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ABSTRACT 

 Wake Atoll is a remote island located approximately 2,300 miles southwest of the 
main Hawaiian Island chain in the central Pacific.  Due to the isolation and military 
control over the atoll, few comprehensive studies about the surrounding reefs have been 
conducted.  This work addresses the coral reef community structure surrounding Wake 
Atoll utilizing benthic image data collected from 2017 cruise to Wake by the Ecosystem 
Sciences Division (ESD), of the NOAA Pacific Islands Fisheries Science Center, and 
analyzed using the software, CoralNet.  Benthic cover was estimates of basic functional 
groups indicate that macroalgae was found to be more dominant over the coral reef 
followed by coral, suggesting that the overall resilience of the reef is lower than one that 
is dominated by coral.  An nMDS plus cluster analysis, suggest that most of the 
differences observed in the community structure appear to be depth based and not 
exposure based.  The benthic substrate ratio was used to roughly estimate the overall 
condition of the coral reef by dividing the proportion of calcifying to non-calcifying 
organisms. 
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Chapter 1.  Introduction 
 
 

1.1  Background 
 

 Coral reefs hold an immense portion of the world’s ocean biodiversity and 

provide many ecosystem goods and services, including coastal protection and 

fisheries.  Most of the world’s coral reefs are located in tropical and sub-tropical waters 

between 30° N and 30° S of the equator due to temperature intolerance below 18°C 

(NOAA, 2017).  Over the past few decades, there has been an increase in the bleaching 

events of the world’s coral reefs.  Environmental disturbances such as a rise in water 

temperature, pH or salinity may cause coral reefs corals to become overly stressed and 

expel zooxanthellae causing a bleaching event.  The sensitivity to these disturbances 

make coral reefs ideal indicators of environmental change (Hoegh-Guldberg et al., 2007).  

Regular monitoring of coral reef community structures, especially those in remote areas 

that have little anthropogenic activity, are important to understand how different 

environmental stressors affect these communities. 

 
1.1.1.   Study Area 

 
Located in the northern central Pacific Ocean, Wake Atoll (19°17’N, 166°36’E) is 

a tiny, closed coral atoll that is extremely isolated (Figure 1).  The atoll is made up of 

three individual islands: Peale, Wilkes and Wake, with Wake being the main island.   The 

closest reef system is Bokak (Taongi) Atoll (14°39’N, 168°58’E) of the Marshall Islands 

at 546 km southeast (Tsuda et al., 2006; Lobel and Lobel, 2008; Kenyon et al., 

2013).  Wake Atoll is part of a larger collection of seven shallow reef islands and atolls 

known as the U.S. Pacific Remote Islands.  Starting from the northernmost islands and 
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moving towards the equator, the Pacific Remote Islands consist of Wake Atoll, Johnston 

Atoll, Kingman Reef, and Palmyra, Howland, Baker and Jarvis Islands.   The U.S. Pacific 

Remote Islands was declared a Pacific Remote Islands Marine National Monument 

(PRIMNM) in 2009 by Presidential proclamation (Boyle et al., 2017). 

 
Figure 1  Map of the Pacific Remote Islands Marine National Monument.  From Boyle et al 2017. 

Unlike most other islands and atolls of the Pacific Remote Islands which are 

located in nutrient-rich areas of upwelling and high biological productivity near the 

equator, Wake Atoll is considered to be an oligotrophic island because it is located in the 

area of nutrient-poor waters with low biological productivity of the central gyre (Boyle et 

al., 2017).  Coral reefs generally thrive in nutrient-poor waters which may offer a 

competitive advantage to slow growing organisms.  In contrast, while nutrient-rich waters 

have the ability to easily provide corals with all of the nutrients needed for growth, they 

also stimulate the growth of faster growing organisms such as algae.  Algae proliferate at 
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a much faster rate than corals and impedes on the growth of coral communities by 

blocking off access to rock foot holdings, space, and sunlight (Sebens, 1994).  By 

impeding the ability of coral to grow and expand, the algae can essentially cripple the 

community structure of the coral reef. 

