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ABSTRACT 
 Marine algae are typically considered ocean plants with their water relations set to 

fully saline marine waters.  In oceanic islands however, reef algae can be subjected to 

periodic to daily fluctuations in osmotic potential of the ambient waters as fresh-water 

runoff and submarine groundwater discharges can lower salinities. In contrast, tidal 

exposure can increase tissue water potential, even above 34 ‰, as water loss from 

evaporation concentrates remaining salts from seawater. With submarine groundwater 

discharge, recent studies have shown substantial nutrient influx carried by freshwater 

sources. To acquire nutrients required for growth and survival, algae around oceanic 

islands must be able to tolerate the osmotic challenges within the algal cells driven by 

widely variable changes in external salinity. Here we test the ability of two co-occurring 

tidal red algae, Acanthophora spicifera and Laurencia mcdermidiae, to regulate their 

tissue water potential in response to simulated diurnal pulses of high nutrient, low salinity 

submarine groundwater discharge. The tissue water potential of treated and untreated 

specimens will be tested using the Chardakov method, photosynthesis will be estimated 

via electron transport rate measurements and changes in biomass will be used to assess 

overall fitness. Some algal species may be expected to have more efficient physiological 

responses for maintaining a functional intercellular solute potential when exposed to 

changes in salinity because this trait has been selected for where large daily salinity 

changes have been seen. It is expected that the invasive, bloom forming species, A. 

spicifera, will tolerate the experimental lowered salinity, high nutrient pulses because A. 

spicifera has developed a unique physiological ability to adapt to this kind of stress. If the 

invasive species is more effective in nutrient uptake under extreme conditions this 
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information could further our understanding of algal bloom dynamics, distributions of 

species and how to better manage marine ecosystems. 
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OBJECTIVE: 
To compare the physiological response by two algal species in regulation of tissue 

water potential to diurnal pulses of simulated submarine groundwater discharge. The 

comparison is made between a Hawaiian endemic, Laurencia mcdermidiae (Figure 1), 

and Acanthophora spicifera (Figure 2), an accidental introduction to Pearl Harbor in 

1950 (Huisman et al. 2007). A. spicifera now occurs frequently on reef flats throughout 

the islands and is considered one of Hawai‘i’s most pervasive introduced algal species. L. 

mcdermidiae occurs in the low intertidal zone on exposed rock. Physiological regulation 

of tissue water potential may be an important characteristic that contributes to the success 

of weedy macroalgae species. Macroalgae blooms act to displace coral reef ecosystems 

and degrade the coral reef ecosystem structure.  
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1. INTRODUCTION: Linking submarine groundwater 
discharge to the physiology of invasive algal blooms 

1.1 Primary Productivity 
Photosynthesis or primary productivity fixes carbon and makes complex carbon 

molecules available for heterotrophic organisms in upper trophic levels. Marine 

photosynthesis accounts for 48% of net primary productivity (Field et al. 1998).  Of this 

fraction 90% is attributed to photosynthesis by phytoplankton while the remaining 10% is 

attributed to macroalgae (Charpy and Charpy-Roubaud 1990). Nutrients are needed to 

sustain algal growth, with nitrogen (N) and phosphorus (P) being the most needed 

macronutrients for plant growth. Generally, nitrogen is the limiting nutrient for algal 

growth in marine environments, with a few species or location specific exceptions 

(Schlesinger 1997).  Prior to recent advances in hydrologic research concerning nutrient 

delivery via submarine groundwater discharge (SGD), the water column was considered 

the primary source of nutrients for macroalgal growth. Recent research shows that SGD 

plays a significant role in nutrient delivery to Hawai‘i’s coastal ecosystems. 

1.2 Submarine groundwater discharge (SGD) & hydrology of the 
Hawaiian islands 

Submarine groundwater is defined as the water enclosed within rocks beneath 

large bodies of water (Zektser 2007).  Submarine groundwater flow is the movement of 

said submarine groundwater within the rocks occurring due to natural circulation, head 

pressure, or tidal changes (Zektser 2007). SGD is a flux of terrestrially generated 

groundwater into a marine basin (Zektser 2007). In Hawai‘i and other basaltic islands, 

large SGD fluxes arise from rapid rates of groundwater recharge, and the high 
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permeability and heterogeneity of the basaltic substrate (Lau et al. 2006). The 

heterogeneous basalt consists of layers of basaltic flows that include clunker zones and 

lava tubes of very high permeability and low permeability ash layers; this heterogeneity 

means that ground water flow to the coastal ecosystem is rapid and the path is 

unpredictable (Lau et al. 2006). 

