 cm

above MHHW) (Figure 1.1). At the same time as the highest astronomical tide, a cyclonic,

cold-core mesoscale eddy approached the Hawaiian Islands producing a negative sea level

anomaly (Figure 2.3, middle). Due to the cyclonic mesoscale eddy interfering with the high

tides, the sea level in July was high but not to the point that it was exacerbating coastal

impacts on beaches and coastal roads. This event underscored the importance of oceanic

mesoscale eddies and how tidal predictions are reliable but do not inform of all oceanic

features that may greatly affect the sea level.

Oceanic mesoscale eddies are oceanographic features that are difficult to predict, and

thus represent a barrier to sea level predictability. Despite a tendency to propagate westward

on average, the eddy field can be described as geostrophic turbulence with individual eddies

constantly forming, dissipating, merging, and splitting. These eddies, even more so than

planetary waves, have trajectories that are not purely zonal with meridional components that

are less predictable than the zonal components of propagation. Nevertheless, the methods

developed here will attempt to leverage the tendency of mesoscale eddies to propagate in

the zonal direction from east to west.

2.5 Inverse-barometer effect

The inverse-barometer effect is the response of sea level to atmospheric barometric pressure

systems above the sea surface. The inverse-barometer effect is described by the following

equation:

ηib = − 1

gρ0

(Patm − P0) (2.1)

15



where ηib is the local sea level adjustment due to the atmospheric pressure, g is the grav-

itational constant, ρ0 is the seawater density, Patm is the atmospheric pressure, and P0 is

a reference atmospheric pressure. The sea level and the atmospheric pressure are inversely

proportional and, in general, it could be simplified as a linear relationship where a 1 mbar

increase in atmospheric pressure leads to a sea level decrease of 1 cm. A high-pressure sys-

tem will cause sea level to fall, and a low-pressure system will raise the sea level. Around

the Hawaiian Islands, the atmospheric pressure can range from 1000 – 1027 Pa and is typ-

ically 1016–1017 Pa. The relation between the sea level and the atmospheric pressure is

straightforward and well measured. However, the predictability of the inverse-barometer

effect is heavily reliant on the predictability of atmospheric pressure forecasts, which are

essentially weather forecasts. As we can only reliably predict weather a few days in advance,

the inverse-barometer effect of atmospheric pressure on the ocean has extremely low pre-

dictability at seasonal time scales. The contribution may be great depending on if there is a

low atmospheric pressure system at the point of interest; therefore, there is a potential that

the inverse-barometer effect would be a barrier in predictability. At the island of Oahu, the

largest impact from the inverse-barometer effect since the mid 20th century as been about

10 cm. However, this was an isolated anomaly, and data shows that the contribution of the

inverse-barometer effect to sea level exceeds 4 cm (i.e., above the effect of the long-term sea

level rise) just 5 percent of the time. Therefore, its general effect is small, and despite its

lack of predictability, the inverted barometer effect does not present a significant barrier to

predicting the majority of sea level variability in Hawaii.

2.6 Regimes of sea surface height variability around

the Hawaiian Islands

The main Hawaiian Islands are a relatively small archipelago in the middle of the Pacific

Ocean, but sea level variability around the islands shows that these islands spanning merely
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Figure 2.4: The root mean square of the sea surface height (cm) around the Hawaiian Islands
from HYCOM+NCODA showing sea level variability around the islands. The yellow regions
showing the eddy dominant region (west of the islands and north east of the islands), the
dark blue around the contours of the islands showing areas of low sea level variability, and
the green areas showing the Rossby dominant regions (south of 21◦N).

3 degrees of latitude reside in a complex oceanographic region with multiple dynamical

regimes. To demonstrate these regimes, a map of the root-mean-square (RMS) of sea sur-

face height variability (Figure 2.4) is created using the 1/12◦ × 1/12◦ gridded sea surface

height data from the HYbrid Coordinate Ocean Model (HYCOM) and the Navy Coupled

Ocean Data Assimilation (NCODA) (HYCOM+NCODA). The model output is used in this

case instead of the gridded alimtery observations, because the gridded altimetry product

smooths the height observations across the Hawaiian Ridge, which is known to be an im-

portant oceanographic boundary. The HYCOM+NCODA model does, however, assimilate

available satellite altimeter observations along the satellite tracks. The RMS map from

HYCOM+NCODA highlights four regimes around the Hawaiian Island that show different

oceanic features dominating the area. The four regimes, which will be described below, are

(1) an oceanic mesoscale-eddy-dominated region to the west of the islands, (2) a compar-

atively quiescent region to the southeast of the islands that is likely dominated by oceanic

planetary waves, (3) a region of low variability following the topography of the island chain,
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and (4) a region to the northeast of the islands influenced by a combination of mesoscale

eddies and planetary waves.

2.6.1 Wind-generated mesoscale eddies

Oceanic mesoscale eddies are prevalent around the Hawaiian Islands due to complex flow

and atmospheric variability. The region of high RMS to the west of the Hawaiian Islands

(Figure 2.4) is dominated by mesoscale eddy variability related to prevailing northeasterly

trade winds and island topography (Lumpkin and Flament , 2001; Yoshida et al., 2010).

These eddies are generated by differential surface wind stress in the lee of the islands that

produces localized Ekman pumping and eddy formation. The eddies formed in this region

tend to propagate westward and away from the Hawaiian Islands, but they can also propagate

northwest along the ridge and impact coastal sea level of the islands along the way.

2.6.2 Oceanic planetary waves

To the east of the Hawaiian Islands and at latitudes lower than 21◦N is a region of com-

paratively low RMS suggesting reduced eddy variability and potentially indicating increased

influence of oceanic planetary waves on the surface height field (Figure 2.4). Here, there

are large-scale sea surface anomalies persistently propagating towards the Hawaiian Islands.

Hawaii Island is directly west of this region, which makes Hawaii Island a promising candidate

for high predictability from observation-based sea level forecasts.

2.6.3 Reduced variability following topography

Directly around the Hawaiian Islands following the topographic contours, there is a region of

low surface height variability surrounding the islands. This low variability is present in both

the sea surface height model and in altimetry data (not shown) and is seen as a dark blue

region in Figure 2.4. The RMS of tide gauge data is consistent with reduced variability near
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the islands. The RMS values of daily mean tide gauge data from Hilo Harbor, Honolulu

Harbor, and Kahului are 5.23, 4.70, and 4.40 cm respectively. The reason for this low

variability near the topography is not completely clear. To some extent, one might expect

open-ocean eddies to be unable to approach close to the coastlines of Hawaii due to the

interaction of the ridge topography with the deep signatures of the eddies, which can reach

hundreds or even a thousand meters depth. On the contrary, Firing and Merrifield (2004)

and Yoon et al. (2018) document the influence of mesocale anomalies on high sea level

events. The extent to which the topography of the ridge damps coastal sea level variability

associated with the open-ocean mesoscale eddies and the conditions under which eddies do,

in fact, influence coastal sea level are important questions for future investigation. The

ability to project the influence of open-ocean sea level anomalies onto coastal sea level would

be an important contribution to improving coastal sea level forecasts in Hawaii. For this

study, the reason for reduced sea surface height variability around the topographic contours

will be left for future work.

2.6.4 Instability-generated mesoscale eddies

The fourth and final regime of sea surface height variability around the Hawaiian Islands

is the region of combined mesoscale eddy and oceanic planetary waves to the east of the

Hawaiian Islands and north of 21◦N (Figure 2.4). This region shows high RMS values

(though not as high as the region to the west of the islands) suggesting enhanced eddy

activity relative to the region to the south. The mesoscale eddies here are locally generated

due to instability associated with the vertically sheared North Equatorial Current (Chen

and Qiu, 2010). The region is east of Oahu, and eddies generated in this region would tend

to propagate to the west and potentially impact Honolulu sea level, which is a location of

prime interest.
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2.7 Coastal vs. open ocean sea level

For this study, the focus is on using open-ocean propagating sea level anomalies to forecast

coastal sea level. In Chapter 2.6.3, it was shown that along the topographic contours of the

Hawaiian Islands resides a different kind of sea level regime exhibiting reduced variability

in sea surface height compared to the open ocean. Is the region of low sea level variability

in coastal areas an artifact of the altimetry and the model? If not, is the coastal sea level

sufficiently coherent with the open-ocean sea level to justify using open-ocean sea level in an

observation-based coastal sea level forecast?