 
1.1.2.   History 
 

Wake Atoll has an extensive history involving its discovery by man.  According 

to Kenyon, et al. (2013), it is thought that the first humans to arrive on the atoll were 

early navigators from the Marshall Islands, who came to hunt birds and sea turtles.  The 

first Westerners to discover Wake Atoll were still being debated due to several factors 

that led to many recorded inaccuracies.  There were varying reports on where the atoll 

was located due to the periods’ inaccurate navigational tools; additionally, the names 

used to record the atoll varied. In fact, there were so many alternate names and 

misspellings including, Helsion, Waker’s, Wreck, Wilson and Halcyon, that the accuracy 

of early accounts became impossible to determine (Lobel and Lobel, 2008).  The first 

European sighting of Wake Atoll was report in 1568 by Captain Alvaro de Mandaña, a 

Spanish explorer who named it San Francisco; however, Mandaña recorded inaccurate 

coordinates.  By 1796, the atoll would be renamed for the British captain William Wake 

who documented its correct location (Bryan, 1959; Kenyon et al. 2013). 

In 1841, the first formal U.S. exploring expedition was conducted by Lieutenant 

(Commodore) Charles Wilkes.  During this expedition, the first detailed descriptions of 

Wake Atoll were made, including maps and surveys.  In 1898, during the Spanish 

American War, the U.S. formally claimed Wake Atoll.  However, it was not until January 

1899 that the U.S. formally took possession of the atoll.  Approximately 24 years later, a 
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second scientific expedition, the Tanager Expedition and was led by Alexander Wetmore, 

during which time the two other islands (Wilkes and Peale) were given names.  By 1934, 

the responsibility of Wake was transferred to the U.S. Navy (Lobel and Lobel, 2008). 

During World War II, Wake Atoll served as a transpacific refueling base until it 

was captured by the Japanese military soon after the bombing of Pearl Harbor in 

December, 1941.  Wake Atoll would remain under Japanese possession until the war 

ended in September of 1945, when it was returned to the possession of the U.S. military.  

Back in the U.S. military’s possession Wake resumed its role as a transpacific refueling 

station (Kenyon et al., 2013). 

In 1985, Wake Atoll was designated as a National Historic Landmark to preserve 

the historic structures of World War II (Lobel and Lobel, 2008).  In 2009, President 

George W. Bush created the Pacific Remote Island Marine National Monument, which 

extends the protection of the Pacific Remote Islands to 50 nautical miles from beyond the 

low tide line (Tsuda et al., 2010; Kenyon et al., 2013). 

 
1.1.3.   Geomorphology & Climate 
 

Wake Atoll is the largest of the Pacific Remote Islands with an approximate width 

of 3 km and a length of 6.5 km and a land area of 7 km2 (Tsuda et. al., 2006; Lobel and 

Lobel, 2008; Kenyon et al., 2013; Boyle et al., 2017).  The average elevation across 

Wake Atoll is 3.7 m with the highest elevation being Wake Island at 5.5 m.  Consistent 

with other atolls, most of the area of Wake Atoll is found underwater in its reef (0-30 m) 

with a calcium carbonate substrate (Perry et al., 2012).   

The islands, Peale, Wilkes and Wake, almost fully enclose a large lagoon at the 

center of the atoll on the north, east and south sides.  The western side of the atoll is 
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covered by an emergent reef which is where the only real water exchange occurs between 

the lagoon and the open ocean, due to the construction of a seawall for a causeway 

between Wilkes and Wake Islands.  The construction of the causeway and the loss of a 

major inlet of water triggered a severe loss of water circulation in the lagoon, which 

caused an increase in the temperature of the lagoon, and subsequently, low levels of 

dissolved oxygen, resulting in major fish die-offs within the lagoon.  Despite the lagoon 

receiving limited boosts in water circulation from a small submarine channel and another 

channel that opens between Peale and Wake Islands during high tide, the circulation in 

the lagoon remains poor (Bryan, 1959; Lobel and Lobel, 2008). 