Soil porewater movement (or SGD flow) can be calculated using Darcy’s law,  

flux=kIA, 

where k is the hydraulic conductivity, I the hydraulic gradient, and A the cross sectional 

area of the aquifer (Schlesinger 1997). The conductance (cm s-1) can be inferred by 

dividing the infiltration rate (g cm-2 s-1) by the gradient (g cm-2) (Schlesinger 1997).  

However, accurate estimates of groundwater flow and movement are limited in 

unconfined and heterogeneous aquifers in which the aquifer medium varies in 

composition and porosity (Fetter 2001); this inaccuracy is especially high in flow 

estimates for Hawai‘i because of the heterogeneity of the basaltic materials and lava 

tubes as well as high porosity sections that rapidly carry groundwater unabated over large 

distances. Thus, prediction and modeling of SGD flow into the coastal ecosystem is 

challenging and limited. 

In an island hydrologic cycle, basal groundwater sits on top of seawater and the 

depth to which fresh groundwater extends below sea level is proportional to the 

difference in densities of the two water bodies (Lau et al. 2006). The Ghyben-Herzberg 

ratio describes the ideal example in which freshwater at 5°C rests on top of seawater of 

15°C. Buoyancy principles acting on the 1.0 g cm-3 density freshwater above the 1.25 g 

cm-3 density seawater predict a depression of the freshwater below sea level of forty 
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times its elevation above sea level (Lau et al. 2006, figure 7). SGD is delivered to the 

coastal ecosystem when it reaches the “transition zone” of brackish water occurring 

between the two water bodies (Lau et al. 2006, figure 6). The thickness of the transition 

zone is proportional to the permeability of the aquifer, the influx of submarine 

groundwater flow, and the outflow of pumping wells (Tribble 2008). Aquifers with 

thicker transition zones are higher in permeability and the transition zone can become 

even thicker as a result of tidal changes or over pumping (Tribble 2008). A larger 

transition zone causes a larger SGD flux to nearby coastal ecosystems (Tribble 2008). 

Increased rainfall and high permeability of the aquifer increase the rate of groundwater 

recharge relative to surface feature recharge and increases the rate of SGD flow to the 

coastal ecosystem (Peterson 2009). Steep relief inland can create a strong hydraulic 

gradient that increases coastal groundwater seepage (Peterson 2009).  

 SGD is significantly lower in salinity and higher in nutrient concentrations than 

receiving seawater (Peterson et al.  2009). Since elevated nutrient concentrations in SGD 

can be several times higher than nearby rivers the nutrient inputs from SGD to coastal 

ecosystems can be substantial despite being volumetrically less significant than river 

inputs (Peterson et al. 2009). Especially on the Kona coast of Hawai‘i Island where 

precipitation rates near the coast are especially low, large SGD fluxes to the coastal 

ecosystem are seen while streamflow runoff fluxes are negligible (Kay et al., 1977; Oki 

1999). Watersheds with low rates of rainfall exhibit lower rates of nitrogen delivery to 

the coastal ecosystem (Van Houtan et al. 2010), however, where precipitation is low and 

nutrient delivery events are less frequent, the effects of intermittent nutrient delivery 

events are more significant and have greater impacts (Schlesinger 1997). 
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Because SGD nutrient fluxes are relevant to coastal ecosystems, anthropogenic 

nutrient loading of submarine groundwater on basaltic shorelines can lead to excess 

nitrogen delivery to and response by the coastal ecosystem. The natural condition seen on 

basaltic shorelines is rapid delivery of fresh groundwater to coastal ecosystems with little 

transformation or addition of nutrients (Lau et al. 2006, Figure 1). In this state with 

oligotrophic coastal waters, coral coverage is dominant with crustose and turf 

morphologies of algae being most frequent; herbivores rapidly consume larger algal 

bodies. Nitrogen also limits algal growth (Smith et al. 2001). 

1. 3 Anthropogenic nutrient loading of SGD  
Anthropogenic inputs of sewage and fertilizer load nutrients into coastal 

ecosystems and subsequently, net primary productivity (NPP) and even algal biomass 

increases (Dailer et al. 2010).  Rainfall maps for watersheds correlate positively to fluxes 

of nitrogen from land to the coastal waters (Van Houtan et al. 2010). Anthropogenic 

increases in nutrient delivery and rates of SGD cause significant increases in the rate of 

nutrient delivery to coastal ecosystems. The coastal ecosystem responds with a marked 

increased in NPP both as rates of photosynthesis and plant biomass.  