The spectral coherence of tide gauge inverted-barometer-corrected sea levels between

the gauges at Honolulu (Oahu), Kahului (Maui), and Hilo (Hawaii) show the degree of

coherence of coastal sea level across the island chain (Figure 2.5) and within the regime of

reduced sea level variability following the topography (Section 2.6.3). Honolulu and Kahului

sea levels are highly coherent (Figure 2.5B) and in phase (Figure 2.5D) at low frequencies,

including the monthly to seasonal time scales of interest in this work. In contrast, sea levels

from the gauge at Hilo are not coherent with either of the other two locations (Figure 2.5B),

even at the lowest frequencies, which suggests that a single seasonal sea level forecast for

all of Hawaii is not sufficient. There are substantial differences in sea level even within

the region of reduced variability following topography. Similar conclusions can be made

from examining the coherence of the closest grid points to each tide gauge from the gridded

altimetry data (Figure 2.6). There is high coherence in the open-ocean sea level between

Honolulu and Kahului for periods longer than 30 days, but little coherence in the open-ocean

sea level between Hilo and the other locations (Figure 2.6B). The result is consistent with

the fact that Honolulu and Kahului reside in the regime where both eddy and planetary

waves are important, while Hilo resides in a region of comparatively low eddy activity likely

dominated by oceanic planetary waves (Chapter 2.6). This further underscores the need for

distinct forecasts for different locations in Hawaii.
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Figure 2.5: Spectral analysis of observed TG sea level between three TG locations around the
Hawaiian Islands (Hilo, Honolulu Harbor, and Kahului) showing (A) individual spectrum,
(B) spectral coherence, (C) transfer function, and (D) cross spectral phase. The spectral
coherence shows that there is coherence between the Kahului and Honolulu Harbor (cyan)
observed TG sea level. For Hilo, the spectral coherence is present for both Kahului (green)
and Honolulu Harbor (purple) for higher frequencies.
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Figure 2.6: The spectral analysis of open ocean sea level between three CMEMS altimetry
sea surface height anomalies grid points around the Hawaiian Islands closest to the Hilo,
Honolulu Harbor, and Kahului TG locations showing (A) individual spectrum, (B) spectral
coherence, (C) transfer function, and (D) cross spectral phase.
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The coherence analyses above demonstrate the degree of coherence between different

locations and data of the same type (i.e., tide gauge to tide gauge or altimetry to altimetry),

but what about coastal (tide gauge) vs. open-ocean (altimetry or model) data at the same

location? By conducting spectral analysis between coastal and altimetry open ocean sea level

at Honolulu, Kahului, and Hilo we found that there is a high degree of spectral coherence

between open-ocean and coastal sea level for periods longer than 30 days, but there is little

to no spectral coherence for periods shorter than 30 days (Figure 2.7). This is not only true

for the altimetry, but also true for the HYCOM+NCODA model. This is important, because

it was suspected that the drop in spectral coherence for periods shorter than 30 days for

altimetry may be due to the gridding algorithm of the altimetry to data to combine height

data from both sides of the Hawaiian ridge. The fact that a similar drop in coherence occurs

in the model, whic assimilates along-track altimetry data and has much higher resolution,

suggests this is not the case.

A time series analysis was also conducted to confirm the results from the spectral

analysis. The time series from the pressure corrected tide gauge and altimetry sea level

data were correlated together in three forms: (1) no temporal split, (2) low-pass filtered

at 30 days, and (3) periods shorter than 30 days, i.e., residuals from the low-pass filter

(Figure 2.8). The correlation for both Hilo and Honolulu were the highest when the sea

level was low-pass filtered at 30-days, with very little correlation for sea level periods shorter

than 30 days. The correlation between the tide gauge and the altimetry data confirm the

results from the spectral coherence, that to use open ocean data from satellite altimetry for

the proposed observation-based sea level forecast, we would apply a 30-day low-pass filter

on the altimetry data to reflect the periods that are most reflective of the coastal sea level

at the Hawaiian Islands.
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Figure 2.7: The spectral coherence of observed TG coastal sea level and open ocean sea
level (CMEMS altimetry and HYCOM+NCODA sea surface height anomalies) grid points
closest to the TG locations for Hilo (A), Honolulu Harbor (B), and Kahului (C). The spectral
coherence at all locations show that there is coherence between coastal and open ocean sea
level for periods longer than 30 days. HYCOM+NCODA sea surface height anomalies were
used to see if the higher resolution models results different due to its better representation
of island geometry, but the results are consistent with the CMEMS altimetry results.

Hilo Honolulu

Detrended daily tide gauge sea level variance 36.91 28.34

Inverted barometer effect 5.23 (14) 7.01 (25)

Low-frequency, large-scale

(periods >30 days, scales >300 km)
16.72 (45) 12.10 (43)

Low-frequency, mesoscale

(periods >30 days, scales <300 km)
3.46 (9) 4.58 (16)

Residual

(periods <30 days, non-inverted barometer)
12.01 (33) 7.73 (27)

Table 2.1: Components of daily sea level variance in cm2 during the altimeter era, 1993–2018.
The percentage of overall detrended sea level variance is given in parentheses.
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Figure 2.8: Time series and correlations of IB corrected tide gauge sea level (orange) and
CMEMS altimetry sea level (blue) at Hilo (left) and Honolulu (right). The top panel shows
the sea level without any temporal smoothing, and the correlation between the TG and
altimetry are high for both Hilo and Honolulu, 0.80 and 0.84 respectively. The middle
panel shows the sea level where a 30-day low pass filter has been applied to both TG and
altimetry, and the correlation increased to 0.91 and 0.92 at Hilo and Honolulu, indicating
the open ocean sea level can be representative of coastal sea level for periods longer than 30
days. The bottom panel shows the high frequency (periods shorter than 30 days) sea level
and the correlation between the TG and altimetry drops drastically to 0.24 and 0.34 for Hilo
and Honolulu.
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2.8 Importance of low-frequency sea level variability

After identifying the time scales and processes that may contribute to predictability of sea

level in the Hawaiian Islands, an assessment was made to see what fraction of the daily mean

sea level variability might be predictable. To assess this, the overall daily sea level variance

and the variance of the relevant components were calculated for the Honolulu and Hilo tide

gauge records during the period overlapping the altimetry era (Table 2.1). The procedures

for separating the various components of the daily sea level variance are described in detail

in Chapter 3.3. The Hilo sea level data has on overall greater variance than the Honolulu

location, which is surprising given the proximity of Honolulu to the regions of greater open-

ocean variability compared to Hilo (Figure 2.4). The inverted barometer effect, calculated

from atmospheric pressure data, accounts for a substantial fraction—roughly a quarter at

Honolulu—of the detrended daily sea level variance. As stated earlier in this chapter, this

fraction of the sea level variability is not likely to be predictable. The low-frequency, large-

scale and low-frequency mesoscale components are calculated by applying a 30-day low-pass

filter to the altimetry data and then applying a 300 km Gaussian spatial filter to separate the

mesoscale from the large-scale. The low-frequency, large-scale variability—the component

most likely to exhibit a high degree of predictability—accounts for approximately 45% of

the detrended daily sea level variability at both locations. Combining the low-frequency,

large-scale variability with the low-frequency, mesoscale—which may contain some element of

predictability—gives 50–60% of the detrended daily sea level variability that can be assumed

to have a westward-propagating component to be leveraged for observation-based sea level

forecasts.

Despite large fractions of the detrended daily sea level variance not falling into a

predictable category of variability, there is still significant utility in generating low-frequency

seasonal mean sea level forecasts. The utility comes from the fact that the low-frequency

variations change the baseline about which higher-frequency sea level variations occur, which
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is important for identifying periods of time when the frequency of high-tide flooding will

be increased. When viewed against the backdrop of hourly sea level variability (including

tidal cycles) the low-frequency (30 days and longer) sea level is a small fraction of the

overall sea level variance, and the long-period variability is not large enough to exceed the

high tide flooding threshold by itself (Figure 2.9, black dotted line). However, these low-

frequency variations can make the difference between a given month experiencing zero or

many threshold exceedances depending on the height of the threshold (Figure 2.9). To

demonstrate the utility of forecasting sea level at periods longer than 30 days, the number

of days per month with at least one hour exceeding an arbitrary threshold of 25 cm above

MHHW are plotted against two predictors (Figure 2.10). The first is the 99th percentile of

tidal variability in each month, which captures the effect of seasonal to decadal changes in

tidal amplitude. The relationship of monthly exceedances to this predictor is weak, because

it does not capture the impact of mean sea level variations on the baseline around which tides

oscillate (Figure 2.10, left). In contrast, if we add the first predictor to monthly mean sea

level, the relationship between the predictor and threshold exceedances is greatly improved

(Figure 2.10, right). Thus, sea level forecasts of monthly and longer periods leveraging the

propagating anomalies at large and mesoscales can potentially improve preparedness for

periods of enhanced high-tide flooding in Hawaii.

Figure 2.9: Hourly TG sea levels (blue) and daily 30-day low pass filtered CMEMS altimetry
sea level (orange) for Hilo, Hawaii. For reference, the 25 cm water level is shown (dashed
horizontal line), which is a threshold for coastal impacts near Hilo. 30-day and longer periods
make up a small fraction of overall hourly sea level variance.
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Figure 2.10: Predictors of monthly high tide threshold exceedances calculated with tide
predictions (left) and with both tide predictions and 30-day low-pass filtered mean sea level
(right) for Hilo, Hawaii. Regardless of periods longer than 30-day and longer make up a
small fraction of overall hourly sea level variance (Figure 2.9), the predictors of monthly
high tide threshold exceedances that include long-period mean sea level variation are more
skillful (right).
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Chapter 3

Observation-based forecasts of coastal sea level

in Hawaii

3.1 Overview

The overarching premise of the forecasting methodology developed here is that sea level

anomalies to the east of the Hawaiian Islands will tend to propagate westward and alter

coastal sea level of the islands at some later time determined by the speed of propagation.

