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ABSTRACT 
The dominant process for the transfer of mass and energy into the surf zone is 

wave breaking.  Typhoons and heavy storms create extreme conditions wherein storm 
surge, coastal setup, and large swell combine to cause flooding and direct damage to 
coastal infrastructure via wave energy.  The majority of research in the nearshore has 
been conducted under moderate conditions, presumably due to the logistical difficulties 
of maintaining instrumentation under storm conditions, as well as the infrequency of such 
events. This paper describes in detail a method for remotely measuring breaking wave 
heights over a range of environmental conditions using video, and its on-going 
application in a high-energy nearshore environment.   

A 640x480 pixel analog surveillance camera, with a view of approximately 0.04 
km2 and a mean horizontal resolution of 0.5 m, was affixed to a rigid structure 
overlooking a uniform shallow reef near Ipan, Guam.  Image data were collected at 2 Hz 
along a shore-normal transect continuously for three months.  Broken wave heights, 
offshore and secondary swell wavelengths and velocities, and wave refractions are 
successfully resolved using this technique.  A novel feature-detection algorithm was 
developed for accurately and autonomously generating a time series of broken wave 
heights.  Initial comparisons between video measurements of breaking wave height show 
a strong correspondence with in-situ pressure sensor data. 
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Introduction 
 The nearshore is an energetic region where the dynamics of fluid motions become 
increasingly complex due to interactions with the underlying bathymetry.  Waves 
propagating from deeper water interact with the bottom profile, causing them to shoal and 
eventually break.  The dominant process for the transfer of mass and energy into the surf 
zone is wave breaking.  After a wave has broken, the flux of mass and energy continues 
in the form of a bore traveling over shallow water, eventually collapsing on shore as 
swash.  Throughout this process wave energy is shifted to higher frequencies and 
dissipated as motions become increasingly turbulent.   
 Breaking waves can be characterized into four classes based on how rapidly the 
waveform is degraded, i.e. how quickly the wave energy is attenuated (Galvin, 1968, 
quoted from Smith 2002).  The four categories are; surging, collapsing, spilling, and 
plunging breakers.  For surging and collapsing breakers, the crest remains unbroken 
while the shoreward wave face breaks slightly.  Spilling breakers maintain a general 
waveform while the wave crest spills down the face of the wave.  Plunging breakers are 
the most energetic; with the wave crest and face completely collapsing and plunging into 
the trough.        
 Typhoons and heavy storms create extreme conditions for the transfer of mass and 
energy in the nearshore and coastal region.  Storm surge, coastal setup, and large swell 
combine to cause flooding and direct damage to coastal infrastructure via wave energy 
(Smith, 2002).  Storm surge is an elevation of sea surface height due to decreased 
atmospheric pressure and increased wind stress commonly associated with storms.  
Coastal, or wave, setup is an additional elevation of sea surface height due to the mass 
transfer of water into the nearshore driven by wave breaking.  Both of the aforementioned 
sea surface elevation processes exacerbate the damaging effects of increased wave energy 
during storm events by allowing waves to propagate further inshore before breaking, and 
thus allow greater destructive forces to be transmitted to the shoreline and nearby 
structures.   

The ability to measure and predict wave transformation, water levels, and 
nearshore currents under extreme energy conditions is required before potential damages 
from such events can be assessed and planned for.  Ultimately, our predictive ability is 
dependent on how well these physical processes are understood.  The majority of 
research in the nearshore has been conducted under moderate conditions, presumably due 
to the logistical difficulties of maintaining instrumentation under destructive conditions, 
as well as the infrequency of such events.  Ahrens et al. (1993) notes a lack of data for 
run-up under severe conditions.  Yet, it is the under-sampled extreme events that pose the 
greatest threat to our coastal communities. 