1.4 Invasive algal blooms and the relative dominance paradigm  
The productive marine ecosystems found in coastal waters are subject to what 

Littler and Littler define as the Relative Dominance Paradigm (1985). Depending on long 

term intensity of nutrient inputs, wave action, and herbivory, the relative dominance 

paradigm predicts which of four major assemblages of sessile photosynthetic organisms 

will dominate the ecosystem (Littler et al. 1985). Hermatypic corals containing symbiotic 

zooxanthellae thrive where extremely low nutrient levels, low wave action, and high 
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herbivory pressure are seen (Littler et al.  1985).  Coralline algae are dominant under 

conditions of high wave action and high herbivore pressure, and can thrive in low to high 

nutrient concentrations (Littler et al. 1985). Under low nutrient levels and low grazing 

pressure the dominant photosynthetic organism is turf algae (Littler et al. 1985). 

Eutrophic conditions of high nutrient inputs and lower grazing pressure allow frondose 

macroalgae to dominate the ecosystem; weedy macroalgae can easily overgrow coral and 

coralline algae (Littler et al. 1985).  

Under oligotrophic conditions, coral reef ecosystems recover from intermittent 

disturbance events such as hurricanes or tidal waves (Connell et al. 2007). However, with 

constant anthropogenic nutrient loading these systems enter a less resilient state; it is 

common for coral reefs to fail to recover from what would typically be a natural and 

recoverable disturbance (Connell et al. 2007). This often results in a phase shift to an 

alternative state in which weedy species become successful due to speed of invasion and 

physiological advantages as well as reductions in herbivory (Connell et al. 2007).   

In many cases, the eutrophic coastal ecosystems respond to extreme nutrient 

loading with the success of a few ‘weedy’ macroalgal species (Connell et al. 2007, Dailer 

et al. 2010). Net primary productivity is directly proportional to nutrient inputs, thus 

excessive levels of productivity can be seen as a direct result of anthropogenic nutrient 

loading (Schlesinger 1997). Macroalgae growth is often limited by nitrogen in these 

ecosystems and some ‘weedy’ algae species are able to assimilate the excess nitrogen as 

biomass with marked increases in growth (Dailer et al. 2010). Exactly which 

physiological trait allows certain algal species such an advantage under conditions of 

anthropogenic nutrient loading has yet to be determined. 
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1.5 Algal Regulation of Tissue Water Potential 
Algae have characteristic, species specific salinity tolerance ranges that are 

typically associated with habitat traits (Bibel 1952). This observation suggests that weedy 

or invasive species may be successful because they have the abilities to exploit 

anthropogenic nutrient loading via physiological advantages to cope with the low salinity 

of SGD pulses while maintaining cell function. Further, these weedy species may be   

able to sequester high concentrations of nitrogen found in SGD, while facing the 

challenges of extreme hypo-osmotic stress associated with SGD. Physiological capacities  

to acquire nutrients and tolerate lowered salinities may allow invasive macroalgae to 

become dominant during a phase shift from a coral reef ecosystem to a macroalgal 

bloom.  

The free energy of water in a solution determines the effects of osmosis when two 

adjacent solutions are considered, water moves towards locations of lower water potential 

by osmosis. Many plants adjust internal solute potential (ISP) to be higher than or iso-

osmotic with the bathing medium, in order to more readily take up limiting nutrients 

(Bibel 1952). When the ISP is high the internal water potential is low, so water tends to 

move across the membrane and into the cell by osmosis. Alternatively, nutrients can be 

acquired by transport systems within cells; such systems are also dependent on osmotic 

conditions (Taiz et al. 2002). The ability to regulate ISP is a physiological trait 

characteristic to algal species and may be tied to ecological success.  Exactly how much 

this differs between species is unknown. Data are available for only the two tropical 

species reported here and a third, U. fasciata, examined in a pilot study. 

Opportunistic algae species may be better suited to survive in fluctuating 

conditions including high variability in salinity and nutrient levels. Many are particularly 
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suited to survive high disturbance and breakage, including A. spicifera. While the genus 

Laurencia is widely distributed in tropical and temperate seas, the native species 

examined here, L. mcdermidiae, has a narrow distribution in exposed areas in the low 

intertidal zone (Abbott, 1999, Huisman et al. 2007). Usually L. mcdermidiae occurs in 

isolated clumps and does not form turfs (Abbott, 1999). L. mdermidiae also shows a 

narrow regional distribution and is only recorded on the islands of O‘ahu and Maui 

(Abbott, 1999). A wide distribution is seen for A. spicifera, a species which can grow 

epizoically, epiphytically, and saxicolouslly in the intertidal, the subtidal, and the water 

column where it can live as a free floating algal body (Abbott, 1999). A. spicifera often 

becomes the dominant species in the intertidal zone (Abbott, 1999). A wide distribution 

is seen for A. spicifera throughout the tropics and extending into warm temperate areas. 

Adaptation to fragmentation with a brittle thallus allows for A. spicifera to be undamaged 

by breakage and to form large free floating populations (Abbott, 1999). A. spicifera has 

been reported to frequently outcompete native species, including L. mcdermidiae (Russell 

1992) and is often considered one of the most pervasive of Hawai‘i’s invasive algal 

species. 

