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ABSTRACT 

 

The pathogenic gram-negative halophilic bacterium, Vibrio parahaemolyticus, is 

a water-borne human pathogen indigenous to coastal marine and estuarine environments.  

When introduced to a human host, either by the consumption of raw or undercooked 

shellfish, or by exposure to an open wound, the pathogen can cause gastroenteritis, tissue 

infection, and, in some cases, septicemia.  The risk of human infection is expected to be 

directly associated to the abundance of pathogenic V. parahaemolyticus. To evaluate how 

environmental conditions may influence the abundance of this pathogen I investigated the 

spatial, temporal, and environmental prevalence of Vibrio parahaemolyticus in the Ala 

Wai Canal and surrounding waters of Honolulu, Hawai’i.  Strains of V. parahaemolyticus 

were isolated on selective media along an environmental gradient and at frequencies 

ranging from months to hours. Putative V. parahaemolyticus isolates were identified 

using chromogenic media. Their identities were later confirmed using molecular 

methods, and they were analyzed for the presence of known virulence-associated genes.  

The species-specific(tlh) gene was found in 79% of the putative V. parahaemolyticus 

isolates, but none of these were positive for a virulence-associated gene (tdh). There was 

a positive correlation between total V. parahaemolyticus abundance and salinity, but only 

in the range from 2.5-19 ppt. No significant correlation was found between temperature 

and V. parahaemolyticus abundance.  Highest V. parahaemolyticus densities were usually 

found at the head of the canal and at the mouths of the two streams feeding into the canal 

(stations 1-6, 9 and 12). This information may prove useful for modeling pathogen 

dynamics in tropical coastal environments.  
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CHAPTER 1 
 

INTRODUCTION AND BACKGROUND 

The genus Vibrio includes more than sixty-five species, at least twelve of which 

are pathogenic to humans or have been associated with foodborne diseases (Chakraborty, 

et al., 2000).  Among these species, Vibrio parahaemolyticus resides in many of the 

world’s estuarine waters and is a leading cause of foodborne gastroenteritis. Vibrio 

parahaemolyticus is a halophilic bacterium and was first identified in the 1950’s as a 

cause of foodborne illnesses in Japan.  More recently this vibrio has been identified with 

wound infections and septicemia in susceptible hosts (Morris and Black, 1985).  

Although Vibrio parahaemolyticus is currently recognized as one of the major causal 

agents of seafood related gastroenteritis, not all strains of this species are considered to be 

truly pathogenic (Mead, et al, 1999).  Annually, Vibrio-related illnesses account for over 

eight thousand cases of gastroenteritis in the USA.  Specific to the Vibrio 

parahaemolyticus bacterium, it is estimated that there are at least 4500 cases of infection 

occurring each year in the United States.  However, this may be an underestimate, 

because the surveillance of the Centers for Disease Control and Prevention is hampered 

by underreporting (National Center for Zoonotic, Vector-Borne, and Entreric Diseases 

Online, 2008).  The majority of outbreaks of gastroenteritis in the United States have 

been related to contact with and consumption of raw or undercooked shellfish (Bean, et 

al., 1998). 

 1 
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In the USA, outbreaks were first identified in 1971 during which 320 patients 

suffered from gastroenteritis due to food poisoning (Molero, 1982, also Dadisman, et al, 

1972). Vibrio parahaemolyticus has also been isolated from seawater and seafood of the 

Hawaiian Archipelago since the early 1960’s (Yasunaga, 1965). 

Clinical Disease 

Vibrio parahaemolyticus causes three major syndromes of clinical illness in 

humans with the most common syndrome being gastroenteritis, followed by wound 

infections and septicemia (Morris and Black, 1985; Daniels, et al, 2000).  When ingested, 

Vibrio parahaemolyticus causes watery diarrhea, often with abdominal cramping, nausea, 

vomiting, fever and chills.  Usually these symptoms occur within twenty-four hours of 

ingestion.  Illness is usually self-limited and lasts up three days.  Life threatening 

complications are rare and transpire more commonly in people with weakened immune 

systems.  Vibrio parahaemolyticus can also cause an infection of the skin when an open 

wound is exposed to warm seawater (Vector-Borne National Center, 2008). 

Epidemiological data reveals a correlation between preexisting liver disease and 

the occurrence of primary septicemia caused by Vibrio parahaemolyticus with an 

observed fatality rate of forty-four percent for cases with septicemia (Hlady and Klontz, 

1996).   Patients may incur wound infections before or during exposure to seawater or 

seafood drippings when Vibrio parahaemolyticus is present (Qadri, et al., 2005).  Ear 

infections, eye infections, and peritoneal infections have also been associated with Vibrio 

parahaemolyticus in recent studies (Hornstrup and Gahrn-Hansen, 1993; also Daniels, 

2000). 
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Person-to-person infectious transmission may occur through direct physical 

contact, or indirectly through the secondary contamination of household food and water 

(Qadri, et al., 2005).  Hornstrup and Gahrn-Hansen studied the frequency of mother-to-

infant transmission of enteric pathogens and documented the isolation of Vibrio 

parahaemolyticus (Duangmani, et al., 1985).  

The Global Human Health Perspective 

Vibrio parahaemolyticus has surfaced around the world as a major threat to public 

health.  Bacterial clones of Vibrio parahaemolyticus with the potential for causing 

pandemic infections have emerged in Asia (Matsumoto, et al, 2000).  Internationally and 

domestically, Vibrio parahaemolyticus is one of the most significant vectors of bacterial 

foodborne illness.   
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Table 1 Cross-comparison of Three Prevalent Pathogenic Vibrio Species1 
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Table 2  Cross-comparison of Immunological and Molecular Methods for Detection of 
Environmental Vibrio Species Samples2 
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Gastroenteritis that is associated with Vibrio parahaemolyticus has been reported 

throughout North America, Central America, Europe, Asia, and Africa.  Numerous 

studies have shown that the Vibrio parahaemolyticus organism is pathogenic for human 

populations residing in a variety of geographic locations. In Asia, Vibrio 

parahaemolyticus is an established enteric pathogen in Japan, where consumption of 

uncooked seafood is common.  As a result, scientists have concluded that Vibrio 

parahaemolyticus is responsible for 50-70% of the cases of Japanese bacterial food 

poisoning (Miwatani and Takeda, 1976; Obata, et al., 2001).   

The isolation of Vibrio parahaemolyticus in patients suffering from diarrhea has 

been reported in Thailand, India, Bangladesh, Laos, Vietnam, Tanzania, Hong Kong, 

Korea, Russia, China, Taiwan, Indonesia, Philippines, and Kuwait.  In Europe, Vibrio 

parahaemolyticus has been discovered in the Baltic Sea, the North Sea, the 

Mediterranean Sea and the Black Sea (Miwatani and Tekeda, also Molero, et al, 1989).  

However, the greatest local implication of Vibrio infections in the United States has been 

directly correlated to five U.S. coastal states (Figure 1). Vibrio infections per resident is 

by far highest in the state of Hawai`i. This can be due to the fact that Hawai`i is the only 

state listed with year-round tropical climate, or due to the influx of over seven million 

visitors to Hawai`i’s beaches and coastal systems. However, percent deaths affiliated 

with Vibrio infections still remains higher in areas where consumption of unsafe shellfish 

is prevalent. 
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Fig. 1  Vibrio Infections of Five U.S. States per Resident Population3 

Introduction to Study Site and Local Environment 

Located in Honolulu, Hawai’i on the island of O’ahu (Figure 2), the Ala Wai 

Canal was built in 1928 as an artificial waterway for the purpose of draining rice paddies, 

fish and duck ponds, and swamps.   At present, the Ala Wai Canal diverts stream flow 

from low-lying land area adjacent to one of Honolulu’s ocean harbors.  The Ala Wai 

Canal was originally proposed in 1906 by Lucius Pinkham, who was president of the 

Hawai’i Board of Health.  Pinkham envisioned this low-lying land as a potential site for 

resort and recreational facilities.  He suggested that the Ala Wai Canal would consolidate 

the discharge flow and sediments of the Makiki, Manoa, and Palolo streams.  A man-

made canal would divert these from streams from flooding the area which would become 

Waikiki.  Construction on the canal began in 1922 and was completed four years later in 

1926.   In the Native Hawaiian language, “Ala Wai” means “Path to the Sea.” 

3 Yoder, et al., 2008; Dziban, et al., 2006; and compiled by Steward, 2008 
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Fig. 2  Map of O`ahu, Hawai`i. (DLNR, 2004) 