At 19°N of the equator, Wake Atoll falls within the tropical climate zone where 

there is little variation in temperature over the course of the year.  The average 

temperature ranges between a high of 30°C and a low of 24°C with an average humidity 

of 76% and prevailing winds blowing from the east-northeast (Kenyon et al., 2013).  The 

average annual rainfall is approximately 89 cm (Lobel and Lobel, 2008).  Located within 

the Northwestern Pacific basin (180°-100°E), Wake is located in one of Earth’s most 

active tropical cyclone basins (Neumann, 1993).  The months from late summer to 

autumn are considered Wake Atoll’s typhoon season when the atoll is threatened by 

tropical cyclones.  These cyclones can reach wind speeds upwards of 33 m/s, at which 

time, it is officially categorized as a typhoon.  Wake Atoll has been hit at least six times 

by typhoons since 1957.  The worst typhoon was in 2006 when Typhoon Ioke passed 

close to Wake Atoll as a category 4 typhoon.  It so severely damaged the infrastructure of 

the atoll that the military decided to place it under caretaker status, evacuating 

nonessential personnel (Lobel and Lobel, 2008). 
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1.1.4.   Current Reef Monitoring Programs 
  

In order combat the degradation of coral reef ecosystems in U.S. waters, the Coral 

Reef Conservation Act was created in 2000.  This piece of legislation enables NOAA to 

consistently research and monitor coral reef ecosystems in efforts to mitigate further reef 

ecosystem loss.  To achieve this task, the NOAA Pacific Islands Fisheries Science Center 

(PIFSC), established the Pacific Reef Assessment and Monitoring Program (Pacific 

RAMP) in 2000 and the Coral Reef Ecosystem Program (CREP) in 2001.  Pacific RAMP 

focuses on the long-term monitoring and interdisciplinary studies of the Pacific Islands 

including the Pacific Remote Island Area (PRIA).  Currently, the PISFC Ecosystem 

Sciences Division conducts triennial Pacific RAMP monitoring surveys at Wake Atoll; 

prior to 2011 it was conducted biennially.  Unlike other PRIA sites that were surveyed 

beginning in 2000, Wake was not surveyed by Pacific RAMP until 2005 due to military 

jurisdiction. Surveys on Wake were conducted for the years 2005, 2007, 2009, 2011, 

2014, and 2017 (Kenyon et al., 2012; Boyle et al., 2017).  To get the most current 

understanding of the coral reef community around Wake Atoll, the 2017 dataset was 

selected for the purpose of this thesis. 

 
1.2  Objective 
 

This thesis aims to supplement the baseline description produced by Kenyon et al. 

(2013) of the coral reef community structure around Wake Atoll using benthic imagery 

collected during the 2017 Pacific RAMP to assess the effects of depth and wave exposure 

factors as potential drivers of coral reef community structure. 
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Chapter 2. Methods 
 
 
2.1 Benthic Surveys 
 
2.1.1.   Sampling Design & Collection Methods 
 

The optical data was collected following a rapid ecological assessment (REA) 

method using a stratified random sampling (StRS) approach where the benthic domain 

(0-30 m) is divided by into three depth strata, shallow (0-6 m), mid (6-18 m), and deep 

(18-30 m) (Figure 2) (Swanson et al., in review).  The sampling effort of each stratum 

was proportional to the hard bottom area of that stratum relative to the overall benthic 

domain.  Images are collected using a monopod every meter along the fish and benthic 

monitoring sites.  For the 2017 Pacific RAMP, 83 sites were surveyed.   

 

 
Figure 2 Diagram of the Rapid Ecological Assessment (REA) method.  Modified from Boyle et al. 
2017.  The colored bar on the right-hand side shows the division of depth strata with ivory- 
shallow (0-6 m), tan- mid (6-18 m), and brown- deep (18-30 m). 
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2.2 Image Analysis 
 
2.2.1.   CoralNet 

 
 In order to analyze the photographs collected, the images were uploaded to a web-

based annotation program called CoralNet (Figure 3).  CoralNet is an archival and 

resource tool created by researchers at the University of California at San Diego in order 

to help alleviate the bottleneck that occurs when scientists need to annotate a large 

number of images (Beijbom et al., 2015).   