 

2. METHODS 

2.1 Collection 
 Algae were collected from Beach Road at Diamond Head, Honolulu (Figures 3 - 

5). All plants were transported in seawater from the collection site to the flow through 

seawater system at ‘Anue‘nue Fisheries Research Center (AFRC), Sand Island Access 

Road immediately after collection. Plants were then cleaned of invertebrates and other 
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algal cover and washed in seawater from the flow through seawater system. The algae 

were air-dried externally using three turns in a salad spinner and patted down with paper 

towels, weighed (Ohaus Scout Pro Balance model SPE123), and partitioned into 3 gm 

portions. Each portion was placed into the flow through seawater system using a 

computer generated randomization scheme. The algae were incubated in the flow through 

seawater system with ambient salinity and nutrient concentrations, receiving no SGD 

treatment, for eight hours to allow for adjustment to experimental conditions at ARFC 

and to recover from collection, transport, and partitioning trauma.  

2.2 Flow through seawater system 
The flow through seawater system consists of three water baths containing a total 

of 48 aquaria (Figure 8). Four mixing chambers allow for randomized treatments 

throughout the water baths. Seawater is pumped from depth in Honolulu harbor and 

filtered sequentially through a 10 µm , 5 µm , and 1 µm  filter before entering the mixing 

chambers. Each aquarium receives seawater from one of the four mixing chambers 

(Figure 9) Two of these mixing chamgers are treatment chambers that receive and 

nutrients from the peristaltic pump and fresh water. Each aquarium  also receives an air 

line for aeration. The water is allow to flow out of the tops of the aquaria and drains out 

of the water bath. This results in constant water flow and equal temperatures throughout 

the water bath 

2.3 SGD treatment 
 Empirical relationships between salinity and the concentrations of nitrate and 

phosphate have been developed by Peterson et al. (2008) by calculating regression 

equations of nitrate and phosphate with salinity from measurements of SGD plumes on 
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the Kona coast of Hawai‘i island. These regressions were used to calculate the 

appropriate nutrient concentration for the salinity chosen for the SGD simulation. Salinity 

and nutrient levels were set to follow Amato (2009) to test A. spicifera and L. 

mcdermidiae during this experiment. The treatment used was: 27‰ salinity+(7.51 µM 

nitrate, 0.15 µM phosphate). The control was 35 ‰ salinity, with ambient nutrient 

concentrations from the Sand Island Harbor seawater coming through the flow through, 

filtered seawater system. 

2.3 The Chardakov method 
The Chardakov method is a quick and simple determinant of water potential 

within a plant part (O’Leary 1970, Devlin 1983, figure 10).  Changes in density of 

bathing medium when plant tissue is immersed in that solution are used to match standard 

bathing mediums to the water potential of the plant cells in question (O’Leary 1970, 

Devlin 1983). When small homogeneous pieces of algal tissue are incubated in graded 

osmotic sucrose solutions of known molality, some solutions have a greater osmotic 

potential than the tissues; water will move out of the tissues and into the bathing medium 

(figures 11, 12). The osmotic potential of other solutions will be lower than the tissues 

and water will diffuse into those plants (O’Leary 1970), based on the osmotic gradient 

between the bathing medium and the algal tissue (figure 12). Detection is achieved by 

using a piece of dry methylene blue to dye the incubations solution series, of which a 

drop is then inserted below the surface of the control solution (Devlin 1983). If the drop 

rises in the control solution, it indicates that the drop is lighter and that the tissue 

incubation solution is less concentrated-meaning that water from the tissue passed out of 

the cells and into solution (Devlin 1983). Conversely, if the drop sinks in the control 
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solution this shows that the drop is heavier and that the tissue incubation solution is more 

concentrated-indicating that water passed from the bathing solution into the algal cells 

(Devlin 1983). When no net movement of water is detected, a match has been found and 

the water potential of the bathing solution is equal to that of the plant cells (!S=!P)  

(O’Leary 1970). At that point, the tissue water potential may be calculated using the van’t 

Hoff equation:   

!S=!P=-m i R T 

(where m is molality, i is the ionization constant (1 for sucrose), R is the gas constant, and 

T is the temperature in Kelvin). 

Often an ideal match is not found and the tissue water potential is inferred to lie 

between two solutions where the tissue changes from gaining to losing water (O’Leary 

1970). Changes in the specific gravity of the incubating solution may be measured by 

dying the incubating solution by using a negligible amount of powdered dye. Using a 

syringe, a small drop of the dye is placed in a solution equal to the initial molality of the 

incubating solution; the droplet will either float (decreased solute concentration), sink 

(increased solute concentration), or hover (no net change in concentration has occurred) 

(O’Leary 1970). By observation, one determines that water potential for which the 

incubating solution and the stock solution are identical.  