Ala Wai Watershed 

The Ala Wai Watershed (Figure 3) is comprised of an area that is approximately 

12,033 acres.  It includes the sub-watersheds of Makiki, Mānoa, and Pālolo.  The 

watershed extends from the top of the Ko’olau Mountains to the near-shore waters of 

Waikiki and Māmala Bay (U.S. Army Corps of Engineers, 2005).  The canal runs parallel 

with the development of Waikiki and concludes at the Waikiki Boat Harbor.  Three 

bridges span the Ala Wai Canal.  These transportation corridors are at the McCully 

Street, the Kalākaua Avenue, and the Ala Moana Boulevard crossings.  
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Fig. 3  Topographic Map of Ala Wai Watershed Area O`ahu, Hawai`i. (DLNR, 2004) 

Recreational Water Use 

The Ala Wai Canal is used recreationally by paddlers, canoe teams, and other 

navigators of non-motorized boating vessels.  Although fishing is prohibited throughout 

the canal, throughout our study we observed many local fishermen using the canal to 

collect bait fish and other small fry. The Ala Wai Boating harbor is the point of discharge 

for one the largest recreational boating facilities of the State of Hawai’i, with a berthing 

capacity of 699 vessels.  Located within this harbor are the Hawaiian Yacht Club, the 

Waikiki Yacht Club, and the Royal Hawaiian Ocean Racing Club.  
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Climate 

Honolulu, Hawai’i is located at 21º 18' N, 157º 51' W.  Hawai`i’s monthly mean 

air temperatures, like most global land areas, vary seasonally.  At sea level, average 

daytime air temperature varies from about 25.5 degrees Celsius in August, to 22 degrees 

in February.   Typical coastal sea water temperatures for Honolulu, Hawai’i range from 

24.5°C to 26.6°C (Figure 4).  

 

Fig. 4  Average Monthly Coastal Water Temperatures (°C), Honolulu, HI4 

Vibrio Dynamics of Marine Environments 

 Vibrio parahaemolyticus not only negatively affects human health, but Vibrio 

bacterium also influences the nutrient cycling and remineralization of organic nutrients in 

the environment.   Every Vibrio species abundance is ecologically dependent on three 

main factors: water temperature, salinity, and the concentration of planktonic organisms.  

Most species of Vibrio are characterized by increased growth at elevated temperatures.  

4 Coastal Water Temperature Table, National Oceanographic Data Center. 
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As a result, higher rates of isolation may be observed in the marine environment during 

warm months (Lipp, et al., 2002) and in the presence of planktonic copepods (Huq, et al., 

1990).  A study detailing the seasonal distribution of Vibrio parahaemolyticus concluded 

that an increase in isolation directly paralleled an increase in water temperature (Sarkar, 

et al., 1985). 

The Vibrio parahaemolyticus bacterium exists either as a free living organism or 

attached  dependent to submerged, inert, and animate surfaces such as particulate matter, 

zooplankton, fish, and shellfish (Qadri, et al., 2005).  Like many Vibrios, V. 

parahaemolyticus may be found as a planktonic, free-swimming state and a sessile state 

on a host surface.   

In 2003, Stewart and McCarter described various cell movements allowing Vibrio 

parahaemolyticus to swim freely in marine surroundings. 

The swimmer cell, with a single polar flagellum, is adapted to life in liquid 
environments.  The polar flagellum, powered by the sodium motive force, is 
constitutively expressed and propels the bacterium at various speeds, allowing it to 
find and closely approach a surface.  The swarmer cell, propelled by many proton-
powered lateral flagella, can move through highly viscous environments, colonize 
surfaces, and form multicellular communities.5  

Marine copepod exoskeleton has been shown to support large populations of 

Vibrio, including the pathogenic species of Vibrio cholerae, Vibrio vulnificus, Vibrio 

alginolyticus and Vibrio parahaemolyticus (Carli, et al., 1980; also Colwell and Huq, 

1999; Hansen and Bech, 1996; Huq, et al, 1983; Tamplin, et al., 1990; Kaneko and 

Colwell, 1975).  Recent evidence suggests a mutualistic symbiosis between species of 

copepods and Vibrios (Lipp, et al., 2002).  Since Vibrio parahaemolyticus produces an 

5 Stewart and McCarter, 2003: 232. 
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active chitinase, which breaks down the chitin produced by the copepods, the ecological 

significance of the organism is presumed to involve the recycling of chitinous material, as 

well as other organic nutrients derived from zooplankton (Kaneko et al., 1974). 

 In a comparable study (Huq, et al, 1983), Huq found that Vibrio 

parahaemolyticus can bind uniformly to surfaces of copepod exoskeleton.  Colwell 

(1981, 1986)  highlights the important compensational symbiotic relationship between 

the Vibrios and copepods into four distinct benefits to Vibrios. First, Vibrio bacteria 

bound to the exoskeleton are able to metabolize the chitin more efficiently than free-

living forms could do normally. Second, while the bacterium is attached to copepods and, 

in particular, to the eggs that are being dispersed in the water, provided a mechanism for 

extended geographic distribution. Third, plankton organisms are the most plausible 

reservoir of altered forms of pathogens, from which fully virulent strains can arise. And 

finally, bacteria that grow on the surface of a copepods are protected against 

environmental stress and thrive on excreted products of digestion, including organic 

material and NH4
+  (Cooksey and Wigglesworth-Cooksey, 1995). 

The interaction of various Vibrio species with copepods was found to be 

influenced by certain environmental parameters (Kaneko and Colwell, 1975).  For 

example, as concentrations of salinity increased, the total number and rate of Vibrio 

parahaemolyticus which attached to the copepods decreased.  

Species of Vibrio can be entrapped by filter feeding invertebrates.  These marine 

animals sieve suspended food particles from their aquatic environment (Pruzzo, et al. 

2005).  This filter feeding process may cause internal concentrations of potentially 

pathogenic bacteria to increase.  This can establish a commensal relationship with the 
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host, or the Vibrio can proliferate and invade the soft tissues on the invertebrate causing 

death.  The prevalence of bacteria in filter feeders, as well as in other shellfish, largely 

depends on their sensitivity to the hemolymph bactericidal activity (Cuthbertson, et al., 

2002; also Destoumieux, et al., 2000; Harris-Young, et al., 1995; Olafsen, 1995; Prieur, 

et al., 2002).  

A recently reported optimum salinity for Vibrio parahaemolyticus growth was 

estimated to be 23 parts per thousand (ppt) (Anonymous, 2005).  Despite its halophilic 

nature, Vibrio parahaemolyticus has been isolated from saline-free waters, and its 

occurrence in freshwater systems has been construed as a accidental incidence that is 

probably related to tidal drift of organisms to the upper reaches of rivers (Sarkar, et al., 

1985). Vibrio parahaemolyticus grows well in media supplemented with 20-20‰ sodium 

chloride and preferentially inhabits brackish aquatic environments (Pruzzo, et al., 2005).  

Yet, under specific nutrient conditions, sodium ion requirements are not mandatory and 

Vibrio parahaemolyticus can survive well in areas where salt concentration is lower than 

physiological concentrations (Sarkar, et al., 1985).   

Along with Vibrio vulnificus, Vibrio parahaemolyticus has been shown to be 

isolated in water of a temperature that is higher than 10°C (Oliver, et al., 1983).  

However, other studies have shown that Vibrio cholerae and Vibrio parahaemolyticus 

survive at lower temperatures in the presence of chitin.  This suggests that chitin may 

possess a cryoprotective capacity allowing Vibrio to be maintained during winter months 

(Amako, et al., 1987; also Karunasagarm, et al., 1986).  Overall, Vibrio parahaemolyticus 

abundance varies with temperature, but recent data suggests that highest densities of cells 

occur in waters ranging from 20°C to 30°C (Tantillo et al., 2004).  
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Isolating and Identifying of Vibrio parahaemolyticus  

Conventional Cultivation Methods 

Numerous molecular-based approaches are being employed to identify the 

presence Vibrio parahaemolyticus.  These relatively new systems have been developed to 

efficiently, reliably and accurately detect microbial pathogens in the environment.  Even 

in the remotest parts of the world, researchers and practitioners are utilizing these 

molecular means (Pruzzo, et al., 2005).  As well, conventional methods, such as the ones 

used in this study, are used to detect and classify Vibrio parahaemolyticus isolates from 

clinical and environmental samples.   