Analysis of tide gauge and altimetry data demonstrated that coastal sea level in Hawaii

measured by tide gauges is related to open-ocean sea level at periods longer than 30 days

(Chapter 2.7). Thus, the methodology developed here will focus on forecasting sea level

anomalies at periods longer than 30 days. Results from previous studies in the literature

and analysis of sea surface height variance around the island chain suggest that coastal sea

level from different locations along the archipelago are not equally impacted by mesoscale

and large-scale open-ocean anomalies (Chapter 2.8). For this reason, the effects of these

different spatial scales are separated in the observation-based forecasts, and the relative skill

of each spatial scale in the forecasts is independently assessed.

The observation-based forecast procedure can be outlined as follows. More detail on

the datasets, data processing, and training/validation methodology follows in subsequent

sections.
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1. Pressure correct the tide-gauge observations (Chapter 3.3.1).

2. Detrend, deseason, and low-pass filter the tide-gauge and altimetry observations (Chap-

ters 3.3.2 and 3.3.3).

3. Apply a spatial filter to the altimetry data to separate mesoscale and large-scale vari-

ability (Chapter 3.3.4).

4. Perform a lag-correlation analysis between the tide-gauge data and altimetry data to

the east of the islands.

5. This is performed independently for the mesoscale and large-scale variability (Chap-

ter 3.4.2).

6. Use the lag-correlation analysis to establish a zonal propagation speed for the mesoscale

and large-scale components of the variability (Chapter 3.4.2).

7. Create näıve forecasts for the mesoscale and large-scale components by zonally propa-

gating observed anomalies for each scale at the calculated speeds (Chapter 3.4.3).

8. Create a persistence forecast by assuming the tide gauge sea level anomalies persist

indefinitely (Chapter 3.4.1).

9. Regress observed tide-gauge anomalies onto the persistence forecast from the tide gauge

and näıve mesoscale and large-scale forecasts from altimetry (Chapter 3.4.4).

10. Construct the observation-based forecast based on the optimal combination of these

three components resulting from the regression (Chapter 3.4.4).

Preliminary analyses suggest two hypotheses to test using the forecast framework:

• Hypothesis 1: Variability with larger spatial scales will exhibit greater predictability

due to its tendency to be more coherent in time and greater tendency to propagate

zonally for greater distances. Conversely, variability with shorter spatial scales will

be less predictable due to its tendency to exhibit more chaotic and less purely zonal

motion.

• Hypothesis 2: Honolulu coastal sea level will be less predictable compared to Hilo

due to the proximity of Oahu to the eddy-rich regions to the west and northeast of
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the archipelago. In contrast, Hilo is situated adjacent to the comparatively quiescent

region, in terms of SSH variability, to the east of Hawaii Island.

3.2 Data

3.2.1 Satellite altimetry

For this study, the satellite altimetry data used are from Copernicus Marine Environment

Monitoring Service (CMEMS; formerly AVISO). The CMEMS daily altimetry gridded data

are a multimission altimeter product, where the data from all altimeter missions (Saral,

Cryosat-2, Jason-1 and -2, T/P, Envisat, GFO, ERS-1 and -2, and Geosat) are processed

to generate a single dataset. The CMEMS gridded data used in this study are the sea

level anomalies (MSLA): Height (H) (MSLA-H), which uses a 27-year mean sea level height

to compute the anomalies. The resolution of the CMEMS gridded data are 1/4◦ × 1/4◦.

CMEMS provides both delayed time altimetry data (currently available between January

1st, 1993 to March 7th, 2020) and the daily near-real-time data uploaded once a day to the

present day. The publication of the daily near real-time data will allow the observation-

based sea level forecast to generate sea level projections in near real-time. Corrections are

made for ocean response to wind and pressure forcing and the inverse barometric effect in

the distributed MSLA-H; this theoretically eliminates the atmospheric variation from the

CMEMS MSLA-H data.

3.2.2 Tide-gauge sea level

Tide gauges are instruments that measure relative coastal sea level, meaning sea level rela-

tive to a fixed point on land. In this study, we used tide gauges maintained by the National

Oceanic and Atmospheric Administration (NOAA). In this study, we specifically used sta-

tions 1612340 and 1617760, which are located in Honolulu Harbor (Oahu) and Hilo Harbor
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(Hawaii), respectively. Hourly water level data through 2019 and NOAA tidal predictions

during the span of each record were obtained directly from the NOAA CO-OPS API (NOAA,

n.d.b). The first available Honolulu sea level data from the Center for Operational Oceano-

graphic Products and Services (CO-OPS) Application Programming Interface (API) are from

1914, making this tide gauge record one of the longest and highest-quality available. The

tide gauge record from Hilo spans 1946 to present. Measurements at the NOAA-maintained

tide gauges are recorded every six minutes; hourly averaged data are downloaded for use in

this study.

3.2.3 Atmospheric pressure

MSLA-H data from CMEMS has been corrected for the inverse-barometer effect however, the

sea level data from the tide gauge are not corrected for similar atmospheric variations. For

this reason, sea surface atmospheric pressure data was used to pressure correct the tide gauge

data for inverse-barometer effects to ensure fair comparisons between the sea level data from

the tide gauges and altimetry. The pressure data used in this study are the daily gridded sea

level pressure data from NOAA’s National Centers for Environmental Prediction-Department

of Energy (NCEP-DOE) Atmospheric Model Intercomparison Project (AMIP)-II Reanalysis

(NCEP2) data. The NCEP2 sea level pressure data used to pressure correct the sea surface

height data was obtained from the Asia-Pacific Data-Research Center (APDRC , n.d.). The

data are available in units of pascals (Pa) and currently available from January 1st, 1979 to

January 31, 2020.
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3.3 Data processing

3.3.1 Pressure correction

As the MSLA-H data from CMEMS has been corrected for the inverse-barometer effect, and

the tide gauge-driven sea level height data are not, the sea level pressure data from NCEP2

are used to pressure-correct the sea level data derived from the tide gauges. First, the

grid point that is closest to the tide gauge locations is extracted from the NCEP2 sea level

pressure gridded-data. As mentioned earlier in Chapter 2.5, the inverse-barometer effect can

be approximated to high-accuracy as a linear relationship where an increase of 1 mbar causes

sea level to drop 1 cm. In order to utilize this relationship, the pressure data from NCEP2

are converted from Pa to mbars prior to making the inverted-barometer correction.

3.3.2 Trend and seasonal cycle

To focus on the sea level anomalies unrelated to seasonal cycles or long-term sea level rise

trends, the sea level height data are detrended and the seasonal cycle is removed from the sea

level height data. Seasonal changes in the sea level height are cyclical and predictable, and

removing seasonal harmonics will increase clarity in sea level height related to propagating

anomalies. The mean sea level and linear trend are also removed to generate a data set that

only consists of the sea level height anomalies. The seasonal cycle and trend are calculated

by fitting annual and semiannual harmonics simultaneously with a mean and linear trend in

a multiple linear regression obtained via least-squares solution to a linear matrix equation.

The fitted annual and semiannual cycles, mean, and linear trend are then removed from the

sea level data. Detrending and removal of the seasonal cycle are applied to all altimetry

data around the Hawaiian Islands, as well as the tide gauge data when direct comparisons

are made.
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3.3.3 Temporal filter

As mentioned in Chapter 2.7, there is little to no spectral coherence between coastal sea

level measured by tide gauges and open-ocean sea level measured by altimeters at periods

shorter than 30 days (Figure 2.7). Therefore, a Butterworth temporal low-pass filter with a

cutoff period of 30 days is applied to the altimetry data to isolate the open-ocean variability

that are most reflective of the coastal sea level at the Hawaiian Islands. Prior to performing

the retrospective forecast calculations and evaluating skill, the low-pass filter is applied to

both the altimetry data and the tide gauge sea level data to assess the skill of the sea level

forecast on the same timescales (Figure 3.1). We do not explicitly treat variability with

periods shorter than 30 days in this analysis.

3.3.4 Spatial filter

A 2-dimensional Gaussian filter with a half-width of 300 km is applied to the altimetry

sea level data, smoothing in both longitude and latitude. To isolate mesoscale and large-

scale variability, the smoothed sea level data are subtracted from the original altimetry sea

level data. For example, Figure 3.1 shows two maps of daily sea surface height data from

altimetry, and Figure 3.2 shows when the two spatial scales have been separated by the

Gaussian filter. Note that the data for each spatial scale are not completely independent, as

large-amplitude eddies—such as the ones east of Hawaii Island on July 23, 2017 and west

of Hawaii Island on August 21, 2017—have signatures in the maps for both spatial scales

(Figure 3.2). In general, the smoothed large-scale sea level data tends to capture the effect of

oceanic planetary waves, as well as the broad signature of large-amplitude, spatially-coherent

ocean eddies (Figure 3.2, bottom). The mesoscale sea level variability primarily captures

the signature of the comparatively weaker and smaller-scale background eddy field around

the Hawaiian Islands (Figure 3.2, top).
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Figure 3.1: 30-day low pass smoothed CMEMS satellite altimetry sea surface height anomaly
on July 23, 2017 (left) and August 21, 2017 (right).