 
2.2.2.   Image Annotation 
 

Using the CoralNet software, photographs are analyzed to functional group (tier 

3b) (Figure 3).  For the purpose of this thesis, the predictive annotation function was not 

implemented.  Calibrations were also made to minimize the inter-observer variability for 

the annotations.  Annotation were made following methods provided by Lozada-Misa, et 

al. (2016). 
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Figure 3 CoralNet image with randomly selected points and annotation tool. 

 
2.3 Data Analysis 
 
2.3.1.   Statistics 

After all of the images are annotated, the resulting data was downloaded and put 

into an Excel spreadsheet.  To make the data easier to interpret, a pivot table was 

generated to summarize and sort the data so that the characteristics of each site can be 

easily perceived.  A pivot table is a feature that summarizes a large, cumbersome dataset 

into a user-specific set of attributes (columns) and measurements (rows) that is much 

easier to read and interpret. This method also allows the data to be viewed from a 
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different perspective without changing the data.  Once the pivot table is made, the sites 

are then organized by exposure: leeward and windward. The boundary for exposure was 

created following Kenyon et al. (2013) (Figure 4).  Survey sites are then aggregated by 

depth; shallow, mid, and deep.   

 
Figure 4 Wake Atoll with the 83 study sites.  The red lines represent the division of leeward and 
windward wind exposure sites as defined by Kenyon et al. (2013). 

 
To calculate an estimation of the benthic cover, counts of basic benthic elements 

were used.  Using Excel, estimations for mean cover were calculated for each exposure 

and depth stratum, as well as six of the most abundant coral genera (Acropora, 

Astreopora, Favia, Montipora, Pocillopora, and Porites) and the main algal functional 

groups (e.g., Crustose coralline algae [CCA], Halimeda, turf, encrusting macroalgae 

[EMA] and upright macroalgae [UPMA]).   

After the summary statistics have been determined, the data is then organized into 

stacked cluster graphs based on exposure and depth using the chart function in Excel.  To 
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graphically visualize the relative abundance and distribution of the benthic functional 

groups around the atoll as a whole, the Quantum Geographic Information System 

program (QGIS was implemented to assemble bubble plots for each of the three main 

functional groups; i.e., coral, CCA, and macroalgae.   

Additionally, to visualize the multivariate similarities (or lack there of) between 

study sites, a non-metric multidimensional scaling (nMDS) ordination plot was 

assembled based on ecologically important benthic components (i.e., CCA, Astreopora, 

Acropora, Montipora, Favia, Pocillopora, Porites, fleshy upright macroalgae, turf algae 

Halimeda, and EMA).  Based on fourth-root transformed dataset, a Bray-Curtis similarity 

matrix was calculated and subsequently, an nMDS was computed.  Next, a separate 

hierarchal cluster analysis with complete linkage was calculated from the Bray-Curtis 

similarity matrix and was subsequently, overlaid on the nMDS to objectively visualize 

the sites based on similarities defined by the cluster analysis (Vargas-Ángel and 

Schumacher 2018).  The nMDS ordination and Cluster analysis were computed using the 

PRIMER-E v.6. software (Clarke and Gorley 2006). 

Finally, to gain a general understanding of the resilience potential and general 

health condition of the coral reef community, a benthic substrate ratio (BSR) was 

computed.  The BSR was calculated by dividing the percent cover of carbonate accreting 

organisms (CCA + coral + EMA) by the cover non-carbonate accreting organisms (turf + 

fleshy macroalgae).  A value ≥1, means that there is a higher proportion of calcifying 

organisms to non-calcifying organisms, implying that the reef building community has 

higher resilience potential than those with a value of <1 (Vargas-Ángel & Schumacher, 

2018).  
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Chapter 3. Results 
 
 
3.1 Benthic Cover and Composition 

 To better visualize the overall benthic composition of the 3 main functional 

groups over the entire island, a bubble plot was created (Figure 5 & 6).    Figure 5a.  

illustrates a more spatially homogenous island wide distribution and abundance of coral 

as compared to macroalgae (Figure 5b.) and CCA (Figure 6).  CCA showed greatest 

variability with the highest cover in the areas of greatest exposure with greater presence 

in the windward sites than in the leeward sites.  