 Two types of Vibrio-selective media are frequently utilized: Thiosulphate-

Citrate-Bile-Salts-Sucrose agar (TCBS) and CHROMagarTM Vibrio (CV) agar.  After 

colonization and isolation of individual isolates, species identification is established using 

PCR assays.  The bacterial colonies are screened for the occurrence of species-specific 

gene sequences.  The analysis of 16S rRNA sequences is acknowledged as the “gold 

standard” of microbial niche scanning (Amann and Schleifer, 1994).  

TCBS allows for the selective isolation of Cholera vibrios and Vibrio 

parahaemolyticus from a variety of clinical and non-clinical specimens (Downes and Ito, 

2001; also Clesceri, et al., 1998).  The high concentrations of thiosulfate and citrate and 

the strong alkalinity of this medium largely inhibit the growth of enterobacteriaceae  

(Kobayashi, Enomoto, Sakazaki, Kuwahara, 1963).  Ox bile and cholate suppress the 

development of enterococci and coliform bacteria by preventing the metabolizing of 

sucrose. 
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The downside of using TCBS is that this method of bacterial detection requires a 

lengthy time for colony formation and screening for proper colony identification. In 

contrast, the medium of CV facilitates the identification of Vibrio parahaemolyticus, 

Vibrio vulnificus and Vibrio cholerae from other Vibrio species.  The bacterium are 

isolated by their colony colors with a higher sensitivity than conventional methods 

(Rambach, 2008).  The CV medium is selective against most major enterobacteriaceae 

and Gram positive bacteria. 

Molecular Assays 

Molecular diagnostic tests have been developed over the past few years for both 

the clinical and environmental monitoring of Vibrio parahaemolyticus pathogen types. 

However, conventional methods of pathogen detection such as the most-probable-number 

technique in association with a biochemical test, or the procedure of colony blot 

hybridization with gene-specific probes, are both time and labor consuming when 

analyzing a large number of samples (Kaysner, et al., 2001).  These microbiological 

challenges are further complicated by the phenotypic variations within species, the scores 

of newly described pathogenic species, and the restricted array of phenotypic tests 

available to distinguish established and potential bacterial pathogens.  

16S rRNA 

The sequence of the 16S rRNA gene has been widely used as a molecular clock to 

estimate relationships among bacteria (phylogeny).  Additionally, 16S rRNA has become 

an important means of identifying unknown bacterium at the genus or species level 

(Sacchi et al., 2002). The 1542 nucleotide-long 16S gene is a relatively small component 
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of the prokaryotic ribosomal subunit (30S).  The 16S primers sequence, listed below in 

Table 3, bracket a highly variable nucleotide sequence region which can provide species-

specific signature sequences effective for bacterial identification. 

Thermolabile Hemolysin 

The thermolabile hemolysin (tlh) gene is a species-specific marker that may be 

used as a means to detect pathogenic strains of Vibrio parahaemolyticus  (Parveen et al., 

2008).  Detection and quantification of the tlh gene represents only the presence of the 

specific gene and the possibility of pathogenic virulence.   

Thermostable Direct Hemolysin 

The tdh gene is a proven virulence factor (Nishibuchi et al., 1992), which occurs 

in over ninety percent of the clinical strains isolated in the United States and the world 

(Okuda et al., 1997).  The tdh gene encoding the thermostable direct hemolysin (TDH) is 

regarded as an important virulence gene.  Most clinical strains carry this tdh gene, yet it is 

contained in only a small proportion of environmental strains (Nishibuchi and Kaper, 

1995, M. Nishibuchi and J.B. Kaper). 

An earlier method known as the Kanagawa test was first used in early studies to 

help categorize strains producing the tdh target gene.  However, this test been substituted 

for more efficient diagnostic methods such as PCR and DNA probe assays (Bej et al., 

1999 and DePaola et al., 1994).  These approaches and other genotypic assays have been 

successfully applied to both environmental and seafood studies.  
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Significance of the Research 

Three core questions remain unanswered about Vibrio parahaemolyticus and the 

Ala Wai estuarine system. First, is V. parahaemolyticus present in the waters in and 

around the Ala Wai canal? Second, if present, what environmental factors influence V. 

parahaemolyticus abundance? And lastly, do the strains of this bacterium growing in the 

canal carry a known virulence-associated gene? Answers to these questions will be 

helpful in evaluating whether V. parahaemolyticus presents a risk of infection for 

individuals that interact with the waters in and around the Ala Wai canal. Data on the 

relationship between the abundance of V. parahaemolyticus and environmental 

conditions may also prove useful for future models Vibrio spp. dynamics in this urban 

estuarine environment and how risks of infection vary over space and time.  
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CHAPTER 2 
 

MATERIALS AND METHODS 

Overview of Collection Design 

Sampling Strategy 

Samples were collected at fifteen sites along the shores of the Ala Wai Canal, the 

Ala Wai Boat Harbor, and the streams that feed into the canal on nested time scales 

ranging from months to hours. Sites were distributed along the Ala Wai Canal in order to 

capture effects of some of the major freshwater inputs to the canal such as streams, and 

storm drains.  

The strategy of this project’s sampling design was to accommodate the possibility 

that variations of time could affect the content of the samples being collected and 

analyzed.  Therefore, a time series of monthly collections was taken in 2008 of water 

samples from each station.  Additionally, a nested hierarchical time series of water 

sample collection was implemented.  In this hierarchical scheme, water was collected at 

varying times of weekly, daily, and three-hour frequencies.  The three hour collection 

cycle was limited to a twenty-four period of time in July.  Samples were collected during 

the morning to early afternoon hours.  For logistical reasons, daily samplings were 

limited to four stations and the twenty-four hour sampling was limited to three stations. 

The nested hierarchical time series was limited to only a select few stations during 

the intensive month of July.  Since sampling all fifteen stations was not possible for 

weekly, daily and hourly sampling; preselected groups of sampling stations were 

designated for collection.  The sample collection was concluded in November 2008. 
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The weekly collection sites were limited to One and Five through Fifteen.  Sites 

Two through Four were excluded from the weekly study because Stations Two and Three 

were at the same location as Site One, however at a different depth.  Site Four was also 

excluded because it was deemed unnecessary to collect sediment samples on the week-to-

week scale.  

The daily sample series ran from July 10 through July 17, 2008.  During these 

seven days samples were collected from Stations Five, Nine, Twelve and Fourteen.  

These four stations were preselected due to each sites specific location to key water 

inputs and samplers accessibility.  Station Five was located at the far end of the canal, 

near the out-rigger launching ramps.  Station Nine was located behind Io`lani School on a 

small dock in Mānoa stream.  Station Twelve was located ten to twelve yards from where 

the Makiki stream flows into the Ala Wai Canal.  Finally, Station Fourteen was located 

on the west side of the canal around twenty yards upstream from the Ala Moana 

Boulevard bridge.  

Hourly sampling began on July 15th at 6:00 a.m. and was completed on July 16th 

at 6:00 a.m.  Similar to the daily sampling, the hourly sampling involved a limited 

preselected group of collection sites: Stations Five, Nine, and Fourteen.  Station Twelve 

was omitted because there was a lack of reliability for the researcher to access the site 

during the twenty-hour period.  Samples were collected during the morning to early 

afternoon hours.   

Table 3 Nested Hierarchal Time Series 

Monthly Stations 1-15 February through November 2008 
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Weekly Stations 1,5-15 June 26/08 through July 17/08 

Daily Stations 5,9,12,14 July 10/08 through July 17/08 

Hourly Stations 5, 9, 14 July 14/08 at 0600 through July 15/08  
at 0600 (3-hour intervals) 

 

In consideration of the significant variability of the tidal flux, each sampling day 

was correlated to the most consistent tide from other sampling days.  However, in some 

cases it was unnecessary or improbable to base variability on consistent tidal markings.   

 

Location of Stations 

A satellite-view representation of the fifteen sampling locations along the Ala 

Wai Canal is provided in Figure 5. 
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Fig. 5   Sampling Station Locations (1-15) Along the Ala Wai Canal, Honolulu, HI6 

Sample Collection 

Water 

The fifteen collection stations were located within five feet of the shore line. 

Stations One through Nine and Station Eleven were accessible without the use of an 

extendable pole; while Station Ten and Stations Twelve through Fifteen required the use 

of the pole to reach the collection site in the water.   