This paper describes in detail a method for measuring breaking wave heights 
using video across a range of environmental conditions, and its on-going application in a 
high-energy nearshore environment.  A non-comprehensive review of previous studies 
employing video in the nearshore is given in Section 1.  A brief technical description of 
video instrumentation, and a discussion of logistical considerations for using video are 
given in Sections 2 and 3, respectively.  Section 4 explains the methodology by which a 
timeseries of breaking wave heights can be obtained from video sampling.  Initial results 
from this on-going study are given in Section 5, with a summary discussion in Section 6.      
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1. Previous Studies 
 Traditional field studies in the nearshore have employed a variety of instruments 
for measuring fluid motions.  Velocities are measured using ducted impeller current 
meters (DICM), electro-magnetic current meters (EMCM), and acoustic Doppler current 
profilers (ADCP).  Pressure sensors mounted to the seafloor are used to record wave 
length and period.  Wave gauges measure wave height.  Bathymetry surveys are 
accomplished using a survey rod in shallow depths in conjunction with boat fathometers 
(Stockdon & Holman, 2000).  Dual resistance wires and buried pressure sensors have 
been used for measuring run-up (Holman & Guza, 1984) 
 More recently, video imagery has been used to measure nearshore processes.  
Lippman and Holman (1989, 1990) used video for measuring the spatial and temporal 
variability of submerged sand bars.  Konicki and Holman (2000) resolved transverse sand 
bars previously undetected from bathymetric surveys.  Wave run-up (Holland & Holman, 
1999; Bailey & Shand, 1994, Aagaard & Holm, 1989) and beach slope morphology 
(Plant & Holman, 1997) have also been quantified.  Stockdon and Holman (2000) used a 
grid of image pixels to measure wave celerities and determine a full bathymetry profile 
for the region sampled.  Video techniques have also been evaluated in comparison to 
traditional instrumentation.  Lippmann and Holman (1991) compared estimates of phase 
speed, period, and direction measured from image pixel intensities to in-situ pressure 
sensors and found high cross-spectral correlations.  Puleo et al. (2003) compared 
measurements of surf zone and swash velocities between radar and video.  Full horizontal 
velocity fields for swash motions (Holland et al., 2001) have been generated using a 
video technique entitled particle image velocimetry (PIV).  
 
2. Technical Overview of Video Instrumentation 
 Modern digital imaging devices utilize a sensor known as a charge-coupled 
device, or CCD.  The CCD is typically a single integrated circuit comprised of an array of 
photosensitive cells.  An image is projected by a lens onto the CCD and converted to an 
electric charge proportional to the light intensity at each cell.  Control circuitry samples 
the electric charge and converts it to a digital image.  The digital image is essentially a 
two-dimensional matrix of discrete values representing the image intensity, I, as a 
function of the light intensity sampled at each cell on the CCD: ( , )f u v=I , where (u,v) 
represent the coordinates of the cell on the CCD.  The image intensity, Iuv, is a value 
along a monochromatic scale from black to white.  For color imaging devices, a unique 
intensity matrix is measured for each of the three primary colors; red, green, and blue.  
The majority of imaging devices employ 8 bits per color channel, i.e. 256 discrete values, 
and thus a color gamut of approximately 16.7 million unique values. 
 The resolving capabilities of a digital imaging device are limited by the spatial 
variation and magnitude of the reflected light source, and by characteristics of the lens-
camera system.  Voltages induced by low light intensities O(1 lx) are indistinguishable 
from background noise induced by thermal excitation of the CCD sensor under normal 
operating conditions.  Environmental conditions such as rain, fog, and sun glare can 
completely obscure the desired signal.  Optical properties of the lens have a significant 
effect on the quality of the measured signal.  A multitude of aberrations are introduced 
from lenses; notably spherical distortion and diffraction.  Spherical distortion deforms the 
image as a whole, causing lines to be rendered as curves.  Diffraction limits the size of 
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the smallest object that a lens can resolve, and is dependent on the incident wavelength.  
For a given lens-camera combination, the resolving capabilities are often parameterized 
in terms of the spatial frequency response, i.e. modulation transfer function (MTF).  At 
frequencies where the MTF of the imaging system is 100%, there is no attenuation of 
features in the spatial domain. 
 The fields of machine vision and artificial intelligence encompass the detection 
and measurement of features within a digital image.  Common techniques utilize 
mathematical and statistical representations for the occurrence and variability of values in 
the digital image matrix.  Intuitive characteristics such as textures and features are 
described in terms of range, density, and gradient.  Algorithms for the detection of unique 
features within an image often apply first derivative operators.  The resulting spatial 
gradient accents boundaries between two dissimilar regions, and is often referred to as an 
edge-detector.  Spatial gradients have the added effect of exaggerating noise in the image.  
The solution is to apply Gaussian smoothing at some stage in the process  
  
3. Logistical Considerations for the Use of Video in the Nearshore 

The nearshore environment presents certain difficulties for the application of 
traditional in-situ instruments.  DICM-s, EMCM-s, ADCP-s, pressure sensors, wave 
gauges and resistance wires require in-situ installation.  They are subject to fouling by 
biofilms, and must be capable of withstanding extreme environmental conditions.  Their 
valuable nature also makes them susceptible to theft and vandalism, precluding their use 
in otherwise ideal locations.   