 
  Figure 5   Percent benthic cover: a.) Coral    b.) Macroalgae 
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Figure 6  Percent benthic cover:  CCA       *Note the change in legend scale 

 Figure 7 shows that the leeward sites displayed a reduced variation in percent 

coral and upright macroalgae cover and a higher variation in CCA, EMA and OCTO, 

compared to windward sites.  The greatest variation was displayed by EMA, with the 

percent cover starting at 11.68% in the shallows and dropping to 0.33% in the deep.   

Comparatively, windward sites exhibited greater variation for almost all 

functional groups, except octocorals.  For windward exposure, corals showed the greatest 

variation in percent cover from the shallow at 10.66% to mid depth at 46.54%.  Despite 

having a large variation in percent cover, overall, the windward sites displayed a higher 

average percentage of coral cover at than the leeward sites in the mid and deep strata. 
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Figure 7  Leeward and windward benthic percent composition cover looking at basic functional groups, 
coral, upright macroalgae (UPMA), crustose coralline algae (CCA), encrusting macroalgae (EMA), 
octocoral (OCTO) and turf 

 
3.2 Coral Cover and Composition 

 In Figure 8, Pocillopora presented the least variability in percent cover 

over the different depths and exposures with percentages that ranged from 4-

6%.  Montipora displayed the most variability over the different depths and exposures, 

especially the shallow to mid windward sites where the average percent cover ranged 

from 3-23%.  Both exposures exhibited the highest coral cover in the mid depths and the 

lowest in the shallow.  Porites had the lowest percent cover in the shallow strata and 

abundance increased with depth.   Acropora had an overall low abundance around the 

atoll; however, it displayed the highest abundance in the shallow stratum.  Astreopora 

exhibited different variability patterns between the different exposures.  In the leeward 

exposure, it displayed the greatest abundance in the mid depth and little to no abundance 
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in the shallow and deep depths.  In the windward exposure sites, Astreopora showed an 

increase in abundance from the shallow to deep depths.  Favia spp. presented a relatively 

homogenous abundance between the exposures except for the shallow stratum on the 

windward exposure where the percent cover dropped. 

Figure 9 shows that the percent composition of coral branching morphology 

exhibited little variation in the different depth strata and exposure.  While the encrusting 

morphology displayed the largest variation in percent cover over the different exposures 

and depths with the most notable variation seen between the windward shallow and mid 

depths which increased from 4.8% to 33.9%, respectively.  Massive morphology 

displayed the greatest variation in abundance between the shallow and mid strata on the 

windward exposure and the highest abundance in the mid strata of both exposures.  The 

foliose morphology demonstrated an increase in abundance with depth in both exposures. 

 
Figure 8  Leeward and windward percent composition cover looking at the 6 main coral taxa, 
Acropora, Astreopora, Favia spp., Montipora, Pocillopora,  and Porites.  “Other” represents the 
percent cover that is comprised of the other coral taxa 
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Figure 9  Leeward and windward percent composition cover looking at the 4 main coral 
morphologies over the depth strata 

 
3.3 Algal Cover and Composition  

 For algal composition, Figure 10 shows that both leeward and windward 

exposures displayed a decrease in CCA and EMA, and an increase in fleshy macroalgae 

percent coverage, with depth.  EMA showed the most noticeable decrease in percent 

cover from the shallow to deep depths, from 11.7% to 0.33% on the leeward sites and 

16.7% to 1.8% on the windward sites, correspondingly.  In contrast, fleshy macroalgae 

displayed the largest increase in percent coverage from shallow to deep depths in both 

exposures.  The percent profiles of fleshy macroalgae for the shallow and deep depths are 

very similar, with the leeward sites at 4.5% and 9.5% and the windward sites at 4.8% and 

9.4%, respectively.   
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Figure 10  Leeward and windward percent composition cover looking at the 6 main coral taxa, 
Acropora, Astreopora, Favia spp., Montipora, Pocillopora,  and Porites.  “Other” represents the 
percent cover that is comprised of the other coral taxa. 