At most of the collection sites, a plastic bottle was completely submerged to a 

depth of between one and two feet of water.  However, at collection Stations One through 

6 Tele Atlas North America, Inc, 2008. 
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Four and Station Seven, a full-submersion of the bottle was not possible due to low water 

levels because of tidal activity, rocky surfaces, or other restrictions.  In these cases, the 

bottle was submerged closer to the level of the water’s surface. 

Before each collection was taken, the bottles were thoroughly flushed with water 

to ensure the absence of any prior bottle contamination.  During the flushing of each of 

the bottles, the excess water was not returned to the collecting system so as to prevent the 

mixing of discharge water with collection water and to minimize sediment disturbance. 

Sediment 

Sediments were collected at one site only (Station four). Station Four was 

geographically isolated from any disturbing stream flow, anthropogenic activity, or other 

turbid inputs that could potentially skew an analysis of the sediment. Sediments from 

Station Four were collected where the water depth was approximately five to eight inches 

by scooping with a sterile polypropylene screw-cap tube (15-ml capacity). 

Instruments and Tools 

While in field, it was necessary to utilize several different collection and 

processing tools.  A basic pre-calibrated standard glass alcohol (0°C to 80°C) 

thermometer a digital pocket refractometer (PAL-1 by Atago U.S.A., Inc.), falcon tubes 

(15 ml) and pipettes were employed.  A retractable sampling pole (Swing Sampler, 

Nasco) was employed to reach areas where the water was beyond arm’s reach.   

One-liter brown non-transparent bottles and 500ml transparent bottles were used 

at each of the stations.   Every bottle that was used to collect and analyze the water 
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samples was pre-labeled, autoclaved and/or acid washed (10% HCl solution for twenty-

four to forty-eight hours).   

The refractometer was calibrated with NanoPure water.  Once calibrated, a 100 

microliter sample of surface water from each station was collected and placed on a 

refractometer for measurement.  Salinities were routinely measured from the sample 

bottles once they had been returned to the lab.  At Station One, surface salinity was also 

routinely measured in the field at two depths by directly pipetting from the upper 

centimeter and from ca. 5-10 cm depth (near the bottom) to determine whether the water 

was stratified.  

At every site, care was taken to minimize disturbance of the sediments during the 

water sampling.  Each bottle was capped and placed in a pre-chilled ice cooler with lid. 

The immediate cooling of the water samples was necessary to slow down and/or prevent 

further chemical and biological activity from occurring. With each sample a thorough 

recording of the site location, water temperature, and time of day was documented.  

Station Four stands alone as the only site at which sediment samples were 

collected on three different occasions.  The sediments were placed in a 15 ml sterile 

falcon tube and appropriately labeled.  In such cases, it was necessary to determine and 

record the sediment temperature, as well as the water-surface temperature.  

Management of Samples 

After each sampling, the water and sediment collections were immediately 

transported to the laboratory of the University of Hawai’i for analysis and processing.  

Samples were transported to the laboratory at 4-10 degrees Celsius, within sterilized 

containers, and were processed within the six hour standard prescribed by Donovan and 
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Van Netten for the collection timeline of the Vibrio species (1995). All samples were 

processed to a point where they could be stored within three to four hours. 

Sterivex Filtration 

Water samples were filtered through 0.22 µm pore-size filters (Sterivex, 

Millipore) in order to collect bacteria for subsequent cultivation-independent molecular 

analyses.  Filtrates were saved for the future isolation of bacteriophages infecting 

pathogenic vibrios. 

 

Fig. 6   Sterivex-GP unit: Cross-Sectional View (Millipore Corporation, 2008). 

An eight-lane peristaltic pump with containing tubes was connected with a 0.22 

µm sleeve to inlet of the Millipore Sterivex™-GP filtration unit.  Semi-transparent 500ml 

samples bottles were used to collect filtrated water from the outlet of the Sterivex-GP 

 



  25 

Unit.  Each containing tube was labeled at both ends.  Prior to their use, the containing 

tubes were soaked in a 2% Contrad liquid detergent bath solution with Nanopure water.  

The peristaltic pump was then turned on at a conservative rate to prevent tube wear 

and/or filter hemorrhaging.  During the filtration of the water samples, a sterile 50ml 

Falcon tube was placed beneath the Sterivex filter and used to collect any excess water.  

After each Falcon tube was sufficiently filled, it was labeled and placed in a 4°Celcius 

refrigerator. This filtered water would then be available for further viral analysis.  

Once 500ml of sample water had been filtered through the Sterivex unit, the filter 

was removed and the capsule of the unit was examined for any remaining liquid. If any 

water remained, a 10-20ml sterile syringe was connected to the filter unit and the 

remaining solution was removed.  Each end of the Sterivex filter was then covered with a 

self-sealing Parafilm® M Cover Film, and labeled according to sample.  These bottles 

were stored in a -80°Celcius freezer for future analysis. 

 

Collection Management and Storage for Future Analysis 

Total Organic Carbon 

Total Organic Carbon (TOC) describes the sum of all the organic carbon-

containing constituents (whether living or dead) found in a sample.  Total Organic 

Carbon (TOC) is often used as a non-specific indicator of water quality (Mauri, 2007).  

The samples from each site were placed in a 30ml, pre-acid washed, wide-mouth Nalgene 

HDPE container and frozen at -25°C for subsequent analysis by high-temperature 

combustion. 
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Particular Organic Carbon 

Sample water (25-200 ml) from the non-transparent one-liter bottles was filtered 

onto pre-combusted glass fiber filters (GF/F, Whatman).  The amount of water that was 

processed was determined by the particulate load in each sample.  A log was maintained 

of how much water was processed from each collection station. After filtration was 

complete, filters were removed with sterile forceps and folded in half (sample side facing 

inward) inside a sheet of aluminum foil.  The edges of the aluminum sheet were folded to 

contain the filter, then the foil packets were labeled and stored in a sterile plastic bags 

(Whirlpak, Nasco) and placed in a -80°C freezer. 

 

Chlorophyll a 

Samples for analysis of extracted chlorophyll a were processed and stored 

identically to those for POC, except that the filters were not pre-combusted. 

Untreated water samples were collected and placed in a acid-washed 30ml, semi-

transparent Nalgene screw-cap bottle.  Each bottle was immediately placed in -20° 

Celsius freezer. The recommended shelf-life for these containers was deemed to be no 

more than three to four months.  

Dissolved Iron 

Sample water from each station (20 ml) was filtered through a 0.2 µm polysulfone 

membrane, syringe-tip filter (Pall, Acrodisc) using sterile, plastic syringes. The filtrate 

was collected in a 25ml acid-washed semi-transparent screw cap bottle, containing 200µl 

of Optima-Grade Hydrochloric Acid..  These bottles containing the water samples were 

then stored in a refrigerator at 4°Celcius.  
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Isolation and Analysis of Vibrios  

Water samples were filtered through a pre-sterilized Pall Corp.® QH-6 Grid filter 

(0.45µm, 47mm) in a biological safety cabinet and the filters were placed face up on to 

two types of Vibrio-selective media: Thiosulfate Citrate Bile Sucrose Agar (TCBS) and 

CV Vibrio.  Plates were incubated at 37°C for eighteen to thirty-four hours, After 

incubation, the number and color of the colonies on each plate was recorded.   

Individual mauve (on (CV) or green (on TCBS) colonies were collected with 

sterile inoculating loops and transferred to new plates.  Colonies from one media were 

transferred to the other media to document the color of each isolate on both media.  

Colonies that were mauve on CV and green on TCBS were considered to be presumptive 

V. parahaemolyticus. 

From each of the fifteen stations, four separate colonies were collected and 

streaked on four different duplicate plates, for a total of sixty plates.  After a sufficient 

incubation period, the newly streaked plates were counted for colony-forming units 

(CFU) and then restreaked for a third and final time.  If at any point the colony-forming 

units either changed to an inappropriate color or did not grow, then plates were deemed 

unusable (i.e. contamination, over-incubation, or plates that were too numerous to 

properly isolate).  

After restreaking three times, all isolates that consistently formed green colonies 

on TCBS and mauve colonies on CV were transferred using sterile inoculating loops to 

slants.  Slants consisted of four to five milliliters of TCBS solidified at an angle in the 

bottom of a 10-ml capacity sterile culture tube.  Each tube was labeled according to the 

isolate and placed into an incubator.  After sufficient growth, each tube was filled with 

five to eight milliliters of autoclaved mineral oil and be stored at room temperature.  
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A portion of a colony of each of the final isolates was also individually collected 

with a sterile loop and transferred into 96-Well Plate filled with a 100µl 1x-concentrate 

TE buffer solution and stored in at -20 °C.  