These instruments are also limited to point measurements, or in the case of 
ADCP-s, a small radial field.  Nearshore motions and wave fields are non-uniform 
alongshore (Puleo et al., 2003) and thus require a degree of spatial sampling for adequate 
characterization.  For point-sampling instruments, this entails an array of sensors 
throughout the nearshore – a logistically challenging and expensive task.  Temporally, 
their resolution may be sufficient, although record length is often constrained by the 
necessity of onboard data storage and battery life.  In high-energy environments the data 
quality from these instruments may degrade.  DICM-s and EMCM-s have a maximum 
measurable velocity; wave gauges and resistance wires are not suited for the surf zone; 
and ADCP-s are effectively “blinded” by foam and bubbles. 

The application of video for measuring nearshore processes is a remote sensing 
technique relying on the measurement of electromagnetic radiation reflected from the 
feature of interest.  As such, it shares many of the advantages and difficulties associated 
with remote sensing technologies.  Although effective, electromagnetic radiation is only a 
proxy, whereas in-situ instrumentation are able to more closely sample the feature of 
interest; resulting in fewer potential sources of error.   

Video is most beneficial in terms of both logistics and sampling resolutions.  
Video systems are low-maintenance and are relatively easy to deploy.  Remote 
positioning prevents interference with the studied process, while simultaneously allowing 
for direct interfacing with data systems.  By integrating with a computer network, the 
image acquisition software can be remotely reconfigured mid-experiment to improve data 
quality.  As described in Section 4, each individual cell of a CCD corresponds to a 
sampling point.  When applied to spatial measurements, the CCD represents a dense grid 
which effectively samples thousands of spatial points at the frequency of the device; 
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typically 25 Hz.  Video thus has the capability to resolve most of the nearshore wave 
spectrum.       
 
4. Methods 
 
4.1 Photogrammetry 
 Quantification of features within photographic images requires transformation of 
the image to object space, i.e. real world coordinates.  Conceptually, the view angle 
distorts the distance between features in the image relative to their true spatial distance.  
The transformation of features between image and spatial coordinates is accomplished 
using photogrammetric equations.   

The following method is from Holland et al. (1997), using common 
photogrammetric equations.  We define (u, v) as the 2-D coordinates of a point in an 
image and (x, y, z) as the 3-D spatial coordinates of the corresponding object (Figure 1).  
The image plane is offset from the camera optical center (xc, yc, zc) by the focal length f.  
The view angle relates the line connecting the optical and image (u0, v0) centers to the 
spatial vertical, and is comprised of three successive rotations known as the tilt (τ), 
azimuth (φ), and roll (σ).  The following equations allow transformations between 
coordinate systems: 
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where λu and λv are horizontal and vertical scale factors and mij is a 3x3 matrix of rotation 
coefficients (Appendix A). Equations (1) are termed collinearity equations, as they 
describe a line transecting the camera center, image point, and object point.  This system 
of equations, or camera model, contains eleven parameters (u0, v0, xc, yc, zc, f, λu, λv, τ, φ, σ) 
and is nonlinear.  Abdel-Aziz & Karara (1971) combined the parameters of the 
collinearity equations into the coefficients Lj to yield the following linear equation: 
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The coefficients Lj are known as direct linear transformation (DLT) coefficients and are 
listed in Appendix A.  The inverse of equations (2) is required for calculation of spatial 
coordinates from video imagery data:   
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Unfortunately equations (3) are underdetermined.  In the simplest sense, a 2-D image 
cannot fully represent 3-D space.  Constraining one of the spatial coordinates (x, y, z) 
yields a determined system:   
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where the spatial coordinate z is now an independent variable.  Thus we are able to 
measure real-world distances from images given one of the spatial coordinates is known.  
It should be noted that this is an idealized geometric relationship that neglects various 
error sources; notably distortion effects from the lens-camera system as noted in Section 
2. 
 
4.2 Study site 
 The site for this experiment was at Togcha Bay near Ipan, Guam.  Togcha Bay is 
characterized by a shallow and uniform reef composed of macroalgae and turf overlying 
a pavement substrate (Figure 2).  The entire nearshore section of the reef, approximately 
500 m in cross-shore distance, is regularly exposed at low tide.  The island of Guam was 
chosen because of the frequency of typhoon wave and wind driven events.  The uniform 
profile of Ipan Reef is ideal for estimation of the effects of bathymetry and friction.   