 Individual algae were removed from the water bath one at a time for analysis 

using the Chardakov method. The alga was dried by three turns in a salad spinner. 

Replicate pieces of the individuals (n=7) weighing between 0.015 to 0.02 grams were cut 

from the apex of the algal shoots. Each piece was placed in a sorbitol incubation solution 

of known molality ranging from 0.6 M to 0.9 M on increments of 0.05 M. These 
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fragments were incubated for sixty minutes with periodic vortexing to ensure equilibrium 

was attained between the bathing solution and the plant cells. Following the incubation, 

plant parts were removed from the bathing solutions. A matching set of osmotic solutions 

were used to test changes in the specific gravity of the bathing solutions. For each bathing 

solution a small drop of the dyed solution was inserted using a syringe into the solution 

matching its initial concentration. The reaction of the drop was recorded as sinking, 

floating, or hovering. In most cases an explicit match was found and one of the bathing 

solutions hovered in the matching sorbitol solution. In cases where this did not occur, the 

intercellular solute potential was inferred as between the two solutions in which the 

reaction transitioned from floating to sinking. 

2.4 Pam: Fluorometery measurements of photosynthetic capacity 
The Pulse Amplitude Modulated fluorometer (PAM) is able to produce a rapid 

light curve, which allows for determination of the Photosynthetic Saturation Irradiance, 

Ek and rETRmax (relative maximum electron transport). These measurements are made 

by excitation of the algal tissues with pulses of light with intermittent darkness. PAM 

measures the fluorescence that results from this excitation (Figure 13). When all reaction 

centers close the fluorescence reaches a maximum (Fm). By measuring the maximum 

photochemical efficiency of Photosystem II the PAM (or junior PAM) allows for 

examination of the health of the algae under the various treatment conditions. In linking 

this with tissue water potential it is possible to examine if water potential has a 

measurable effect on algal photosynthesis.  PAM rapid light curve (RLC) measurements 

were made for each individual daily. 
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2.5 Algal Biomass Measurements 
 Daily, following RLC measurements, each alga was dried using three spins in the 

salad spinner and weighed using a gram (Ohaus Scout Pro Balance model SPE123) scale.  

2.6 Salinity, Daylight, and Temperature Measurements 
 Salinities of treatment and control bathing media were measured throughout the 

experimental period. A Cole-Parmer salinity specific gravity refractometer (model EA-

81010-02) was used to measure the salinities within the experimental and control aquaria 

to ensure that these values remained at the appropriate experimental and control 

salinities. Two HOBOs light and temperature sensors were placed in two randomly 

selected aquaria for the duration of the experiment. A LiCOR 4" quantum sensor 

recorded light within the aquaria for the duration of the experiment. The daylight and 

temperature measurements from the HOBOs sensors for the duration of the experiment 

can be seen in figures 22 and 23. These measurements allowed for assurance that no 

extreme temperature, daylight, or salinity changes occured during the duration of the 

experiment. 

3. RESULTS 

3.1 Chardakov Method for Determining Tissue Water Potential 
Under control conditions of routine salinities, A. spicifera exhibited lower (less 

negative) intercellular solute potentials than was found for L. mcdermidae (figure 14). A 

one-way ANOVA indicated that these results were not statistically significant (Table 3). 

Under experimental conditions of lowered water potential, A. spicifera and L. 

mcdermidiae both showed higher tissue water potentials values (more negative) (figure 

14). A. spicifera showed a larger change in intercellular solute potential between 
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experimental and control conditions. L. mcdermidiae exhibited a smaller change between 

control and treatment solute potentials. However, a one-way ANOVA found that there 

was not a statistically significant difference between control and treatment groups for the 

two species (Table 3). Strong trends suggest that with longer time, significance may have 

been detected. 

3.2 Pulse Amplitude Modulated Fluorometery measurements of 
photosynthesis 
 Rates of photosynthesis were measured as rapid light response curves estimating 

maximal rates (ETRmax) for upper axes of all experimental and control plants for 

Acanthophora spicifera and Laurencia mcdermidiae (Figures 15,16, 17, 18). The A. 

spicifera treatment showed the smallest decrease in ETRmax over the period of the 

experiment, followed by the A. spicifera control. Rates of photosynthesis by L. 

mcdermidiae control plants were higher than those of the SGD treatment. A. spicifera 

showed a statistically significantly smaller decrease in ETRmax for both treatment and 

control when compared to L. mcdermidiae (Table 3, figure 19).  