Vibrio-selective Media: Thiosulfate Citrate Bile Sucrose Agar 

The presence of microorganisms can be detected according to the specific 

coloration of colonies present on Thiosulfate Citrate Bile Sucrose (TCBS) media.  The 

table that follows describes the color identification process: 
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Table 4 Thiosulfate Citrate Bile Sucrose Agar Color Identification Used7 

Color of Colonies Microorganisms 

Yellow Vibrio cholerae 
Vibrio alginolyticus 

Green Vibrio parahaemolyticus 
Vibrio vulnificus 

 

This coloration enabled the researcher to isolate and selectively cultivate Vibrio 

cholerae, Vibrio parahaemolyticus, and other vibrios.  According to their utilization of 

sucrose in the agar medium, the genus of the vibrio colonies was distinguished and 

separated into two major groupings.  Yellow colonies were indicative of the possible 

presence of Vibrio cholerae, Vibrio alginolyticus, or Vibrio fluvialis. Green colonies 

(sucrose negative) represented the presence of Vibrio parahaemolyticus, Vibrio 

vulnificus, and Vibrio mimicus (Percival, et al., 2004).  Within conventional isolation 

media, Thiosulfate Citrate Bile Sucrose (TCBS) Agar differentiates the two species of 

Vibrio parahaemolyticus (sucrose-negative) and Vibrio alginolyticus (sucrose-positive) 

ninety-nine percent of the time (Oliver and Kaper, 2000). 

Vibrio-selective Media: CHROMagar Vibrio 

Similarly, after the incubation of each plate, isolate colony growth counts were 

determined in CV media.  The incubation period was for eighteen to thirty-four hours at 

37°Celcius.  Table 6 describes how the color classification of the CV media was used to 

identify microorganism colonies.  

7 Merck KGaA. 
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Table 5 CHROMagar Vibrio Color Identification Used8 

Color of Colonies Microorganisms 
Mauve Vibrio parahaemolyticus 

Turquoise-Blue Vibrio cholerae 
Vibrio vulnificus 

Colorless Vibrio alginolyticus 
Inhibited or colorless Other bacterial colonies 

PCR Assays 

Sample Preparation 

Polymerase Chain Reaction (PCR) is a molecular technique that can be used to 

determine the presence of Vibrio parahaemolyticus through several subsequent assays.   

The technique amplifies a specific piece of DNA by in vitro enzymatic replication.  PCR 

involves three steps: DNA extraction, amplification and Gel electrophoresis.  

To extract the DNA, a 96-Well Plate was filled with a 100µl 1x-concentrate TE 

buffer solution and placed in a Thermal Cycler PCR machine and set to run at 

programmed temperature cycle for fourteen minutes.  This initial step separated the DNA 

from loose cell material.   

The 96-well plate was then transferred to a refrigerated (5°Celsius) centrifuge and 

spun for five minutes at 5000 rpm.  From each well, 40µl from the top-most layer was 

transferred to a second 96-Well Plate.  The second plate was labeled and stored in -

70°Celsius freezer for further analysis.  

8 Rambach. 
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PCR Amplification 

PCR amplification were carried out according to the instructions designated by 

the Taq manufacturer (Roche). 

Table 6  DNA Primers Used for PCR and DNA Array Hybridization  

Pathogen Target 
Gene Primer and Probe Sequence 

Oligon
ucleoti

de 

%GC 
cont 
ent 

Tm 
(°C)b 

Ampl
icon 
size a 
(kbp)  

Refer 
ences 

V.
 p

ar
ah

ae
m

ol
yt

ic
us

 

16s 
F-16s: 5’ –AGAGTTTGATCCTGGCTCAG-3’ 20 50 50.0 

1.492  
R-16s: 5’ –ACGGCTACCTTGTTACGACTT-3’ 21 47.6 72.0 

b tlh 
F-TLH: 5’-AAAGCGGATTATGCAGAAGCACTG-3’ 24 45.8 62.8 

0.45 
(Nishibu
chi and 
Kaper, 
1985) 

R-TLH: 5’B-GCTACTTTCTAGCATTTTCTCTGC-3’ 24 41.6 61.1 

c tdh 
F-TDH: 5’-GTAAAGGTCTCTGACTTTTGGAC-3’ 23 43.5 57.7 

0.269 (Honda 
and Iida, 

1993) R-TDH: 5’B-TGGAATAGAACCTTCATCTTCACC-3’ 24 41.7 61.1 

 

akbp – kilobase pairs 
btdh – thermostable direct hemolysin 
ctlh – thermolabile hemolysin 

 

For each isolate, the following materials were added in subsequent order: 

i. 42.15µl Nuclease Free Water 

ii. 5µl 10x Buffer 

iii. 1µl 10mM DNTP 

iv. 0.3µl Forward primer  

v. 0.3µl Reverse primer 

vi. 1µl template 

The specific primers used varied according to the assay (Table 6).  Reaction 

mixtures were transferred into the wells of a PCR 8-well strip and placed in a thermal 
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cycler. The cycling conditions varied slightly for each of the three reactions and are 

summarized in Table 7. 

Table 3  PCR Conditions for 16S rRNA, tlh and tdh PCR amplifications 

Gene 
Amplification 

Type 
Primers (bp): 

PCR 
Temperature 
Conditions 

Time No. of Cycles 

16S 1492 

95°C 5 min 1 

95°C 
50°C 
72°C 

1 min 
1.5 min 
2 min 

30 

4°C ∞ 1 

 450 

95°C 5 min 1 

95°C 
58°C 
72°C 

1 min 
1 min 

1.5 min 

40 

72°C 
 

7 min 
 

1 

4°C ∞ 1 

tdh 269 

95°C 5 min 1 

95°C 
55°C 
72°C 

1 min 
1 min 

1.5 min 

40 

72°C 7 min 1 

4°C ∞ 1 
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Gel Electrophoreses 

PCR amplifications were analyzed by gel electrophoresis.  Molecular-biology 

grade agarose was added to lithium acetate (10 mM) with a 0.01% SYBR® Safe DNA 

Stain and melted by boiling in a microwave oven.  The melted agarose was allowed to 

cool to about 50°C then cast in a gel mold. The lithium acetate buffer was chosen in place 

of the more common TBE buffer solution because of the lower conductivity of lithium 

acetate and its ability to be processed at higher speeds (5-30V/cm as compared to 5-

10V/cm; Brody Et Al. 2004).  Three milliliters of TrackIt™ 1Kb Plus DNA Ladder 

(Figure 4), was added into the first lane of each gel to allow size estimates of the PCR 

products.  

One milliliter of each sample was mixed with eight milliliters of 10X BlueJuice™ 

gel loading buffer and pipetted into each of the corresponding gel wells.  The apparatus 

containing the gel also contained a 1x lithium acetate buffer solution (without stain).  

Gels ran at 250-300V for between seven to twelve minutes.  Finally, the gel was placed 

into a UV imaging system for DNA fragment visualization and image capture with a 

digital camera.  
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Fig. 7   TrackIt 1 Kb Plus DNA Ladder (Segal, 2008) 
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CHAPTER 3 
 

RESULTS 

Surface Water Temperature 

At each of the fifteen stations, a recording of the Surface Water Temperature 

(SWT) was logged.  Figure 8 describes the monthly average temperatures of the surface 

water of these sampling stations.  These temperature readings (°C) were taken from 

March through November, 2008. 

 

Fig. 8   Average Surface Water Temperature for All Stations 

For the series-intensive month of July, a mean surface water temperature (SWT) 

was calculated.  All temperatures were correlated to the samplings taken in the late 

morning to early afternoon hours. The peak surface water temperature recorded was 
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29.72°C in the month of July and the lowest surface water temperature recorded was 

25.85°C in the month of October. 

Weekly Temperature and Salinity Variation 

Weekly temperature and salinity variations were recorded for Station One and 

Stations Five through Fifteen. Figure 9 graphically represents the observed temperature 

variations during each of the four sampling weeks.  Even though the data fluctuates 

between stations and sampling days, it is important to note the temperature trends 

between each station and the correlation between temperature and stations distance from 

the harbor.  The finite resolution of temperature may actually have ±0.25 degree variation 

due to thermometer size limitations.  The following graph represents a generalization of 

each stations recorded temperature and not a linear geographical trend.  The solid black 

line represents the overall trend from all four sampling days, showing a negative 

correlation between geographical distance and temperature.  
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Fig. 9   Weekly Temperature Variation by Station  

Similar to the temperature variations plot in Figure 9, Figure 10 graphically 

depicts the mean weekly salinity variations of Station One and Stations Five through 

Fifteen for the weeks of June 26th through July 17th, 2008.  It is important to note that the 

plot does not infer a salinity trend between stations.  Rather, the diagram gives an 

overview of the salinity variations according to the dates collected.  