 
3.4 nMDS 

The nMDS plot shows the relative multivariate similarity among sites with an 

overlay of groups objectively defined by their similarity in a separate cluster analysis.  

See methods for details (Figure 11).  The figure shows that the overall benthic 

composition of the mid and deep depth sites was relatively similar and comparatively 

distinct from the shallow depth for both the leeward and windward sites.  Shallow sites 

exhibited lower coral cover, , and higher EMA and CCA cover.  Contrastingly, mid depth 

and deep showed greater percentage of overall coral cover. 

 When the nMDS ordination was formatted by exposure, no clear separation in 

sites was observed, indicating that depth appears to be a more important driver than 

exposure to the structure of the coral reef community. 
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Figure 11  Non-metric multi-dimensional scaling analysis illustrating the relative ecological 
similarity between study sites based on the benthic cover of the most abundant taxa, see methods 
for details.. 

 

3.5 Benthic Substrate Ratio 

 Figure 12 displays the BSR for the leeward and windward exposures and the 

mean BSR for the entire atoll.  The BSR for the leeward exposure ranged between 0.32 

and 0.67 with a mean value of 0.52.  The windward exposure, the BSRs ranged between 

0.50 and 1.40 and a mean value of 0.82, which is promising.  For the different depth 

strata, the mid depth had the highest mean BSR of 0.87 while the deep had the lowest 

mean BSR of 0.47.  Overall Wake Atoll displayed a BSR values between 0.46 and 0.98 

with a mean BSR of 0.66. 
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Figure 12  Benthic substrate ratio (BSR) showing a rough estimate of the condition of the coral 
reef 
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Chapter 4. Discussion 
 
 

 Kenyon et al. (2013) brings attention to the fact that the amount of published and 

unpublished data regarding the benthic functional group composition of Wake Atoll is 

very inadequate.  The following discussion will provide supplementary descriptions to 

enhance the few previous studies done on the coral reef communities around Wake Atoll. 

 The difference in exposure by wind and waves was thought to be potential drivers 

of coral community structure.  However, despite Figure 7 showing large differences in 

variation of coral and EMA cover between the leeward and windward sites, an nMDS 

plot separated by exposure, revealed that depth appears to be a stronger driver of 

community structure compared to exposure.  From the nMDS plot, it can be inferred that 

the overall benthic composition is different between the leeward and windward sites.  

 The percent cover of basic functional groups is commonly used as an indicator of 

the condition of the coral reef and live coral (>20% is fair, >30% is very good, >40% is 

excellent) cover can be indicative of a healthy coral reef (Boyle et al. 2017).  According 

to Figure 7, the leeward side of the atoll is in fair condition with mid and deep strata 

exhibiting >20% coral cover and a mean of 23.5% coral cover throughout.  In contrast, 

the windward side of the atoll exhibits coral cover >30% in both the mid and deep depth 

and only 10% in the shallow depths.   This pattern is most likely to be attributed to wave 

energy, as the shallows on the windward side are constantly exposed to large waves that 

slam into the reef.  Although corals rely on water currents for nourishment, waste 

removal and propagation, corals will tend to avoid areas with high water motion to 

minimize the risk of breakage and colony overturn.  This allows for only those corals that 

have high mechanical strength and are well suited for high wave energy areas, such as 
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Pocillopora to establish and thrive (Storlazzi et al. 2004, Chamberlain and Graus 1975).  

Figure 8 illustrates this concept, in which foliose morphology is almost nonexistent in the 

shallow strata, whereas the encrusting morphology is almost always found there in 

abundance. According to studies conducted by Massel and Done (1993), Rogers (1993) 

and Storlazzi et al. (2004), there is compelling qualitative evidence that that shows a 

correlation between wave energy and the species distribution of coral in which more 

delicate morphologies such as foliose and branching are distributed in areas with lower 

wave energy and sturdy morphologies such as encrusting, are found in all areas including 

those with high wave energy. 