The video acquisition equipment consisted of a Sony SSC-E473 color video 
camera with a Fujinon 2.7 mm auto-iris lens.  The equipment was installed atop an 8 m 
high concrete building overlooking the southern half of Togcha Bay on August 20th, 
2005.  Power and data signal were transferred via co-axial cable to an indoor logging 
computer.  A Matrox Meteor II frame grabber converted the analog video to digital input.  
Digital input and initial pre-processing were performed using automated Matlab software.  
Full frame RGB images were captured in uncompressed format every 15 min.  A single 
line of pixels spanning the image, hereafter pixel-line, was captured at 2 Hz.  Data 
capture ran continuously (from August 20th till current) during daylight hours and was 
uploaded to University of Hawaii servers nightly.  Timestamps were attached to each 
frame and pixel-line with sub-second accuracy.  Timing drift was minimized by 
synchronizing the internal clock daily with an atomic clock via internet timeservers.  The 
image logging system is entirely autonomous and can be reconfigured remotely.   

Determination of the image to spatial coordinate system relationship, i.e. camera 
model calibration, followed the method of Holland et al. (1997).  Eight permanent 
features within the camera field of view were chosen as ground control points (GCP) and 
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surveyed using a Garmin GPS receiver with a specified accuracy of ±10 m in radius.  
Corresponding image coordinates were then identified for each GCP (Figure 3).  
Surveyed GPS coordinates for the camera were used as the origin (xc, yc, zc) of the spatial 
coordinate system.  The horizontal scale factors (λu, λv), were set to unity.  The rotational 
angles (τ, φ, σ) and the focal length (f) were estimated using an iterative nonlinear least-
squares regression to equation (1), using the GCP spatial and image coordinates as 
predictor and response values, respectively. 
 Because waves are observed to break within a known, limited region, rectification 
to spatial coordinates is possible.  Constraining the rectification of features to the 
surveyed x-coordinate of the reef edge creates a vertical plane (Figure 4, upper half), 
from which vertical measurements are subsequently made.  Similarly, features shoreward 
of the reef edge are constrained to a vertical height corresponding to sea level, and are 
thus rectified to a horizontal plane (Figure 4, lower half).  Both of these approximations 
are well suited to this experiment site, as the shallow depth of Ipan Reef ensures wave 
breaking and restricts waves on the reef to small-amplitude.  

The spatial resolution of this method is entirely dependent on the experimental 
setup, i.e. geometrical relationship of the camera to the feature studied.  The vertical 
resolution of the timestacks was 5 cm at the reef edge.  To estimate the horizontal 
resolution, a complete spatial mapping of the individual image pixels using a constrained 
vertical coordinate is given in Figure 5.  Pixel footprints are O(1 cm) within 100 m of the 
camera, and increase to O(10 m) within 500 m offshore.  Because the ground control 
points where used for calibration of the camera model, they should not be construed as a 
form of experimental verification.  Overall accuracy of the camera model was evaluated 
via comparison to a geo-referenced tagged image file with 4 m resolution (DOC, 2004) 
(Figure 6). 

 
4.3 Detection Algorithm      

“Timestacks” were created by concatenating the pixel-line for 600 consecutive 
samples, i.e. 5 min (Figure 7).  After timestacks were rectified to a vertical plane, an 
automated image analysis algorithm was used to extract maximum breaking wave height 
from the video signal (Figure 8).  The essential features of the detection algorithm are as 
follows: 

 
1. Images are entered into the algorithm in the form of a rectified timestack.  For the 

purposes of wave height detection, only the vertical plane is considered (subplot 
A, Figure 8).  As described in Section 2, the image data are in the form of a 

 array of image intensities, , where u, t, c correspond to the spatial 
vertical, time, and color band intensities.    
u t c× × utcI

2. Remove the time mean over 5 minute periods, corresponding to the duration of a 
single timestack: 

1

1
uic uic uic

iiN =

= − ∑M I I  

This effectually removes features constant in time, e.g. the horizon, while 
emphasizing time-variant features (subplot B, Figure 8). 