 

Fig. 10   Weekly Salinity Variation Verses Station 

Daily Temperature and Salinity Variation 

Unlike the previous weekly temperature and salinity figures, the daily temperature 

and salinity graphs depict only four different stations from July 10th through July 17th, 

2008.   
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On average, Station Five was slightly warmer than the other three stations 

throughout the sampling week (figure 11).  The irregularity the occurred on July 16th was 

because of an influx of fresh water that was due to the precipitation that occurred the 

previous night.  Other than the slight irregularity, the daily temperature between each 

station remains relatively steady.  

 

Fig. 11  Daily Temperature Variation by Station 

Figure 12 illustrates daily variations of salinity measured at Stations Five, Nine, 

Twelve and Fourteen.  Even though each salinity sample was taken at the same place for 

eight different days, the relative trends for each station are not all linear.  The 

discontinuity see in Station Twelve from July 15th through 16th is due to an unforeseen 

sampling error.   
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Fig. 11   Daily Salinity Variation by Station 

Hourly Temperature and Salinity Variation 

The daily temperature and salinity variation plots (Figures 13 and 14) helped 

identify two parallel components.  First, hourly temperature varies with the time of the 

day and incoming solar radiation.  And two, incoming tidal flux may have a direct role in 

salinity and temperature variation during some events.   

A temporal-scale was collected from Station Five, Station Nine and Station 

Fourteen on July 15th and 16th, 2008.  Beginning at 0600 on July 15th and ending at 0600 

on July 16th, samples were collected from each site at three hour intervals.  Figure 13 

illustrates the temperature variances measured during the twenty-four hour period as 

compared with the tidal trends.   
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Fig. 12   Hourly Temperature Variations by Station  

A comparison was made for Stations Five, Nine and Fourteen of the 

concentrations of salinity, the time of day, and the tidal flux (Figure 14).  Even though 

the tidal flux graph is not to amplitude scale, important consideration should be noted of 

the salinity correlation.  The hourly sampling event took place on July 15th through 16th, 

2008.  A sample from each of the three stations was logged every three hours, for a total 

of nine events.  A critical irregularity, that will need further analysis, is the noticeable 

peak in salinity for station 5. The salinity at station 5 was higher than the salinity found in 

the open ocean water.  
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Fig. 13   Hourly Salinity Variations by Station 

Salinity 

The first step in understanding salinity variability in the Ala Wai Canal is to first 

identify the long term (seasonal) trends observed during the course of the experiment 

(Figure 9). The highest mean rate of salinity by month from March to November was 

recorded in July at 31.17 parts per thousand (ppt) and the lowest was during the October 

sampling event at 8.5 parts per thousand (ppt).  The irregularity of the data recorded in 

October corresponds to the influx of precipitation within the Ala Wai watershed during 

the days prior to the October sampling.  Figure 13 displays the average amount of rainfall 

in the region of the Ala Wai.  
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Fig. 14   Average Station Salinity by Month (March through November, 2008) 

 

Fig. 15  Average 24 Hour Rainfall by Sampling Event9 

9 Each bar graph is the precipitation (rainfall) for the Waikiki area 24-hours prior 
to the sampling event that took place on each day.  The month of July was averaged out 
for every sampling day. 
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Weekly Salinity Variation 

Similar to the temperature variations plot in Figure 9, Figure 14 graphically 

depicts the mean weekly salinity variations of Station One and Stations Five through 

Fifteen for the weeks of June 26th through July 17th, 2008.  It is important to note that the 

plot does not infer a salinity trend between stations.  Rather, the diagram gives an 

overview of the salinity variations according to the dates collected.  

 

Fig. 16   Weekly Salinity Variation Verses Station 
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Daily Salinity Variation 

Figure 15 illustrates daily variations of salinity measured at Stations Five, Nine, 

Twelve and Fourteen.  Even though each salinity sample was taken at the same place for 

eight different days, the relative trends for each station are not all linear.  The 

discontinuity see in Station Twelve from July 15th through 16th is due to an unforeseen 

sampling error.   

 

Fig. 17   Daily Salinity Variation by Station 
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Hourly Salinity Variation 

A comparison was made for Stations Five, Nine and Fourteen of the 

concentrations of salinity, the time of day, and the tidal flux (Figure 16).  Even though 

the tidal flux graph is not to amplitude scale, important consideration should be noted of 

the salinity correlation.  The hourly sampling event took place on July 15th through 16th, 

2008.  A sample from each of the three stations was logged every three hours, for a total 

of nine events.  A critical irregularity, that will need further analysis, is the noticeable 

peak in salinity for station 5. The salinity at station 5 was higher than the salinity found in 

the open ocean water.  

 

Fig. 18   Hourly Salinity Variations by Station 

A scatter plot diagram of salinty parts per thousand (ppt) verses temperature (°C) 

is shown in Figure 17.  The plot includes the one hundred and eighty temperature and 

salinity data points from the stations sampled throughout the entire scope of this study. 
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The linear trendline signifies the correlation between the increasing temperature and the 

salinity profiles.  The r-value represents the proportion of the correlation coefficient, also 

represented as the linear relationship between the two series (temperature vs. salinity). 

The calculated r value for 181 recordings is 0.472, with a p value less than 0.01, which is 

well within the recognized means for statistical confirmation.  

 

Fig. 19   Scatter Plot Diagram of Salinity (parts per thousand) Compared with 
Temperature for All Stations 
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Tidal Fluctuations 

The periodic and predictable tidal fluxes for the Ala Wai Canal are an obvious 

source of incoming sea water with elevated concentrations of salinity.  The daily tidal 

markings for the Ala Wai Canal as related to each sampling event were recorded (Fig. 

18), however, these samplings were not all collected at the same time of day.  The 

relevancy of these tidal fluctuations will be described in the following chapter.  During 

the first three sampling events, tidal flux was not a determining factor in collection date 

and time.  However, later in the study, tidal flux and variation was the main determining 

factor for sampling day and time.  Exceptions were made during daily and hourly sample.  

The ideal sampling time corresponded to a tidal flux around the low of the low daily tidal 

events.  This ensured a relatively consistent marker for environmental variables.  

However, if water sampling was not possible during the low-low tidal time, the low of 

the high was substituted.  The red and blue bar graph (Figure 18), summarizes the high 

and low tides from each sampling day.  

 

Fig. 20  Summary of Tidal Data from Each Sampling Event, March through November 
2008  
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Vibrio Selective CFU’s  

Vibrio-selective Media: Thiosulfate Citrate Bile Sucrose Agar 

The  highest average number of green-colored Colony-Forming Units (CFU) was 

recorded at Station Three at approximately 70.1 CFU’s (fig 19).  The lowest mean 

Colony-Forming Units (CFU) were recorded Station Ten, within a range of 

approximately 1.2 CFU’s. 

 

Fig. 21   Average Green-Colored Colony-Forming Units from Three Sampling Events 
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Fig. 22   Total Counted Colony-Forming Units per 0.1ml Thiosulfate Citrate Bile Sucrose 
Agar for Each Station  

Vibrio-selective Media: CHROMagar Vibrio 

The highest mean mauve-colored Colony-Forming Units (CFU) recorded by 

station was for Station Two at approximately 10.75 CFU’s (Fig. 21).  The lowest was at 

Stations One and Three, with a total of 7.5 mauve-colored CFU’s per 0.1ml. The patterns 

in total vibrio abundance showed similar spatial trends as was observed for the putative 

V. parahaemolyticus (Fig. 22). 
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Fig. 23   Average Mauve-Colored Colony-Forming Units per 0.1ml for All Stations 

 

Fig. 24   Total Counted Colony-Forming Units per 0.1ml CHROMagar Vibrio 

Comparative Overview of Plate Isolate Results 

On average for all stations at three sampling times (March, June and September), the 

percentage all colonies on TCBS that were green was 39% and the percentage of all 

colonies on CV Vibrio that were mauve was 6% (Fig. 23). The total CFU counts on 
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TCBS and CV were highly correlated (r = 0.88, n = 40, p <0.01; Fig. 24), althogh CFUs 

on CV tended to be higher than on TCBS when the totals were high.   Since Vibrio 

parahaemolyticus is reflected in the mauve-colored Colony-Forming Units on CV Vibrio 

media and in the green-colored Colony-Forming Units on  Thiosulfate Citrate Bile 

Sucrose (TCBS) media agar, this study will not focus any further on yellow CFU’s from 

TCBS or White and Blue CFU’s from CV. 