Figure 3.2: 30-day low pass smoothed CMEMS satellite altimetry sea surface height anomaly
with a 300 km Gaussian spatial filter applied to separate mesoscale (top) and large scale
(bottom) anomalies on July 23, 2017 (left) and August 21, 2017 (right). The 300 km Gaussian
spatial filter does not isolate the sea level anomalies clearly, indicating that the two spatial
scales are dependent on each other.
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3.4 Sea level forecasts

In this section, we will compare sea level persistence forecasts to an optimized observation-

based sea level forecast calculated as a weighted combination of persistence and propagation-

based sea level forecasts. The propagation-based sea level forecasts are separated into

mesoscale and large scale, which are then used in combination with the persistence fore-

cast. The weights for each component of the observation-based forecast are generated via

multiple linear regression of tide gauge observations onto the forecast components.

3.4.1 Persistence forecast

Persistence forecasts assume that the sea surface height of today will remain unchanged in

the future. Such persistence forecasts are often used to establish a baseline in performance for

other more sophisticated forecasts. “Beating persistence” is often the threshold for which a

given forecast method can be said to have meaningful skill. In this case, the persistence fore-

cast is generated using data from the NOAA-maintained tide gauges, which are detrended,

deseasoned, and low-pass filtered as described in Chapter 3.3 above. Note that the inverted

barometer correction is applied. For any given forecast period, the persistence forecast is

created by taking the observed 30-day low-pass filtered tide gauge sea level value from the

day the forecast is initialized and projecting it as a constant over the entire forecast period.

3.4.2 Propagation speed estimates

In order to generate an observation-based forecast, an estimated propagation speed is used

to generate a sea level forecast based purely on propagation. The observation-based sea level

forecast uses an estimated propagation speed to predict how fast the sea level upstream of

the site of interest propagates to the site in question. The estimated planetary wave phase

speed is generated using altimetry sea surface height data. Lag correlations are generated

for each point of interest, i.e., both the Honolulu Harbor and Hilo tide gauge locations.
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A lag-correlation analysis using the Pearson product-moment correlation coefficient (see

Chapter 3.5.1) is used as a way to assess the propagation speed (Figure 3.3 and 3.4). The

speed estimation is performed independently for the mesoscale and large-scale components

of the altimetry data. Altimetry sea level data at the location of interest are correlated with

sea level “upstream” (i.e., to the east) of the location for all lags up to 180 days. The lag-

correlation analysis is performed for both Honolulu and Hilo (Figures 3.5 and 3.6), where the

x-axis is the longitude (origin as the point of interest and upstream of the point of interest

to the right), and the y-axis is the lag from day 0 to 180 days. For each lag, the longitude of

the maximum correlation coefficient is identified (black circles in Figures 3.5 and 3.6). The

best-fit slope of the maximum correlations in a linear regression is used as the propagation

speed estimate for each location and spatial scale.

Figure 3.3: Mapped lag correlations of the 30-day low-pass filtered large scale altimetry sea
level anomaly data at the latitude of the Hilo TG for spatial scales larger than 300 km at (A)
30, (B) 60, (C) 90, (D) 120 lag days. The green crosses are showing altimetry grid location
of interest.

Large-scale sea level anomalies at the latitude of Hilo demonstrate clear propagation

with extremely high lag correlations exceeding 0.75 out to long lags around 180 days (Fig-

ure 3.5, left). The estimated propagation speed for large-scale anomalies at the latitude of

Hilo is 7.85 cm/s, which compares favorably to theoretical first-mode baroclinic wave speeds

of about 7 cm/s at this latitude and observed speeds that tend to exceed theoretical (Chelton

and Schlax , 1996). Mesoscale sea level anomalies at the latitude of Hilo also showed clear
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Figure 3.4: Mapped lag correlations of the 30-day low-pass filtered mesoscale altimetry sea
level anomaly data at the latitude of the Hilo TG for spatial scales smaller than 300 km
at (A) 30, (B) 60, (C) 90, (D) 120 lag days. The green crosses are showing altimetry grid
location of interest.

Figure 3.5: Lag correlations of the 30-day low pass filtered CMEMS altimetry sea level
anomaly data at the latitude of the Hilo TG for spatial scales larger than 300 km (large
scale, left) and spatial scales smaller than 300 km (mesoscale, right). The black dots are
showing the maximum correlation at each 10-day increment lag, and the white line shows
the line of best fit, which is used as the estimated propagation speed.
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Figure 3.6: Lag correlations of the 30-day low pass filtered CMEMS altimetry sea level
anomaly data at the latitude of the Honolulu Harbor TG for spatial scales larger than 300
km (large scale, top) and spatial scales smaller than 300 km (mesoscale, bottom). The black
dots are showing the maximum correlation at each 10-day increment lag, and the white line
shows the line of best fit, which is used as the estimated propagation speed.

propagation with a slower estimated speed of 4.67 cm/s (Figure 3.5, right). The estimated

mesoscale speed is about 60% of the estimated large-scale speed, which may indicate that

second-mode baroclinic propagation is important for the smaller spatial scales east of Hawaii

Island. The theoretical second-mode speed is half that of the first baroclinic mode.

Large-scale anomalies at the latitude of Honolulu also demonstrate clear propagation

with an estimated speed of 7.31 cm/s (Figure 3.6, left). The slightly slower speed compared

to the latitude of Hilo is expected due to the decreasing local gradient in planetary vorticity,

β, with increasing latitude. The lag correlations of these large-scale sea level anomalies are

also quite high, though slightly reduced relative to the latitude of Hilo. In contrast, the

correlations for the mesoscale sea level anomalies for Honolulu are much weaker, but there

are signs of propagation (Figure 3.6, right). There is also a suggestion of local periodic

variability from the non-zero correlations around lags of 100–120 days near the longitude of

Honolulu. Taking into account the maximum correlations for the propagating portion of the
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mesoscale anomalies (eliminating lead-days 100 to 120), the resulting propagation speed is

estimated to be 8.17 cm/s, which is slightly faster than the estimated speed from correlations

in the large-scale anomalies. It is important to note, however, that this speed is not likely

to be robust due to the weak correlations and inconclusive structure in the lag-correlation

analysis. There are signs of high correlation around the islands (Figure 3.6, right) at the

longitude of the tide gauge and along the y-axis, indicating that the mesoscale variability

appears to be have some locally generating properties.

3.4.3 Näıve propagation-based sea level forecasts

Using the estimated propagation speeds (Chapter 3.4.2), sea level forecasts are generated

for each spatial scale independently by propagating anomalies from the east to the location

of interest. For example, given an estimated propagation speed c, a forecast ∆t days from

initialization is created by assuming the sea level anomaly that is currently a distance c∆t to

the east will propagate unaltered to the location of the interest. Such forecasts are referred

to herein as “näıve”, because they assume the anomaly propagates undamped and unaltered

by forcing along the path of propagation. One way to think about this type of näıve forecast

is in the context of a simple one-dimensional 1.5-layer reduced-gravity model for which sea

surface height (η) is described by the equation,

∂η

∂t
− cx

∂η

∂x
=

∆ρ

ρ
We − λη, (3.1)

where cx is the zonal propagation speed (positive to the west), ∆ρ is the density difference

between the surface layer and the interior, We(x, t) is the Ekman pumping velocity, and λ is

an inverse damping time-scale. In the case of the näıve forecast, we assume that the forcing

and damping terms on the right-hand side are zero, and the forecast is completely determined

by the initial conditions of the sea surface height field and the speed at which perturbations

in the initial field propagate. In practice, including the forcing term is not practical due to

40



the lack of good predicted winds at seasonal time scales. Forecasts of the forcing term would

be applicable no more than 10 days into the future if we are to use forecasted winds.

3.4.4 Optimized observation-based sea level forecast

ηobs = κpη̃p + κlη̃l + κmη̃m + ε, (3.2)

where η̃p is a persistence forecast, η̃l and η̃m are näıve propagation-based sea level forecasts for

the large-scale and mesoscale components, respectively, the κ parameters are the regression

coefficients, and ε is the error in the forecast. In practice, the regression coefficients are

estimated independently for each forecast length, ∆t, by regressing the observed low-pass

filtered tide gauge sea level anomalies, ηobs(t), onto forecasts initialized from the altimetry

data at times t−∆t.