3. Determine the Region of Interest (ROI). 
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a. The image is converted to grayscale by finding the mean intensity along 
the three color bands:  

1jc =

1
ut utjN
= ∑G M  

b. The spatial gradient is calculated as: 
ut

ut u
∂

=
∂
GR  

c. The time-variance of the spatial gradient is then calculated: 
2

u

2

1

1 ( )
n

uui
in

=

=

−∑S R R  

 
d. We then calculate the spatial range of the majority of the variance in the 

image: 

2 2
max

1
3 ( )i

n

i
u =

=

∗ −∑ S S  

e. The ROI is defined as the region between the bottom of the image to umax, 
or in spatial coordinates, the region from the reef edge to the maximum 
vertical extent defined by umax.  The ROI for a specific timestack is shown 
in subplot B, Figure 8, and corresponds to the region below the solid red 
line.  This method uses the robust gradient to delineate where the features 
of interest should be, yet does not depend on the gradient to extract the 
features specifically.  Identifying a unique ROI for each timestack has the 
advantage of adjusting to changing conditions, e.g. lighting, wave heights. 

4. Extract the feature of interest, i.e. breaking waves: 
a. An iterative threshold is applied to the ROI of the full-color array M 

(subplot C, Figure 8).  The intensity values of M are mapped to either 0 or 
1 based on an initial threshold value, h, arbitrarily chosen such that 
h M

1

n

i
i

s h
=

.  We then calculate the sum of all points that lie outside the ROI: 

= >∑M  

The value s is essentially a measure of the amount of noise identified, as 
features outside the ROI are considered background features and should 
ideally be mapped to 0 based on the threshold value h. 

b. The threshold value h is iteratively increased until s becomes sufficiently 
small.  For this experiment, we found a fixed normalized value of 

pixels0.01*s n= , where npixels is the number of points outside the ROI, to 
work well. 

5. Determine breaking wave heights 
a. The algorithm then identifies the greatest, i.e. highest, value for Mt 

corresponding to each sample in time (subplot D, figure 8).  Spurious 
points, e.g. whitecaps, noise, are discarded based on the discriminating 
condition that identified points must be connected to a larger body.      

 
5. Initial Results: Wave Properties from Video Timestacks 
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 A variety of time-dependent features are emphasized by the timestack technique.  
On August 30th, 2005, a low-pressure system passed the experiment site approximately 
520 km to the east.   The resulting wave energy provided several signals as distinguished 
by timestacks (Figure 7).  Offshore swell is evident past the reef edge, with wave 
breaking limited to the abrupt interface between the reef edge and deeper water.  Short-
duration bores are seen for larger waves, which eventually reform into secondary swell as 
they propagate across the reef.  Reflection from the shoreline and outward propagation is 
also evident.   

For the estimation of breaking wave heights or similar features, four primary 
sources of error are identified; optical aberrations, photogrammetric error, image 
processing degradation, and algorithm precision.  A full error analysis for each of these 
sources has not been completed to date.  The greatest source of optical error is spherical 
distortion, a consequence of imperfect lenses.  Holland et al. (1997) describe a camera 
calibration method that models, and accounts for, radial symmetric distortion using a 
two-coefficient odd-order polynomial.  To a large degree, optical distortions can be 
minimized through the use of high-grade lenses.  Photogrammetric error can be attributed 
to imprecise knowledge of the aforementioned camera model parameters (Section 4.1), 
with the resulting spatial measurement error specific to each setup.  For this experimental 
setup, introduction of an angular rotation (tilt) error of O(0.01 rad) resulted in a xΔ of 
O(10 m) at x(500 m).  Photogrammetric errors can be reduced by the use of a large 
number of accurately surveyed GCPs during estimation of camera model parameters.    

An often overlooked, yet significant source of error is due to degradation of the 
image data during processing.  Many modern applications use image compression 
algorithms to reduce filesize, using compression techniques designed to exploit human 
vision system limitations.  Deterioration of images due to compression can adversely 
affect computer based image analysis results.  Ultimately, the analysis algorithm is the 
decisive factor for precise quantification of features from video imagery. 

Time constraints limited the discussion for this paper to breaking wave heights 
despite the potential for measuring other processes; notably wave celerities along the reef 
flat and for offshore swell.  A comparison between breaking wave heights measured by 
video is made to pressure readings from a Seabird SBE-26plus pressure sensor (Figure 9).  
The pressure sensor was located 965 m to the north of the video target, at approximately 
10 m depth.  A clear visual correlation exists between the two signals as offshore swell 
increases in height from 8.30 to 8.31, 2005.  The period from 8.31 3:00-9:00 reveals 
occasional high breaking wave heights despite a drop in offshore swell height.  This can 
be attributed to a low tide during this period resulting in rapid wave deformation and a 
powerful splash. 
 