 Branching morphology is shown in Figure 9, to have the second highest coral 

percent cover by morphology throughout the different depth strata.  This result is unusual 

because branching morphologies are vulnerable to mechanical damage in high wave 

energy areas (Rogers 1993).  However, this can be explained by the results presented in 

Figure 8, that shows that the composition of the branching morphology is comprised 

almost entirely of Pocillopora, which as previously stated, has a high mechanical 

strength, making it more robust, which allows it to thrive in high wave energy 

environments.   

Similar to coral, a high percent cover of CCA is an indicator of the reef health.  

CCA is a significant contributor to the calcification of coral reefs, they contribute to 

limestone formation and cementation of the coral reef pavement (Chalker and Barnes 

1990; Fabricius and De’ath 2001).  In a healthy reef, more than 10% is considered to be 

very good and more than 20% is considered excellent (Boyle et al. 2017).  On both 

leeward and windward sides of Wake Atoll, the average percent coverage of CCA is well 
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below the 10% threshold for a healthy reef, only the shallow depth strata of the windward 

side come close at 9.1%.  The cell walls of CCA are heavily embedded with calcite 

crystals making the cell walls extremely tough and rigid, making it ideal for protecting 

against high wave energy environments (Fabricius and De’ath 2001) allowing it to 

survive in exposed locations (Littler & Littler, 1985). 

The windward exposure has an overall mean BSR of 0.82, with the mid depth 

having a value that is >1, displaying a dominance in carbonate accreting organisms.  In 

contrast, the leeward exposure has an overall mean BSR of 0.52 with the mid depth 

having the highest value of 0.67, showing that there is a dominance in non-carbonate 

accreting organisms.  The BSR suggests that the resilience potential on the windward 

exposure may be higher than that found in the leeward exposure due to the dominance in 

carbonate accreting organisms.  Relatively, coral reef communities that have a BSR value 

>1 will most likely have a more effective community resilience.  While Wake Atoll has 

an overall BSR value of 0.70, in the event of a disturbance, specific sites may have 

exhibit different resilience potentials, so the resilience of the atoll maybe driven more by 

individual sites rather than a cumulative BSR.   

Prior to this study, most of the work that has been done has mainly concentrated 

on the benthic algae community of Wake and not necessarily the coral community or the 

survey methods were not regular or cohesive with other studies being done around Wake.  

This study highlights the benthic community as a whole, covering both coral and algal 

components with methods that are consistent with other research teams working on the 

Atoll, while also using newer statistical methods like the BSR to a quick rough idea of 

the condition of the reef.  
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Chapter 5.  Conclusion 
 
 

•   Coral	
  cover	
  was	
  consistently	
  higher	
  in	
  the	
  mid	
  and	
  deep	
  strata	
  for	
  both	
  

exposures.	
  

•   Crustose	
  coralline	
  algae	
  and	
  encrusting	
  macroalgae	
  was	
  greater	
  in	
  the	
  shallow	
  

strata	
  vs	
  mid	
  and	
  deep	
  strata,	
  while	
  fleshy	
  upright	
  macroalgae	
  was	
  more	
  

abundant	
  in	
  the	
  deep,	
  and	
  the	
  octocoral	
  was	
  more	
  abundant	
  in	
  the	
  windward	
  

exposures.	
  

•   Most	
  of	
  the	
  branching	
  coral	
  found	
  on	
  Wake	
  Atoll	
  is	
  Pocillopora,	
  most	
  of	
  the	
  

encrusting	
  morphology	
  is	
  Montipora,	
  a	
  majority	
  of	
  the	
  massive	
  morphology	
  is	
  

Porites,	
  and	
  lastly,	
  no	
  obvious	
  patterns	
  were	
  found	
  between	
  the	
  foliose	
  

morphology	
  and	
  the	
  main	
  taxa.	
  