To assess whether the optimization is sensitive to the particular set of years used to

calculate the regression coefficients, the time frame of the altimetry data (1993–2018) are

split into 500 distinct training and validation sets, where each training-validation pair is

formed by randomly selecting six years for the validation set with the training set composed

of the remaining twenty years. The linear regression coefficients for the persistence and näıve

propagation forecasts are calculated for each lead day for each of the 500 training sets. The

resultant linear regression coefficients vary as a function of lag as the relative importance of

the persistence and näıve propagation-based forecasts changes (see Figure 3.7 and 3.8). The

uncertainty about the regression coefficients (shown as the 68-percent or 1-sigma confidence

interval) is calculated from the spread in the coefficients across the 500 training sets. The

uncertainty is small, suggesting that the regression coefficients are robust and not sensitive to

the particular set of years used to train the optimized observation-based forecast. The linear

regression coefficients from each training set are then used to generate sea level “forecasts”

(hindcasts in actuality) for the validation sets. The skill of the forecasts for the validation

years is discussed in the following sections.
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For a rough physical interpretation of the regression coefficients, it is instructive to

return to the 1.5-layer model (Equation 3.1). Assuming that the forcing term is zero but

retaining the damping term, then a method of characteristics solution for the 1.5-layer model

in an ocean of infinite horizontal extent can be written

η(x, t) = e−λ∆tη(x+ cx∆t, t−∆t), (3.3)

where ∆t is an arbitrary length of time in the evolution of the system. In the context of

the observation-based sea level forecasts, ∆t can be interpreted as a forecast length, and the

right-hand side of the solution is identical to the näıve propagation-based sea level forecast

modified by a damping factor. It is possible to then loosely interpret the components of the

optimized forecast as damped versions of the näıve forecasts with the regression coefficients

being related to the damping factor, e−λ∆t, for each component. In the case of the persistence

forecast, the speed cx is zero.

3.5 Statistical evaluation of the forecasts

As mentioned in Chapter 3.4.1, the persistence forecast using the inverse barometer-corrected

30-day low-pass filtered tide gauge sea level data are used as a baseline of forecast perfor-

mance and to assess the skill of the observation-based sea level forecast. Correlation co-

efficients and skill scores are specifically used to compare the persistence baseline and the

observation-based sea level forecast in order to assess the skillfulness and the utility of the

forecasts.

3.5.1 Pearson product-moment correlation coefficients

To calculate the correlation coefficients, the Pearson product-moment correlation coefficient

(PPMCC) is used. PPMCC is a way to statistically measure the linear correlation between

two variables and show the relation between the two in the means of strength and direction
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(Kiernan, 2014). PPMCC is used to calculate the relation between the forecasted sea level

and the observed sea level from the tide gauges. To calculate the correlation coefficients, the

following equation is used

PPMCC =
Σ(ηo − ηo)(ηf − ηf )√

Σ(ηo − ηo)2
√

Σ(ηf − ηf )2
, (3.4)

where ηo is the observed sea level, ηo is the mean of the observed sea level, ηf is the forecasted

sea level, and the ηf is the mean of the forecasted sea level. Values of PPMCC vary from

+1 to -1, with values near zero indicating a weak relationship between the two quantities.

Positive values show positive linear correlation and the negative values are an indication of

negative linear correlations.

The PPMCC is calculated between the observed tide gauge sea level and sea level from

the optimized observation-based forecast, as well as the persistence and näıve propagation-

based forecasts individually. The persistence forecast results are used as a performance

baseline for the observation-based sea level forecasts. The PPMCC calculations are per-

formed for forecast leads from 0 to 180 days, and the calculations are repeated for all 500

validation sets. The median and the 1-sigma (68 percent) confidence interval for the forecast

correlation is plotted for assessment purposes (Figure 3.9 and 3.10, top).

A weakness of the PPMCC as a measure of calculating the skill of the forecast is that

it ignores differences in the variance between the observational and forecasted sea level. The

PPMCC shows the attainable skill of the forecast if the biases and variance are eliminated

and could lead to overestimation of the forecast performance.

3.5.2 Brier skill score

As a more rigorous alternative to PPMCC, the Brier skill score offers a test for forecast

skill that includes the effects of bias and differences in variance. The Brier skill score (BSS)

is based on the mean square error (Müller and von Storch, 2004). BSS will only be equal
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to PPMCC for absolute and conditionally unbiased skill. The BSS is calculated using the

following equation

BSS = 1− RMSE2

σ2
r

, (3.5)

where RMSE is the root-mean-square error between the predicted and observed values (i.e.,

ηf and ηo, respectively), and σ2
r is the standard deviation of the observed values. The range

of the BSS is +1 to −∞, where a score of +1 indicates a perfect forecast result and a BSS

of 0 and lower indicates there is no skill in the forecast.

Again, similar to the PPMCC, the BSS are calculated for the optimized observation-

based forecasts, as well as the persistence and näıve propagation-based sea level forecasts

individually. The BSS for all lags and validation sets are generated and plotted on a y-axis

showing BSS between 0.0 and 1.0. The median and 1-sigma (68 percent) confidence interval

of the BSS is plotted to evaluate the skillfulness of the sea level forecasts (Figure 3.9 and 3.10,

bottom).

3.5.3 Correlation and skill of the forecasts

The regression coefficients for both Hilo and Honolulu suggest that up until about 20 days,

the persistence forecast is the most effective component of the optimized forecast, while af-

ter 20 days the large-scale propagation component dominates (Figures 3.7 and 3.8). The

mesoscale propagating anomalies receive little weight in the optimized forecast with regres-

sion coefficients that are much smaller compared to the other two components at all times.

The variance in the regression coefficients is minimal over the 500 runs, suggesting that the

coefficients are robust to the choice of data and are likely to be applicable for forecasting in

an operational mode. In both cases, the regression coefficients for the large-scale propagation

term are near one, suggesting little damping of the anomalies as they travel to the locations

of interest. In contrast, the importance of the persistence term decays to near zero by about

40 days in both locations.
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Figure 3.7: The calculated median linear regression coefficients for lead days 0 to 180 for Hilo
are plotted with the 68% confidence interval (filled) of the 500 random runs. The persistence
forecast used to generate the regression coefficients are from the 30-day low pass filtered TG
sea level at each island. The large scale and mesoscale forecasts are from the 30-day low
pass filtered CMEMS altimetry sea level at the closest altimetry point to the TG location.
The relevance of the persistence and large scale forecast flips at around 20 days, and the
mesoscale forecasts shows little contribution.
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Figure 3.8: The calculated median linear regression coefficients for lead days 0 to 180 for
Honolulu are plotted with the 68% confidence interval (filled) of the 500 random runs. The
persistence forecast used to generate the regression coefficients are from the 30-day low pass
filtered TG sea level at each island. The large scale and mesoscale forecasts are from the
30-day low pass filtered CMEMS altimetry sea level at the closest altimetry point to the TG
location. The relevance of the persistence and large scale forecast flips at around 20 days,
and the mesoscale forecasts shows little contribution.
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Figures 3.9 and 3.10 show the results of the skill assessments for the Hilo and Honolulu

Harbor tide gauge locations, respectively. These results suggest that both locations have

comparable skill, which clearly beats näıve persistence at forecast leads of 30 days and longer.

The median PPMCC for Hilo for the optimized observation-based forecast remains above 0.7

out to 100-day lead and above 0.6 for the entire 180-day forecast period (Figure 3.9, top).

Compared to the baseline true näıve persistence forecast (dashed black line), after 30 days

lead time, the optimized observation-based forecast (blue line) excels, but the performance

is not statistically different and almost indistinguishable from the performance of the large-

scale forecast (orange line). However, for the first 20 lead days, the large-scale forecast alone

is significantly lower in skill compared to the persistence. Perhaps surprisingly, especially

for Hilo, the mesoscale propagation forecast (green line) exhibits low skill as an independent

predictor throughout the forecast timeframe of interest. The addition of the mesoscale

sea level anomalies in the observation-based sea level forecasts does not add to skill of the

observation-based sea level forecast. The primary components adding skill to the observation-

based sea level forecasts are the persistence and large-scale propagation forecasts.