3.3 Algal biomass measurements 
 Biomass measurements are depicted in figure 20. A. spicifera under treatment 

conditions showed the smallest gain in biomass, at an average of 0.025 g d-1. A. spicifera 

control showed the next smallest biomass gain at a rate of 0.047 g d-1, followed by L. 

mcdermidiae treatment with an average of 0.051 g d-1. L. mcdermidiae control showed 

the largest biomass gain at a rate of 0.88 g d-1. A one way ANOVA analysis showed that 

these results were not significantly statistically different (table 3). 
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4. CONCLUSIONS 
 The Chardakov method revealed the responses in tissue water potential to 

simulated SGD treatments for these two species. Interestingly, a trend for greater 

difference in water potential was seen between the two species in the control group than 

the treatment group. A. spicifera exhibited a lower  potential under control conditions 

than L. mcdermidiae. While under treatment conditions the water potential of the two 

species was nearly the same, with A. spicifera exhibiting slightly higher water potential. 

A. spicifera showed more response to the control conditions with lowered tissue water 

potential in the control group and to treatment conditions with a higher water potential, 

giving a larger range of water potential overall.  

The lower intercellular solute potential in response to control conditions suggest 

that A. spicifera may be better suited to ambient conditions where less nutrients are 

present by maintaining a lower water potential. This response could provide an advantage 

by saving energy and chemical compounds used to regulate intercellular solute potential 

during times of low nutrient availability. Under low salinity, nutrient rich conditions, A. 

spicifera raised water potential to a higher value than L. mcdermidiae; this could allow 

this invasive species to more rapidly take up nutrients during high nutrient conditions. L. 

mcdermidiae showed less efficient regulation of water potential in response to changes in 

salinity and nutrient concentrations and suffered a markedly lower ETRmax. The weedy 

A. spicifera exhibited patterns of  response by tissue water potential to changes in salinity 

and nutrient concentration that may represent part of its mechanism for ecological 

success over  natives such as L. mcdermidiae.  

The one-way ANOVA did not find a significant difference for the groups of 

internal water potential values between species and control and treatment groups. The 
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reason the results were not statistically significant either due to low numbers of replicates 

or because of lack of accuracy in the internal water potential measurements. However, 

the results imply that the conclusions discussed here could be proven using more rigorous 

testing methods with larger numbers of replicates. 

5. DISCUSSION: Impacts of nutrient loading on coastal 
ecosystems 

Algal blooms lead to a decrease in water column oxygen levels due to 

consumption of oxygen by increased amounts of decomposing biomass, can result in 

flourishing microbial life, and have negative impacts on benthic community structure 

(Dailer et al. 2010).  Increased anthropogenic use of limiting nutrients is expected to 

result in increased ecosystem service losses from eutrophication and changes in coastal 

ecosystem structure (Connell et al 2007). Eutrophication associated with urbanization 

occurs as a result of large anthropogenic nutrient inputs and contributes to sedimentation 

of the ecosystem over time (Schlesinger 1997). Increases in NPP from macroalgal 

blooms contribute to increased sedimentation and eutrophication of the ecosystem. 

Nitrogen addition to the coastal ecosystem also leads to sediment build up in the 

nearshore environments, where increased fluxes of organic matter from NPP lead to 

organic-rich near shore sediments (Schlesinger 1997). It is estimated that 80-90% of NPP 

in the surface ocean is degraded to inorganic compounds (CO2, NO3, and PO4) in the 

surface zone, while the remainder sinks to the deep ocean (Schlesinger 1997). Sulfate 

reduction increases with increase sedimentation as anoxic conditions quickly develop as 

more organic matter is deposited and buried in sediments (Schlesinger 1997). Greater 

preservation of organic matter in near shore sediments occurs due to greater NPP as 

burial become more rapid and decomposition become less efficient as anoxic conditions 
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develop (Schlesinger 1997). Thus the increase in NPP provides a positive feedback for 

sedimentation and declines in the health of the coral reef ecosystem since increased 

sedimentation causes anoxic conditions, causes further declines in coral health, and 

increases the rate of burial of organic matter in coastal sediments. 

The ecosystem in which an organism resides selects for particular physiological 

characteristics including resistance to desiccation, tolerance to solar radiation and 

variable temperatures, as well as cellular response to changes in salinity (Bibel 1952). 