 

Fig. 25   Mean Colony-Forming Unit Color-Ratio for Both Thiosulfate Citrate Bile 
Sucrose Agar and CHROMagar Vibrio Media 

   

 



  52 

 

Fig. 26  Total TCBS and Chrom Vibrio Count Comparison 

CFUs Correlation to Salinity and Temperature 

To further understand the effects of salinity and temperature on Vibrio 

parahaemolyticus, several plots were constructed to demonstrate any possible 

correlations.  The scatter-plot diagrams of both Thiosulfate Citrate Bile Sucrose (TCBS) 

agar and CV Media are indicated according to the corresponding temperature and salinity 

values (Figures 25-28).  Even though an isolate might appear to represent a specific 

Vibrio species, a PCR analysis was required to confirm its identity.  

There was no consistent relationship between the number of green colonies and 

temperature across the entire temperature range (24 to 32°C; Figure 25).  However, 

highest values tended to be found in the middle of this range (27 to 28.5°C).  
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Fig. 27  Scatter-plot Diagram of Temperature Compared with Green Isolates  
(Thiosulfate Citrate Bile Sucrose Agar) CFU's for All Sampling Events 

A similar pattern was observed in the relationship between salinity and  V. 

parahaemolyticus abundance, with lowest values observed at the low (10 to 18 ppt) and 

high (23 to 36 ppt) ends of the salinity range (Fig. 26).  Higher values were found in the 

middle of the range (19-22 ppt).  

 

Fig. 28  Scatter-plot Diagram of Salinity Compared with Green Isolates. 
(Green, Thiosulfate Citrate Bile Sucrose Agar) CFU's for all Sampling Events 
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As seen with the green colonies on TCBS, there were no consistent trends 

between the abundance of mauve-colored CFUs and either temperature or salinity across 

their entire ranges (Figs. 27-28).  However, highest values were observed at moderate 

temperatures (27-28 °C) and salinities (18-23 ppt). 

 

Fig. 29  Temperature Compared with Vibrio parahaemolyticus                                   
(Mauve, CV Media) CFU's 

 

Fig. 30  Salinity Compared with Vibrio parahaemolyticus  
(Mauve, CV Media) CFU's 
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A further analysis of the data compiled from the mauve CFU vs. salinity plot 

(Figure 29), shows both a positive and then negative trend at two distinctive salinity 

ranges.  These salinity ranges were then broken up into two separate graphs with 

corresponding salinity ranges (Figures 29 and 30.  Figure 29 shows a strong positive 

correlation between mauve CFU’s and salinity between the salinities of nine through 

nineteen.  Conversely, there is a relatively moderate negative correlation that was plotted 

in Figure 30, between salinities nineteen through thirty-six.  To gain a linear plot, the log 

value of each mauve CFU was first calculated then graphed.  

 

Fig. 31  Salinity (9 through 19 ppt) versus Log Mauve CFU Values 
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Fig. 32  Salinity (19 through 36 ppt) versus Log Mauve CFU Values 

The abundance of green and mauve colored colonies varied among sites within 

the Ala Wai canal (Figs. 31-32).  The twelve bubbles are positioned at the location of 

each of the sample sites.  The relative abundance of CFU’s at each site is proportional to 

the area of the circle.  
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Fig. 33  Geographical Representation of Green-colored  CFUs 
(Vibrio parahaemolyticus, Thiosulfate Citrate Bile Sucrose Agar) 

Along the Ala Wai Canal, Honolulu. Area of the bubble is proportional to the relative 
abundance. 
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Fig. 34  Geographical Representation of All Isolated Mauve-colored  
(Vibrio parahaemolyticus, CV Media) CFU's Along the Ala Wai Canal, Honolulu. Area 

of the bubble is proportional to the relative abundance. 

DNA Analysis 

 Upon purification and isolation of the putative V. parahaemolyticus , their 

identities were confirmed by PCR analysis. Only isolates from one event (September 

2008 sampling) were analyzed due to the limited time available to complete this portion 

of the project.   

16S rRNA PCR 

Of the isolates tested , 77.5% amplified successfully with the16S rRNA gene 

primers (Table 8).  An example of the results of this assay are shown in Figure 33 .  The 

16S rRNA PCR product length is 1492 base pairs (bp), and can be seen in rows two 

through seven.  It is important to note that during the process, rows two and six showed 

some non-specific amplification.  

 

Fig. 35  Gel-electrophoresis Assay of 16S rRNA PCR 
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Vibrio-Specific Gene(s) Analysis 

After successful completion of the 16S rRNA gene identification process, the next 

step was to quantify the abundance of positive V. parahaemolyticus by tlh PCR 

amplification.  Figure 34 illustrates a gel in which tlh was successfully amplified for the 

September sampling event.  The corresponding length of the tlh gene is 450 bp as shown 

by the bright bands located in Figure 34.  

                                

Fig. 36  Agarose Gel Electrophoresis Showing from tlh Amplification 

Virulence Gene(s) Analysis 

 A final analysis was conducted in the amplification of the tdh  PCR gene. Figure 

35 shows the results of the tdh gel electrophoresis. As shown in Table 8, out of the total 

thirty-one isolates inserted into the PCR, no products of the correct size were amplified. 

Rows six, thirteen, twenty-two and twenty-nine revealed forms of non-specific 

amplification. 
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Fig. 37  Agarose Gel Electrophoresis Results from tdh Amplification 

Table 8 is a statistical breakdown of the results from each of the three PCR assays 

used to analyze the September sampling event.  Only the successful tlh genes were then 

used in the tdh  PCR analysis.  

Table 4  Statistical Results from Each PCR Analysis (16S rRNA, tlh and tdh) for 
September, 2008.  Only samples positive for 16S rRNA amplification were used n the 

calculation of percent tlh- or tdh-positive. 

PCR Assay 
Type 

Total 
Samples Used Total Positive % Total 

16S rRNA 48 36 75 
tlh 36 26 72 
tdh 31 0 0 

 

Table 9 details the number of samples evaluated, the media growth type that was 

used, and the station numbers of the samples retrieved.  The presence of Vibrio 

parahaemolyticus was confirmed within the Ala Wai Canal.  
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Table 5  Results from PCR and DNA Arrya Hybridization of Ala Wai Water Samples, 
September, 2008 

Sample ID No. Station 
No. 

Media 
Growth 
Type 

V. parahaemolyticus 
16s 

rRNA tlh tdh 

1 V86A3P 1 CV + + - 
2 V86A5P 2 CV + + - 
3 V86B1P 2 CV + + - 
4 V86B3P 3 CV + + - 
5 V86B4P 3 CV + + - 
6 V86B5P 3 CV + + - 
7 V86C2P 4 CV + + - 
8 V86C3P 4 CV + + - 
9 V86C5P 5 CV + + - 
10 V86D1P 5 CV + + - 
11 V86D5P 6 CV + + - 
12 V86D6P 6 CV + + - 
13 V86E1P 7 CV + + - 
14 V86E2P 7 CV + + - 
15 V86E4P 7 CV + + - 
16 V86F5P 9 CV + + - 
17 V87A2P 10 CV + + - 
18 V87A5P 11 CV + + - 
19 V87B3P 12 CV + + - 
20 V87B4P 12 CV + + - 
21 V87C1P 13 CV + + - 
22 V87C2P 13 CV + + - 
23 V87C6P 14 CV + + - 
24 V87D2P 14 CV + + - 
25 V88A1P 1 CV + + - 
26 V88B4P 3 CV - + - 
27 V89A5P 11 CV - + - 
28 V91C2P 4 TCBS - + - 
29 V91C3P 4 TCBS - + - 
30 V91F3P 9 TCBS - + - 
31 V92B1 11 TCBS - + - 

 

 

 



  

CHAPTER 4 
 

DISCUSSION 

Overview of Relationships, Trends and Generalizations 

Previous studies have demonstrated strong relationships between Vibrio 

abundance and environmental conditions such as salinity, temperature and attachment to 

planktonic organisms (Tamplin, 1990; also Heidelberg, 2002).  Therefore, the researcher 

of this thesis will offer no further discussion about the relationship between planktonic 

organisms and environmental parameters.   However, it is the intention of this writer to 

discuss the relationship of the abundance of Vibrio parahaemolyticus in the Ala Wai 

Canal to the conditions of temperature, salinity, Vibrio-selective colony-forming units, 

and the microbiological data derived from Polymerase Chain Reaction (PCR) for three 

separate identification genes. 