The bottom panels of Figures 3.9 and 3.10 show the skill calculated from the BSS for

the forecasts at Hilo and Honolulu, respectively. The baseline persistence forecast possesses

zero skill for leads longer than 60 days at both locations. In contrast, the skill for the

optimized observation-based sea level forecasts is highly encouraging, showing results that

are clearly better than persistence with skill scores of around 0.5 at 90-day lead times. Note

that the BSS of the mesoscale propagation forecast drops below zero very quickly (within

∼10 days), indicating that the variance is mismatched between observations and forecasts

at the mesoscale, and this component contributes little skill to the optimized forecast. The

main contributions to the skill of the optimized forecast are persistence at short lead times

and large-scale propagation at lead times of 30 days and longer.
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Figure 3.9: Statistical evaluation results of the observation-based sea-level forecast for Hilo,
Hawaii for the 500 random runs. The median value of the observation-based sea level fore-
cast (blue line) is compared to the baseline generated from true persistence (dashed black
line). The observation-based components, large scale sea level forecast (orange line), and the
mesoscale sea level forecast (green line) are also shown as individual forecasts. This figure
also shows the 68% confidence intervals (filled) for each sea level forecast. Lead days as a
function of PPMCC (top); lead days as a function of BSS (bottom). The results show that
the observation-based sea level forecast exceeds the baseline forecasts results and there is
little contribution from the mesoscale forecast.
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Figure 3.10: Statistical evaluation results of the observation-based sea-level forecast for
Honolulu, Oahu for the 500 random runs. The median value of the observation-based sea
level forecast (blue line) is compared to the baseline generated from true persistence (dashed
black line). The observation-based components, large scale sea level forecast (orange line),
and the mesoscale sea level forecast (green line) are also shown as individual forecasts. This
figure also shows the 68% confidence intervals (filled) for each sea level forecast. Lead days
as a function of PPMCC (top); lead days as a function of BSS (bottom). The results show
that the observation-based sea level forecast exceeds the baseline forecasts results and there
is little contribution from the mesoscale forecast.
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3.6 Operational observation-based sea level forecasts

The mesoscale components of the forecasts do not contribute significantly to forecast skill at

either Hilo or Honolulu. As seen earlier in Table 2.1, the mesoscale sea level variability has

more relevance in Honolulu (16% of overall daily sea level variance), and it is possible that

the overall forecast skill is slightly lower at Honolulu due to the lack of mesoscale forecast

skill. As for Hilo, Figure 3.5 (right) suggested forecast skill from clear propagating features;

however, the optimized observation-based sea level forecast did not give significant weight to

the mesoscale forecasts. It could be that the sea level variability contribution in the mesoscale

is simply too small in Hilo (about 9% of the overall daily sea level variance) to factor heavily

into the forecast. Therefore, for the Hawaiian Islands, the mesoscale variability could be

ignored. We suggest, however, that future work focus on assessing methods to increase the

skill of the mesoscale component. Finally, for the study presented here, the research quality

CMEMS altimetry data was used. Operationally, the near-real-time CMEMS altimetry data

would have to be used to generate near-real-time daily sea level forecasts. It is not known

at this time if using the near-real-time data would affect the skill of the forecasts.
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Chapter 4

Seasonal forecasts of high-tide flooding

Open-ocean sea level observations from satellite altimetry correspond to coastal sea level vari-

ability observed by tide gauges in Hawaii at periods longer than about 30 days (Section 2.7).

As a result, the mean sea level forecasts developed here (Section 3.4.4) are applicable at

monthly timescales out to about 6 months. Monthly mean sea level anomalies make up

a relatively small fraction of the overall hourly sea level variance in Hawaii, but the low-

frequency variations change the baseline around which higher-frequency anomalies and tidal

variations occur. For example, monthly mean sea level anomalies in Hilo can determine the

difference between having zero or many exceedances above a threshold during a given month

(Figure 2.9). Thus, the primary utility of these forecasts is not in the ability to predict the

mean sea level anomalies themselves, but rather the ability to forecast periods in which the

likelihood of high-tide flooding (HTF) is enhanced or reduced. The summer of 2017 and

the unprecedented number of HTF events in Honolulu (Chapter 1) is a primary motivator

of this work. An important test of the utility of these forecasts is to evaluate whether the

observation-based sea level forecasts could have predicted the enhanced number of events

during that time.

Relating forecasts of monthly mean sea level to expected monthly counts of HTF

days is achieved via an updated version of the hierarchical statistical model developed in

Thompson et al. (2019), with the most notable update being a switch from annual resolution

to independent models for each calendar month of the year. Note that a HTF day is defined
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to be a day in which at least one hourly sea level value exceeds the flooding threshold of

interest. The fundamental assertion of the Thompson et al. (2019) statistical model is that

the probability mass distribution governing the number of HTF days at a given location

during a given period is closely related to a single parameter,

∆99 ≡ (ζ99 + η̄)−H (4.1)

where ζ99 is the 99th percentile of predicted astronomical tidal heights relative to current

tidal datums, η̄ is the mean of the nontidal sea level variability over the period in question

(in this case a single month), and H is the height of the flooding threshold of interest. The

term in parentheses, (ζ99 + η̄), provides a general measure of the height of high tides during

a given month. The specific role of ζ99 is to capture variability in high-tide levels due to

seasonal-to-decadal modulations in tidal range. The specific role of η̄ is to capture variability

in high-tide levels due to changes in the mean level (both secular and stochastic) about which

the astronomical tides vary. By subtracting the threshold height, H, from this sum, we can

interpret variability in ∆99 as a measure of whether high tides are generally higher (more

positive ∆99) or lower (more negative ∆99) compared to the threshold for a given period of

time. If we also consider the presence of stochastic sub-monthly processes, then we can state

more formally that the parameter is related to the probability mass distribution (PMD) of

the number of daily high tides that exceed the threshold during a month. Thompson et al.

(2019) utilized a beta-binomial distribution to capture the wide variety of distribution shapes

that are needed to describe how the distribution changes with ∆99. The shape of the beta-

binomial distribution is determined by a set of parameters, which, in practice, are related

to ∆99 by prescribed functional forms that are conditioned on observed values of ∆99 and

counts of HTF days from tide gauge observations. The details of this conditioning process

are described in greater detail in Thompson et al. (2019) and remain largely the same in

the present analysis. The outcome of this statistical model is an algorithm that accepts a
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value (or distribution of values) for ∆99 in a given month and returns a probability mass

distribution for the number of HTF days that can be expected given ∆99.

The interface between the monthly mean sea level forecasts and the statistical model

for monthly counts of HTF days occurs via η̄ in the definition of ∆99. However, the mean sea

level forecasts produce estimates of anomalies relative to the multidecadal trend and mean

annual cycle calculated over the altimetry period, 1993–2019. These components must be

added back to the forecasts of mean sea level anomalies to produce accurate forecasts of HTF

days. In addition, there is uncertainty associated with the forecasted monthly mean sea level

anomalies that must be propagated into the forecasts of HTF days. In practice, we treat

this uncertainty as normally distributed white noise with a standard deviation equal to the

standard deviation of differences between observed and retrospectively forecasted monthly

mean sea level anomalies during the altimetry period (σε). In the following analysis, we

generate retrospective three-month and six-month outlooks for numbers of HTF days and

compare to observed counts of HTF days over the same periods from tide gauge data.

The procedure for generating three-month and six-month outlooks for numbers of

HTF days is as follows:

1. Initialize retrospective mean sea level forecasts on the 15th day of each calendar month,

which allows the 30-day low-pass filter to produce estimates of monthly mean sea level

for the month with minimal contributions from edge effects.

2. Produce forecasts of monthly mean sea level anomalies for the subsequent 6 months

using the procedure outlined in Chapter 3. E.g., for a forecast initialized on January

15th, forecasts of monthly mean sea level are produced for February through July.

3. The multidecadal trend and mean annual cycle during the altimeter period are added

to the forecasted anomalies, and the resulting monthly mean sea level is adjusted to

be relative to the mean sea level datum of the tide gauge.
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4. For each month during the forecast period, the statistical algorithm for HTF days

receives four inputs: monthly mean sea level from the previous step in this procedure,

uncertainty in the mean sea level forecast (σε), ζ99 over the forecast month calculated

from the official NOAA tidal prediction, and a threshold of interest (H).

5. Output of the statistical model is used to generate retrospective three-month and six-

month HTF forecasts composed of a “best guess” and a likely range (17th to 83rd

percentile) for the total number of HTF days expected over the three- and six-month

periods following the forecast initialization date.

Using this procedure, retrospective forecasts of HTF days were initialized for every

month in the altimeter record. Three-month and six-month forecasts of HTF days exceeding

30 cm above MHHW in Hilo compare favorably with the observed number of HTF days

over the same three- and six-month periods (Figure 4.1). For the largest observed counts,

the numbers of observed HTF days fall within the likely range of the forecasted counts (i.e.,

the gray vertical bars intersect the black diagonal 1:1 line). Note that the comparisons are

similarly favorable for other thresholds as well. Forecasts for Honolulu (not shown) do not

compare favorably with the observed counts. The reason for the discrepancies in Honolulu

are not yet clear, but it does not appear to be related to lack of skill in the mean sea level

forecasts. Rather, the statistical model relating mean sea level to numbers of HTF days does

not perform adequately during the particular months (many during 2017) when the largest

numbers of HTF days occur. Understanding the shortcomings of the statistical model in

Honolulu during these particular months will be the subject of future work.