While endemic genera have adapted to evaporative changes in salinity and nutrients due 

to isolation in Hawai‘i’s steep intertidal zone (Huisman et al 2007), it remains unknown 

if native species have adapted to the rapid increases in nutrient concentrations of SGD 

from anthropogenic sources resulting from rapid coastal development throughout 

Hawai‘i. It follows to hypothesize that cosmopolitan proliferative species have adapted to 

human dominated ecosystems and have the ability to exploit the conditions produced near 

human developed coastlines and watersheds. In the case of water potential, this means 

maintaining the optimal turgor pressure for survival, growth, and nutrient uptake under 

intermittent conditions of low salinity and high nutrient concentrations. Here, I propose 

that physiological responses to nutrient fluxes contributes to the success of opportunistic 

macroalgal species in the coastal ecosystem where discharge of nutrient loaded SGD 

plumes occurs. SGD plumes are already loaded well above seawater nutrients - even in 

pristine settings. On the other hand, opportunistic species may simply be better suited to 

survive in fluctuating conditions such as high disturbance (breakage), high variability in 

salinity, and high variability in nutrients. 
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The ability to regulate internal solute potential in response to SGD pulses could 

be the physiological trait that allows for weedy or invasive species to dominate 

anthropogenically impacted ecosystems and form monospecific strands. Constant nutrient 

loading allows for unrestrained algal growth with blooms continuing for as long as excess 

nutrients are provided. Not only do these blooms continue, they are ever increasing in 

benthic cover and biomass as decreased ecosystem health creates a positive feedback 

loop for even more algal growth with declines in herbivores, coral cover, and competing 

algal species. 

6. FUTURE RESEARCH 
In order to get statistically significant results for internal water potential the 

experiment will need to be repeated with more numbers of replicates and finer scale 

sorbitol solution ranges. Due to the time intensive manner of the Chardakov 

measurements it would not be possible to achieve this with only one person running the 

Chardakov experiment; at least three people would be needed to take Chardakov 

measurements simultaneously in order to increase the number of replicates for this 

experiment to the maximum value of twelve (in this flow through seawater system that is 

limited to 48 total specimen, the only system of this kind currently available for 

phycological research in Hawai‘i). With more replicates ETRmax and biomass values 

would also be more statistically significant. 

The biomass values were most likely not significant to this experiment. An 

experimental period of three days is not long enough to see the effects of the 

experimental and control conditions on biomass. If the length of experiment and the 

numbers of replicates were increased these values could become more relevant.  
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Regulation of tissue water potential has been investigated in two closely related 

and ecologically similar species. More rigorous testing of tissue water potential in these 

and other algal species will reveal how tissue water potential regulation varies across 

algal genera.  In order to understand how tissue solute potential influences community 

dynamics of marine ecosystems, tissue solute potential changes in response to other 

environmental conditions should be examined. Differences between habitats including 

changes in precipitation, submarine groundwater discharge fluxes, and anthropogenic 

nutrient loading may well play into the ecological changes that lead to increases in this 

competitive dominant species, through its ability to survive and even thrive in the 

dynamic coastal habitats of Hawai‘i. Field comparisons of internal solute potential 

response by adjacent populations across measured ecosystem gradients will reveal the 

range of internal solute potential responses to changing environmental conditions 

produced by distinct species. The substantial diversity (over 500 species) of Hawaiian 

algae combined with the large range of habitats provides for virtually limitless 

possibilities for tissue water potential research.  
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Tables 
Table 1: Chardakov Results for Internal Water Potential 

Group Nutrient Addition Salinity ‰ Average !P (MPa) n=7 

Acanthophora spicifera Control None 35 -1.908894 

Acanthophora spicifera SGD 
Treatment 

7.51µM NO3
- 

0.15 µM PO4
3- 

27 -2.0574374 

Laurencia mcdermidiae Control None 35 -2.0042278 

Laurencia mcdermidiae SGD 
Treatment 

7.51µM NO3
- 

0.15 µM PO4
3- 

27 -2.0416716 

Difference, A. spicifera treatment and control: 1.485434 mbar 
Difference, L. mcdermidiae treatment and control: 0.374438 mbar 

 
Table 2: Average change in ETRmax 

Group Nutrient Added  Salinity 
‰ 

Average Change 
in ETRmax 

Acanthophora spicifera  
Control 

None 35 
-9.9554 

Acanthophora spicifera  
SGD Treatment 

7.51 µM NO3
- 

0.15 µM PO4
3- 

 

27 

-6.4704 
Laurencia mcdermidiae 
Control 

None 35 
-31.6658 

Laurencia mcdermidiae 
 SGD Treatment 

7.51 µM NO3
- 

0.15 µM PO4
3- 

27 
-41.5709 

 
Table 3: Results from one-way ANOVA statistical analyses. 