Tidal Variability and Impact on Temperature and Salinity 

The Ala Wai Canal has three primary sources of water flux: fresh water from 

incoming streams, atmoshperic deposition in the form of direct rain, and saline-rich sea 

water.  The Ala Wai estuary has a semidiurnal tidal characteristic (i.e. two high water and 

two low water tides each day).  This frequent and somewhat predictable input of salty sea 

water affects the daily temperature and salinity concentrations of the waters of the Ala 

Wai.  Characteristic fluctuation in temperature and salinity was recorded during the 

twenty-four hour sampling event on July 15th and 16th, 2008.  And even though most 
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stations indicated some variation, Station Five stands alone as being the site which had 

the greatest difference in both temperature and salinity (T/S).  

This was particularly interesting because unlike Stations Nine and Fourteen, 

Station Five was located the furthest from the mouth of the Ala Wai Canal as it empties 

into the harbor. One might have assumed that Station Five would have had the lowest T/S 

profile.  However, relative to both variables it seems as if the opposite is true.  Perhaps 

the influx of saline water at Station Five was caused by super-saline non-stratified waters 

that became exposed to the near-surface waters during high tides or elevated evaporation 

rates.    

Besides the uncharacteristic change in temperature and salinity (T/S) profile from 

station 5, the others stations do show moderate to significant correlation with tidal influx. 

It is important to note that for the twenty-hour collection event, no precipitation was 

recorded in the Ala Wai area. Another key point of interest is that fact that the increase in 

sea surface temperature could, but not likely be caused, mainly due to incoming solar 

radiation. Even though all stations experienced an increase in temperature during the 

peak radiation times of the day, the immediate drop in temperatures in the later afternoon 

and evening hours shows that no absorbed solar heat was conserved.  

Sea Surface Salinity Variability in Proportion to Temperature 

The first observation is the direct relationship between salinity and temperature 

can be seen in Figure 17. The plot diagram shows that with an increase in temperature 

there is a strong, though not definite, correlation to an increase in temperature. This 

correlation is important to discuss because of the nature of Vibrio species and their 

inherent ability to be positively influence by both salinity and temperature levels. The 
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reason why there is a positive correlation between the waters salinity and temperature is a 

little more cumbersome to digest. Several facts may attribute the positive correlation in 

the Ala Wai Canal. A likely attributing factor towards the positive correlation could be 

the face that the majority of all temperature samples were collected during daylight hours, 

with highest incoming solar radiation. This temperature inconsistency would skew the 

data towards a higher than normal mean temperature vs. salinity. Another important 

consideration is that on a global basis, not all T/S profiles show a positive correlation.  

There are three main sources of freshwater stream flow into the canal, Manoa 

stream, Makiki stream and numerous artery storm drains, the largest of which is at 

Stations One through Six. An observed long-term trend between salinity and site location. 

As predicted over the entire scheme of our sampling event, Stations One, Nine and 

Twelve all showed significant average salinities lower than the average and well below 

the normal sea water levels. However, it is important to realize that as stated before, the 

bathymetry of the canal and possible unforeseen irregularities could attribute to the 

changes in station salinity. 

CFU Growth and Possible Vibrio parahaemolyticus Abundance 

Analysis from CFU data show that spatial and temporal variability does exists in 

the Ala Wai Canal and CFU abundance may be dependent on environmental parameters 

such as temperature and salinity. Geographical variance in mauve and green CFU’s 

varies along the canal, as shown in the two maps. Furthermore, in comparison with other 

similar studies, we can observe that there exists a threshold for peak of abundance for 

both salinity and temperature. However, the observed peak ranges in both salinity and 
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temperature, may be attributed to other unknown environmental influences such as 

nutrient input and chlorophyll a.  

Statistical analysis of temperature vs. CFU growth showed relatively weak 

correlations, on both TCBS and CV media. However, a stronger correlation was observed 

when CFU’s were plotted against salinity. The CFU vs. Salinity plot (figure 28) showed a 

positive correlation between salinities below twenty and above eight ppt. When plotted 

on a log scale, a strong positive and then negative correlation was established (figure 29 

and 30).  

Understanding the spatial distribution and temporal patterns of temperature and 

salinity in the Ala Wai Canal will aid with the overall understanding of where and when 

Vibrio parahaemolyticus may occur in significant abundance. However, confirmation of 

their relative harm to human health is still not yet understood for this particular estuary. 

This then leads to the next section describing the confirmed presence of Vibrio 

parahaemolyticus and possible virulent determinants.  

Gene Expression of Isolated Vibrio parahaemolyticus 

The presence of high levels of Vibrio parahaemolyticus in the Ala Wai estuarine 

system may pose a specific health threat to the individuals that are exposed to 

contaminated waters.  Understanding weather the water in the Ala Wai contains Vibrio 

parahaemolyticus is one area of interest, however, as previously stated, not all strains are 

truly pathogenic in nature. Previous studies has shown that in order to identify a 

potentially pathogenic strain, it is necessary to target multiple genes for PCR 

amplification. In this study, species specific tlh, and pathogen strain-specific tdh were 

selected for amplification and detection.  In this study, we established a DNA assay that 
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enabled us to confirm post-PCR detection of the naturally occurring bacterium, Vibrio 

parahaemolyticus and see if there is a presence of pathogens specifically harmful to 

human health. Our data demonstrated that a large abundance of isolated mauve-colored 

CFU’s were in-fact true positives for Vibrio parahaemolyticus. However, we did not 

identify any strains with the tdh gene.  We did, however, analyze relatively few isolates 

so strains with this virulence-associated gene may be still be present in this environment.

 



  

CHAPTER 5 
 

CONCLUSIONS 

Vibrio parahaemolyticus is a naturally occurring bacteria in marine and estuarine 

environments around the world.  This pathogenic species can negatively affect human 

health in almost every region of the globe. Vibrio parahaemolyticus populations are 

capable of rapid adaptation in response to changing environmental conditions, making 

them dynamic over short term and seasonal scales.  Temperature, vertical mixing, tidal 

flushing, climate, precipitation and nutrient loading can change the estuarine environment 

and subsequently alter the microbial community structure of the bacterium, affecting 

estuarine water quality and public health.  

The major advances in recent years in the knowledge of environmental factors 

affecting vibrio viability, persistence, virulence, and transmission to humans have 

allowed integration of these studies with those derived from genome analysis and gene 

expression, prerequisite to control and prevention strategies ensuring maximum 

protection of human health. 

In conclusion, our results demonstrate temporal and spatial variations do exist in 

the densities of pathogenic V. parahaemolyticus in the Ala Wai canal and harbor.  

However, significant relationships between V. parahaemolyticus abundance and surface 

water salinity and temperature were not observed when considering the data set in its 

entirety.  This could be explained by the fact that the optimal temperature and salinity for 
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growth of this species lie in the middle of the ranges sampled and that other factors may 

equally important in controlling their abundance. 

Another important aspect of V. parahaemolyticus risk assessment is the fact that 

our results did not show any positive hits for virulence-associated genes. This may 

suggest that virulent strains are not abundant in the canal. These observations of Vibrio 

parahaemolyticus dynamics in the Ala Wai Canal and watershed may provide evidence 

that populations interact with environmental influences in the surface waters.  Even 

though the State of Hawai`i has the highest per captia Vibrio-related infection rate in the 

U.S., the actual number of V. parahaemolyticus infections is minimal. This information 

may prove critical for future models of estuarine bacterial dynamics and distribution of 

pathogenic bacteria.  

 



  69 

CHAPTER 6 
 

RECOMMENDATIONS 

In the spring of 2009, a comparative analysis of Vibrio vulnificus will be analyzed 

using similar techniques.  However, several incomplete analyses may help shed more 

light on the influences of overall Vibrio abundance in the Ala Wai watershed.  They 

include, total organic carbon (TOC), Chlorophyll a, dissolved iron, Sterivex filtration 

analysis, nutrients and particular organic carbon (POC).  

The next step would be to use the analyzed and quantifiable data and create 

models useful to predicting the possible abundance of vibrio in the Ala Wai estuarine 

system and other tropical coastal systems of the world.  
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