Returning to the unprecedented year of 2017, the largest observed three-month count

in Hilo (14 HTF days) corresponds to November 2017 through January 2018, and the sec-

ond largest observed three-month count (13 HTF days) corresponds to May–July, 2017 (as

denoted in Figure 4.1a). The forecasts for these three-month periods—initialized on April

15th and October 15th, respectively—accurately predict the numbers of HTF days, with the

observed counts falling well within the likely range in both cases. The same goes for largest
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six-month counts in Hilo (18 HTF days) that occurred during April–September, 2017 (Fig-

ure 4.1b). Thus, had this forecast system been operational, advanced warning of the impacts

of high-tide flooding in Hilo during 2017 could have been provided to those managing coastal

resources and infrastructure. This suggests that observation-based sea level forecasts can be

an effective tool for mitigating against the impacts of high-tide flooding as the frequency of

such flooding increases with sea level rise.
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Figure 4.1: Comparisons of forecasted and observed counts of HTF days in Hilo (30 cm
above MHHW) during three- and six-month intervals (left and right, respectively) since the
beginning of the altimeter record in 1993. Likely ranges (17th to 83rd percentiles) about
the forecasted counts are shown as vertical gray bars. Likely ranges are shown only for the
largest observed counts each panel to avoid cluttering the figure. A small amount of random
scattering is applied to the markers to allow multiple markers to be seen where many are
co-located.
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Chapter 5

Discussion and conclusions

5.1 Impact of seasonality

The observation-based mean sea level forecast (Chapter 3) did not attempt to account for

seasonal differences in propagation speeds or seasonal changes in the relative importance

of the forecast components. There are, however, clear seasonal differences in the oceano-

graphic and atmospheric conditions around the Hawaiian Islands, and the seasonal changes

vary greatly even over the small latitudinal differences between the locations of Hilo and

Honolulu. To illustrate the seasonal variability, climatologies of zonal currents (Figure 5.1)

and wind-stress (Figure 5.2) were computed from the 1◦ × 1◦ gridded ocean reanalysis,

Ocean ReAnalysis System 5 (ORAS5) from ECMWF. Such seasonal differences could affect

the observation-based sea level forecast due to small changes in propagation speeds or the

impact of differences in wind-forcing from one season to the next.

Figure 5.3 shows the standard deviation of the difference between inverse barometer-

corrected 30-day low-pass filtered observed tide gauge sea level and the forecasted sea level

from the observation-based forecast at various leads. The standard deviation of the fore-

cast differences are lower in the fall season (September–October) for Hilo, Hawaii, while no

clear seasonal differences are apparent for Honolulu. While not conclusive, there is a pos-

sibility that training the model for specific seasons could produce improved skill from the

observation-based sea level forecast.
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Figure 5.1: ORAS5 seasonal mean surface zonal current where the overall mean is removed
for (A) winter, (B) spring, (C) summer, and (D) fall. There are signs of strengthened zonal
flow in fall (son, D) and possibly winter (djf, A) at the latitudes of Hawaii.

Figure 5.2: ORAS5 seasonal mean windstress where the overall mean is removed for (A)
winter, (B) spring, (C) summer, and (D) fall.
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Figure 5.3: Standard deviation of the difference between 30-day low-passed observed TG
sea level and forecasted sea level from the observation-based sea level forecast for (A) Hilo
and (B) Honolulu. Fall season (son) for Hilo seems to have slightly low standard deviation
compared to the other seasons, showing indication of potential increase in forecast skill for
Hilo in the fall season.

Seasons (months) Hilo (cm/s) Honolulu (cm/s)

Large scale Mesoscale Large scale Mesoscale

Full record 7.85 4.67 7.31 8.17

Winter (djf) 7.17 4.68 8.46 7.35

Spring (mam) 8.91 4.80 5.46 5.45

Summer (jja) 6.64 5.78 8.14 9.24

Fall (son) 8.33 6.27 7.31 7.61

Table 5.1: Calculated propagation speeds
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5.1.1 Propagation speeds and forecasts by season

With the seasonal observation-based forecast, the idea is to divide the year into four seasons

and generate sea level forecasts specifically for each season. The initial test was to see if

the propagation speeds for the large-scale and mesoscale height anomalies calculated from

the lag-correlation analysis (Chapter 3.4.2) varied if calculated on a seasonal basis. The

year was separated into four seasons: winter (December–February), spring (March–May),

summer (June–August), and fall (September–November). Figures 5.4 and 5.5 show the lag-

correlation analysis and estimated propagation speeds for large-scale and mesoscale sea level

anomalies, respectively, at the latitude of Hilo. The seasonally calculated propagation speeds

for large and mesoscale sea level anomalies show that there are variations in the estimated

speeds that could affect the skill of the sea level forecasts. With the exception of the spring

season, estimates of the large-scale propagation speeds (Figure 5.4) are well-constrained with

clear propagation structure in the lag-correlation analysis and speeds varying up to 30% from

6.64 cm/s up to 8.33 cm/s. The large-scale propagating anomalies are most tightly correlated

in the fall, and the propagation speed is faster in fall compared to winter and summer. The

structure of mesoscale propagation in the seasonal lag-correlation analysis (Figure 5.5) is

much less clear compared to the previous analysis ignoring seasonal differences. As a result,

it was less clear for some seasons how to identify structure in the lag-correlation analysis

to calculate speeds. Regardless, an attempt was made for each season in order to produce

optimized observation-based forecasts as in the full-record calculations in Chapter 3.4.

The optimized observed-based forecast procedure, including the training-validation

subsetting, was repeated for each season individually. The regression coefficients did differ

amongst the four seasons (not shown), but the differences were small, and the coefficients

were comparable to the non-seasonal results. As in the non-seasonal analysis, persistence

dominated at short lead times, large-scale propagation dominated at longer lead days, and

the mesoscale propagating anomalies showed little contribution. Similarly, the variance in
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Figure 5.4: Lag correlations of the 30-day low-pass filtered CMEMS altimetry sea level
anomaly data at the latitude of the Hilo TG for spatial scales larger than 300 km (large
scale) where the sea level data have been separated seasonally to (A) winter, (B) spring, (C)
summer, and (D) fall. The black dots are showing the maximum correlation at each 10-day
increment lag, and the white line shows the line of best fit, which is used as the estimated
propagation speed. The large scale sea level anomalies show signs of propagation, where the
propagation speed is the fastest in the summer (6.64 cm/s), and slowest in the fall (8.33
cm/s). Note that the propagation speed using non-seasonally separated sea level data, the
propagation speed of large scale sea level anomalies was 7.85 cm/s (Figure 10, left).
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Figure 5.5: Lag correlations of the 30-day low pass filtered CMEMS altimetry sea level
anomaly data at the latitude of the Hilo TG for spatial scales smaller than 300 km (mesoscale)
where the sea level data have been separated seasonally to (A) winter, (B) spring, (C)
summer, and (D) fall. The black dots are showing the maximum correlation at each 10-day
increment lag, and the white line shows the line of best fit, which is used as the estimated
propagation speed. Overall, the mesoscale sea level anomalies show signs of propagation,
however the propagating features are most clear in spring and summer. Note that the
propagation of the mesoscale anomalies were cleas when using non-seasonally separated sea
level data, the propagation speed of mesoscale sea level anomalies was 4.67 cm/s (Figure 10,
right).
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the regression coefficients were well-constrained and showed minimal spread across the 500

training sets.

5.1.2 Results of splitting forecasts by season

Consistent with the non-seasonal sea level forecast (Figure 5.6, solid black line), the seasonal

observation-based sea level forecasts exhibited high potential skill at the Hilo tide gauge

location for all seasons, far exceeding the skill of the persistence forecasts (Figure 5.6, dotted

lines). Interestingly, the fall season is the only season to stand out as having significantly

more skill than the non-seasonal forecasts. The median PPMCC for the fall season exceeded

0.8 out to 160 lead days (Figure 5.6, solid purple line), and the BSS exceeded 0.6 out to 100

days (Figure 5.7, solid purple line). However, overall, there is no significant advantage in

adding seasonality to the propagation-based sea level forecast over the non-seasonal data at

Hilo other than for the fall season. The results were similar for Honolulu, where the forecast

skill did not appreciably increase for any season relative to using the complete record (not

shown).