Variable SS df MS F P-value F crit 
ETRmax 7847.507 3 2615.8358 2.5343807 0.0731931 2.8826042 
Internal Water 
Potential 0.1169417 3 0.0389805 2.1949187 0.1117154 2.9603513 
Weight 0.0207906 3 0.0069302 0.7633678 0.5224982 2.8826042 

 
Table 4: Mean and Error Data 

 

ETRmax 
Mean 

Standard 
Error 

IWP 
Mean 

Standard 
Error 

Weight 
Mean (g) 

Standard 
Error 

A. spicifera 
Control -9.955 3.598 -1.909 0.063 0.051 0.030 
A. spicifera 
Treatment -6.470 4.997 -2.064 0.035 0.025 0.022 
L. mcdermidiae 
Control -31.666 12.879 -2.004 0.042 0.089 0.029 
L. mcdermidiae 
Treatment -41.571 17.296 -2.049 0.045 0.048 0.044 
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Images 

 
Figure 1 The Hawaiian endemic, Laurencia mcdermidiae, grows in the low intertidal zone on exposed 
rock.  
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Figure 2 Acanthophora spicifera, an accidental introduction at Pearl Harbor in 1950, occurs frequently on 
O‘ahu reef flats and is considered the most pervasive of the introduced invasive algal species in Hawai‘i. 
 

 
Figure 3 Collection site at Diamond Head beach near Beach road. 
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Figure 4 Location of collection site near Diamond Head on O‘ahu. 

 
Figure 5 Collection site at Beach Road, Diamond Head. Both algal species were growing on this intertidal 
shelf.  
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Figure 6 Aerial infrared imaging has been used to visualize the SGD plumes off the Kona coast of Hawai‘i 
Island. A correlation was made between sea surface temperature and nutrient concentrations, and 
groundtruthing data proved that infrared imaging does in fact accurately portray nutrient regimes as well as 
temperatures of SGD plumes. (Johnson, A.G. et al. 2008.) 
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Figure 7 The Gyben-Herzberg ratio describes the ideal example of an island aquifer in which a freshwater 
lens sits atop a mixing zone of intermediate salinity on top of a basal layer of saline groundwater. SGD is 
delivered to the coastal ecosystem from the transition zone and saline aquifer. (U.S. Geological Survey Fact 
Sheet 057-00 < http://pubs.water.usgs.gov/fs05700>.) 
 

 
Figure 8 The flowthrough seawater system at AFRC consists of three water baths containing a total of 48 
aquaria. Four mixing chambers allow for randomized treatments throughout the water baths. Seawater is 
pumped from depth in Honolulu Harbor and filtered sequentially through a 10 µm , 5 µm , and 1 µm  filter 
before entering the mixing chambers. 
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Figure 9 Each aquarium receives seawater from one of the four mixing chambers. Two of which are 
treatment chambers that receive and nutrients from the peristaltic pump and fresh water. Each aquarium  
also receives an air line for airation. The water is allow to flow out of the tops of the aquaria and drains out 
of the water bath. This results in constant water flow and equal temperatures throughout the water bath. 
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Figure 10 The Chardakov method. In this experiment the incubation solution was dyed and a drop inserted 
into the control solution. However, even with this step reversed the osmotic concepts involved are the same 
(Devlin et al. 1983). 
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Figure 11 L. mcdermidiae incubating in sorbitol solutions of a range of concentrations for Chardakov 
analysis. 
 

 
Figure 12 Effects of Osmosis on Algal Cells.  
Case 1: #S<#P,  
 
Water flows into algal cells from  
osmotic gradient, leading to 
hypotonic stress. 

Case 2: #S = #P  
 
The concentration of solute within 
cells and bathing solution are equal 
and no net exchange of water occurs. 
The cell and solution are iso-osmotic.  
 
The equation #S=#P=-m i R T may 
be used to calculate internal water 
potential. 

Case 3: #S>#P,  
 
Water flows out of the algal cell 
and into the bathing medium, 
leading to hypertonic stress. 
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Figure 13 A Rapid Light Curve is taken for A. spicifera to measure photosynthesis. 
 

 
Figure 14 Calculated averages of internal water potential from both algae, showing range between 
treatment and control groups.   $+ SE, n=7. 
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Figure 15 Changes in mean rates of ETRmax for A. spicifera control plants during the experimental period.  

A. spicifera exhibited an average rate of -9.96 d-1 .  Values are presented as X + SE, n= 7 
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Figure 16 Change in mean rates of ETRmax for experimental  A. spicifera plants . An average rate of -6.47 
d-1 change in ETRmax was  recorded.  Values are presented as in Figure 15. 
 

 
Figure 17 Change in mean rates of  ETRmax for L. mcdermidiae control plants for the experimental period. 
L. mcdermidae exhibited an average rate of change of -31.67  d-1.  .  Values are presented as in Figure 15. 
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Figure 18 Change in mean rates of ETRmax for experimental L. mcdermidiae plants. An average rate of -
41.57 d-1 change in ETRmax was recorded.  Values are presented as in Figure 15. 

 
Figure 19 Declines in ETRmax. 
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Figure 20: Growth data 
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Figure 21 Light and temperature data for water bath 1. 
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Figure 22 Light and temperature data for water bath 3. 
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