6. Summary and Discussion  
  The rapid degradation of spatial resolution with cross-shore distance from the 
camera creates difficulties in the measurement of horizontal features, i.e. waves, with 
wavelengths smaller than 10 m.  The high temporal sampling used for timestacks helps 
offset this spatial deficit, as secondary swell can be detected in the region of poor 
resolution.  While useful, the timestack technique removes one spatial dimension and 
essentially reduces the video measurements to radial distances.  Resolving complete wave 
vectors requires a 2-dimensional subset of the image be sampled.  For features measured 
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across the reef edge, i.e. vertical plane, the spatial and temporal resolutions are fully 
capable of resolving surface gravity waves and corresponding breaking heights. 
 Given a camera model with adequate spatial and temporal resolution, the 
remaining task is extraction and quantification of the feature of interest.  As mentioned 
previously, entire fields are devoted to this task and a multitude of techniques have been 
developed.  The ease at which a detection algorithm can be developed is largely 
dependent on the uniqueness of the feature of interest, e.g. color, intensity, texture, or 
variability.  Great difficulties arise after an algorithm has been precisely tuned to work on 
a specific data set or subset, only to find it fails entirely for slightly different conditions.  
To this end, some suggestions apply.  Algorithms should be relational, and require no 
user input or adjustment, i.e. coefficients and parameters should be expressed in terms of 
the image itself.  This is a necessity for large time series wherein data may have low-
frequency variations.  As with the technique described herein, a combination of several 
simple techniques can be quite robust.  Effectiveness at exclusively and precisely 
delineating the feature of interest depends on a balance of sensitivity and robustness. 
 Further analysis of video image data is ongoing.  Future work will focus on 
integration of video and in-situ pressure sensor data for quantifying the transformation of 
waves across the reef, with the goal of constructing a physical representation of the 
complete wave energy budget as a function of tidal height, incident swell, and 
morphology.  Such representations will be beneficial for predicting the effects of storm-
induced energy in the nearshore.
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Figure 1. Relationship between image and spatial coordinate systems.  A line between 
the camera center (xc, yc, zc) and an object at point (x, y, z) creates a point (u, v) on the 
image plane.  Knowledge of the remaining parameters for the focal length ( f ), and 
rotation angles (τ, φ, σ) allows for transformation between image and spatial coordinates. 
From Holland et al. (1997).  
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Figure 2. Geomorphological structure of Togcha Bay reef, Guam.  Adapted from NOAA 
Guam Benthic Habitat map. 
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Figure 3. Surveyed ground control points (GCP-s) used in calibration of the camera 
model.  Colored dots are corresponding image coordinates (u, v).  Vertical black line 
coincides with image pixels sampled for timestacks.  
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Figure 4. Rectification of image to horizontal and vertical planes.  The horizontal plane 
extends approximately 600 m cross-shore.  Note difference in vertical scale.  
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Figure 5. Spatial coordinates of ground control points (red) and image pixels (black) as 
calculated from equation (4) using estimated DLT coefficients.  Pixel footprints are on 
the order of 1 cm within 100 m of the camera, and increase to order 10 m within 500 m 
offshore. 
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Figure 6. Comparison of camera model to geo-referenced tagged image file with 4 m 

resolution (DOC, 2004).  The visual agreement is quite good, although a 
quantitative comparison has yet to be made.     
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Figure 7.  Non-rectified timestack.  Date is Aug 30th, 2005.  Timespan is exactly 5 
minutes.  The horizontal and vertical axis corresponds to time and distance, respectively.  
A quantitative measurement of distance cannot be directly read from this image, as it has 
not yet been rectified to spatial coordinates.  This figure is shown to illustrate the various 
features detected using video.  Foremost are breaking wave heights.  Bores are seen 
adjacent to the broken wave, eventually reforming into secondary swell as they propagate 
across the reef, as well as reflection from shore.  Offshore swell is also evident.     
 

 18



 
 
Figure 8. Wave height detection process. 
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Figure 9.   Comparison between video measurement and seabed-mounted pressure 

sensor.  The pressure sensor is located 965 m to the north of the video target, 
at approximately 10 m depth.  Times shown are for 8.30 to 8.31, 2005.  Video 
measurements are missing for nighttime hours. 

 20



APPENDIX A 
 
Orthogonal rotation matrix, mij,  from equation (1): 
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Direct Linear Transformation (DLT) coefficients from equation (2): 
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Analogous form of equation (4), where the spatial coordinate x, has been constrained:  
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