5.2 The role of mesoscale sea level variability

The results from the observation-based sea level forecast were unable to leverage any substan-

tial predictability from the mesoscale sea level variability despite an overall large contribution

to variance in multiple regions surrounding the Hawaiian Islands (Figure 2.4). One obvi-

ous limitation of the observed-based forecast methodology is the assumption of purely zonal

propagation, which may have hindered the ability of mesoscale variability to factor heavily

in the optimization. As shown in Table 2.1, mesoscale variability constitutes a significant

fraction of daily sea level variance, and multiple studies have highlighted the important

role of mesoscale eddies in the largest coastal sea level extremes observed in Hawaii (Firing

and Merrifield , 2004; Yoon et al., 2018). Moreover, these are not isolated cases, as Fir-
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Figure 5.6: Lead days as a function of potential skill (PPMCC) of the observation-based
sea-level forecast and persistence for Hilo, Hawaii for the 500 random runs with seasonal
differences. The median value of the seasonal and non-seasonal observation-based sea level
forecast (solid lines) is compared to the baseline generated from persistence (dashed lines).
The black lines are the non-seasonal observation-based sea level forecast results to compare
with the seasonal results, to identify if there is any relevance in including the seasonal
differences. The results show that the seasonal observation-based sea level forecast only
exceeds the non-seasonal forecasts for the fall season (son, purple solid line) and there is
little relevance in seasonally forecasting for the other seasons.
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Figure 5.7: Lead days as a function of BSS of the observation-based sea-level forecast and
persistence for Hilo, Hawaii for the 500 random runs with seasonal differences. The median
value of the seasonal and non-seasonal observation-based sea level forecast (solid lines) is
compared to the baseline generated from persistence (dashed lines). The black lines are
the non-seasonal observation-based sea level forecast results to compare with the seasonal
results, to identify if there is any relevance in including the seasonal differences. The results
show that the seasonal observation-based sea level forecast only exceeds the non-seasonal
forecasts for the fall season (son, purple solid line) and there is little relevance in seasonally
forecasting for the other seasons.
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ing and Merrifield (2004) found that between 1993 and 2004, there were approximately 10

large (>15 cm) anticyclonic eddies that reached the Hawaiian Islands and observed that

extreme sea levels tend to occur when the eddies reach the Hawaiian Islands during the

summer season. Given the clear impact of mesoscale eddies on coastal sea level, the region

of substantially reduced RMS sea surface height variability following the topography of the

Hawaiian Ridge (Figure 2.4) is most puzzling. Thus, the dynamics of how and under what

conditions mesoscale eddies significantly affect coastal sea level in Hawaii is an important

area of future research. In the medium-term, exploring ways to relax the assumption of

purely zonal propagation may improve the observation-based forecasts by better capturing

the influence of mesoscale eddies.

5.3 Skill comparison: Observation-based vs dynamical

models

As discussed in Chapter 1, the currently available dynamical forecast models are not par-

ticularly skillful in predicting monthly sea level at the latitude of Hawaii. In order to assess

how the dynamical models compare to the observation-based sea level forecast, the skill of

observation-based forecasts in Honolulu was compared to results from a multimodel analysis

of sea level forecasts from operational dynamical models (obtained via personal communi-

cation with Xiaoyu Long and Matthew Widlansky). Figure 5.8 shows the forecast skill for

Honolulu sea level from various operational dynamical forecast models (colored lines) com-

pared to the skill of the observation-based forecast developed here (black line with dots). The

figure specifically shows skill for forecasts initialized in April, i.e., prior to the spring barrier

in predictability. The skill measure in this case is correlation between observed monthly

mean tide gauge anomalies with trend and annual cycle removed (inverted barometer effect

not removed). Note that the observation-based forecasts were made up to 180 lead-time,

i.e., 6 months, whereas the dynamical models were forecasted for 11 months.
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Figure 5.8: Monthly sea level forecast skill (anomaly correlation coefficient, acc) of dynam-
ical models (colored lines) and observation-based sea level forecasts (black line with dots)
compared against damped persistence (light blue filled) initiated in April. Skill assessment
of dynamical forecast models was provided via personal communication with Xiaoyu Long
and Matthew Widlansky.
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For most lead months available for the observation-based sea level forecast, the

observation-based forecast was able to demonstrate forecast skills higher than the dynamical

models. At 5-month lead, a few dynamical models exhibited slightly higher skill than the

observation-based forecast. Regardless, the skill of the observation-based forecast exceeds

the skill of the baseline damped persistence (blue shading) and a majority of the dynamical

models at all lags. Given the simplicity of the observation-based forecasts, the results of

this comparison are eye opening and highlight the importance of initial conditions when

forecasting sea level. The observation-based forecasts are initialized directly from altimetry

observations alone, which is not the case for the dynamical forecast systems.

5.4 Applicability of the observation-based sea level fore-

cast in other Pacific Islands

This study focused on the Hawaiian Islands, however, the observation-based sea level forecast

may also have utility for other Pacific Islands. Similar to Hawaii, coastal flooding at other

tropical Pacific Islands often occurs when positive sea level anomalies coincide with high

tides. Studies document that vast areas of the western Pacific are experiencing sea level rise,

and the risk of coastal flooding at the Pacific Islands will increase further (e.g., Merrifield

and Maltrud , 2011; Perrette et al., 2013). Similar to the Hawaiian Islands, sea level rise

will make such island locations more vulnerable to these extreme events and also high tide

flooding events that cause nuisance flooding.

The observation-based sea level forecast shows utility in the Hawaiian Islands despite

substantial mesoscale variability that makes forecasting sea level challenging. Other Pacific

Islands, such as Johnston Island may find more useful skill in the mesoscale spatial scales, as

it is located west of the Hawaiian Islands and in the path of the well known eddy generation

region lee of the Island of Hawaii (Figure 2.4, Figure 4 in Holland and Mitchum, 2001).

Pacific Islands located at lower latitudes expereince less mesoscale variability and could
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potentially derive better skill and more utility from the observation-based sea level forecast

(e.g., the forecasted long-period sea level could be added to predicted tides for near-real-time

forecasts). Overall, there is potential for utility in the observation-based sea level forecast

in the other Pacific Island locations, and it is suggested to expand the forecast locations to

assess the skill of the sea level forecast for other locations in the Pacific.

5.5 Summary

Numerous high sea level events in summer 2017 attracted media, stakeholders, and public

interest, which highlighted the need to better predict sea level and increase preparedness

for such events in the future. As open-ocean sea level anomalies typically propagate east to

west, the purpose of this work was to leverage the propagation and create efficient seasonal

observation-based sea level forecasts for the Hawaiian Islands. The observation-based model

was developed, in part, because operational dynamical models tend to have limited skill in

forecasting sea level, particularly at mid-to-high latitudes, including the Hawaiian Islands.

The timescales for which open-ocean sea level can be used to forecast coastal sea

level were assessed by spectral analysis and time series comparison between tide gauge and

altimetry data. Results suggested that open-ocean sea level variability at periods longer

than 30 days is clearly related to coastal sea level in Hawaii, and forecasts were generated

using low-frequency tide gauge and altimetry sea level. It is important to realize that about

40% of daily mean coastal sea level variability occurs at periods shorter than 30 days, and

this variability is omitted from the observation-based sea level forecast using the open-ocean

altimetry data (Table 2.1). The lack of spectral coherence between open-ocean and coastal

sea level at these periods does not mean that open-ocean anomalies with time scales shorter

than 30 days do not affect coastal sea level, but that the dynamics are likely more complicated

(e.g., likely impacting coastal trapped waves), and one cannot make a one-to-one relationship

between open-ocean and coastal sea level.
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An optimized observation-based forecast was created from weighted combinations of

persistence and independent propagation-based forecasts for large (>300 km) and mesoscale

(<300 km) open-ocean anomalies. The observation-based sea level forecasts consistently

exhibit higher skill than the baseline persistence forecast at long lead times out to 180

days. Evaluating over many training-validation sets shows that the weights assigned to each

forecast component and the skill of the forecasts are robust and not sensitive to the partic-

ular subset of altimetry data used to train the forecast model. Our hypothesis was that the

large-scale variability will exhibit greater predictability due to its coherency in time and zonal

propagation. Our hypothesis was correct that, for the Hawaiian Islands in general, the fore-

casts are dominated by the large-scale component, while the mesoscale component received

little weight in the optimized forecast. Operationally, the variance of the weights assigned to

each forecast component varied little across training sets, and operational observation-based

sea level predictions could simply use the median weights with no appreciable loss in skill.

Finally, there was minimal significance in adding seasonal differences for speeds and weights

in the sea level forecasts. For the Hawaiian Islands, the recommended observation-based

sea level forecast is to use non-seasonal persistence and large-scale forecast with the median

weights for the components.

The utility of the observation-based sea level forecast was demonstrated by pairing

the mean sea level forecast with a statistical model relating mean sea level to counts of

flooding threshold exceedances. Our second hypothesis was that coastal sea level at Hilo

will be more predictable than Honolulu. The combined model performed exceedingly well in

hindcasting seasonal periods of enhanced high-tide flooding at Hilo, underscoring the benefit

of economical seasonal forecasts of mean sea level. Stakeholders can utilize the combined

mean sea level and exceedance forecast model to assess flooding risks months in advance for

facilitating preparedness across economic and coastal management sectors. The full potential

has not yet been realized, but this work serves as a proof-of-concept with promising results

for many stakeholders in coastal communities around the Hawaiian Islands.
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Numerous assumptions were made to simplify the forecast methodology and make

the sea level model as economical as possible. In future studies, relaxing some of these

assumptions may increase the skill and utility of the observation-based sea level forecast.

Most important would be to relax the assumption of purely zonal propagation and allow

anomalies in different latitudes to factor into the forecast. This could be particularly effective

at locations such as Honolulu where mesoscale anomalies formed in the lee of the islands are

observed to propagate along the island chain, affecting Honolulu sea level before turning west

into the basin. Another component of the forecast that could be improved is the propagation

speed itself. The current observation-based sea level forecast assumes that one propagation

speed per latitude for all lead-days. The propagation speed does vary as sea level anomalies

propagate towards the island and interact with the bathymetry of the ridge (Figure 2.2).

Allowing the speed to vary along the path of propagation could increase skill for both spatial

scales.
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