•   Pocillopora	
  was	
  found	
  to	
  have	
  a	
  relatively	
  homogenous	
  presence	
  throughout	
  the	
  

different	
  strata	
  and	
  exposure;	
  Montipora	
  was	
  shown	
  to	
  have	
  the	
  highest	
  

variation	
  between	
  the	
  shallow	
  and	
  mid	
  strata	
  on	
  the	
  windward	
  exposures,	
  

Porites	
  generally	
  exhibited	
  low	
  abundance	
  in	
  the	
  shallows	
  but	
  increased	
  in	
  

abundance	
  with	
  depth;	
  Acropora,	
  Astreopora	
  and	
  Favia	
  spp.,	
  presented	
  a	
  low	
  

abundance	
  throughout	
  the	
  Atoll.	
  

•   nMDS	
  displays	
  a	
  relatively	
  high	
  similarity	
  between	
  the	
  leeward	
  and	
  windward	
  

exposures	
  despite	
  the	
  differences	
  found.	
  

•   Mean	
  BSR	
  for	
  Wake	
  Atoll	
  is	
  approximately	
  0.70,	
  indicating	
  that	
  the	
  coral	
  reef	
  is	
  

dominated	
  by	
  non-­‐calcifying	
  organisms,	
  such	
  as	
  algae,	
  and	
  may	
  exhibit	
  a	
  lower	
  

resilience.	
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•   Currently,	
  there	
  is	
  an	
  inadequate	
  amount	
  of	
  data	
  about	
  the	
  benthic	
  community	
  

around	
  Wake	
  Atoll	
  and	
  more	
  work	
  needs	
  to	
  be	
  done	
  to	
  compensate.	
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Appendix 
 

Basic Benthic Classification (Tier 3b): Coral 
Functional Group Genus (Tier 3b)  Abbreviation 

Branching Coral  BR 
 Acropora spp. ACBR 
 Montipora spp. MOBR 
 Pocillopora spp. POCS 
 Porites spp. POBR 
 Stylophora spp. STYS 
   
Encrusting Coral  ENC 
 Acanthastrea spp. ACAS 
 Astreopora spp. ASSP 
 Cyphastrea spp. CYPS 
 Leptastrea spp. LEPT 
 Leptoseris spp. LESP 
 Montipora spp. MOEN 
 Pavona spp. PAEN 
 Porites spp. POEN 
   
Foliose Coral  FOL 
 Merulina spp. MESP 
 Montipora spp.  MOFO 
 Porites spp. POFO 
 Turbinaria spp. TURS 
   
Free Coral  FREE 
 Fungia spp. FUSP 
   
Massive Coral  MASS 
 Favia spp. FASP 
 Favites spp. FAVS 
 Goniastrea spp. GONS 
 Lobophyllia spp. LOBS 
 Montastrea spp. MONS 
 Platygyra spp. PLSP 
 Porites spp. POMA 
 Symphyllia spp. SYSP 
   
Non-scleractinian Coral  NS 
 Millepora spp. MISP 
   
Octocoral  OCTO 



  33 

Basic Benthic Classification (Tier 3b): Upright Macroalgae (UPMA) 

Functional Group Genus (Tier 3b)  Abbreviation 

Green Macroalgae  GRMA 
 Caulepa spp. CAUL 
 Dictyosphaeria spp. DICT 
 Halimeda spp. HALI 
 Microdictyon spp. MICR 
   
Brown Macroalgae  BRMA 
 Dictyota spp. DICO 
   
Red Macroalgae  RDMA 
   
Blue-Green Macroalgae  BGMA 
   
Encrusting Macroalgae   
 Lobophora spp. LOBO 
 Peyssonnelia spp. PESP 

 
Basic Benthic Classification (Tier 3b): TURF & CCA 

Functional Group Abbreviation 

Turf growing on hard substrate TURFH 
Turf growing on rubble substrate TURFR 
Crustose Coralline algae on hard substrate CCAH 
Crustose Coralline algae on rubble substrate CCAR 

 
Basic Benthic Classification (Tier 3b): Other 

Functional Group Genus/Name (Tier 3b)  Abbreviation 

Invertebrates   
 Sponge SP 
 Zoanthid ZO 
   
Mollusks   
 Giant clam GC 
 Bivalve BI 
   
Chordata   
 Tunicate TUN 
   
Mobile fauna  MOBF 
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