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ABSTRACT  

 

Understanding the relationship between environment and the spatial distribution 

of species has always been important for environmental protections and ecological 

conservations. Remote sensing technologies provide opportunities for acquiring 

information on climate and vegetation more easily and faster, and have been applied 

in many fields such as geography, biology, ecology, etc. Recent advance remote 

sensing technologies such as airborne LiDAR provides useful information about 

canopy structure in three-dimensional space. In this study, airborne LiDAR data in the 

Northeast Minnesota were combined with conventional habitat variables to build 

models for predicting bird species abundance. Correlations were examined between 

different groups of variables and bird abundance. Results were discussed on the 

ecological factors on bird species abundance and future potential developments. It was 

found that airborne LiDAR derived canopy structure variables were important for 

predicting bird abundance. This study could improve our understanding of the 

relationship of bird species with vegetation and climate, which can help ecologists to 

estimate the bird biomass and biodiversity using these environmental variables. 
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CHAPTER 1. INTRODUCTION 

 

The ecosystems worldwide have been changed dramatically in the recent 

centuries. It is crucial to study the species biomass and biodiversity to present a global 

view of ecosystem circumstances and also its variations (Jacob, Wilson, & Lewis, 

2014; McGill, 2015; Newbold et al., 2015). These biomass and biodiversity studies 

can help governments adjust their policies so that humans can simultaneously protect 

the ecosystem and maximize the economic profit both locally and globally (Chapin et 

al., 2011; McGill, 2015). 

Avian species is one of the most sensitive class of vertebrates for ecosystem 

studies. Most birds can migrate over a large range and their reproduction abilities are 

highly impacted by their environment compared to other vertebrates (Podulka et al., 

2004). Avian distributions are important indicators for ecologists to understand both 

the local and global health of different ecosystems. 

Moreover, bird species richness and abundance can be influenced by forest 

attributes such as development stage, productivity, tree species diversity, and 

disturbance (Gil-Tena et al., 2007), which, in turn, impact forest morphological 

characteristics. Thus, the avian biomass and biodiversity, which can be calculated 

from avian distributions, are highly correlated canopy structure parameters. Previous 

studies have found that it is possible to estimate the bird abundance and diversity 

using the canopy structure parameters (Clawges et al., 2008; Lesak et al., 2011; Scott 

et al., 2014; Swatantran et al., 2012; Wallis et al., 2016). 
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Nevertheless, forest structure parameters are hard to quantify and measure over 

large spatial scales. In the recent two decades, LiDAR (Light Detection and Ranging) 

provides a novel method to study forest structures and makes it possible to accurately 

quantify forest structure and attributes. LiDAR uses a laser transmitter and receiver to 

record the intensity and interval between transmitting a laser at a target and receiving 

the reflection (Maltamo, Naesset, & Vauhkonen, 2014). By deploying LiDAR on 

aircraft, LiDAR can provide points cloud data of forests in high resolution and large 

scale (Chen, 2007a, 2007b; Chen et al., 2007). These data can be used to extract high 

quality forest structure data such as tree height, tree amount, and crown density, 

allowing for quantification of forest structure (Chen, 2007a, 2007b; Chen et al., 

2007).Recently, many states in the United States have started LiDAR program and 

several states, such as Minnesota, have made their LiDAR data publically available.  

These data offer an unprecedented opportunity for avian habitat studying. In this 

study, we aim to quantify and analyze the relationships between avian biodiversity 

and LiDAR-derived forest structure and other environmental variables.  
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CHAPTER 2. METHODS  

 

Physical environmental variables, satellite based vegetation properties variables 

and airborne LiDAR derived canopy structure variables were assessed for predicting 

our response variable: bird species abundance. For every predictor variable, we 

explored the strength of Person correlation coefficient. Stepwise regression (Cutler et 

al., 2007; Vilà et al., 2013) was used to test the correlation between bird species 

abundance and environmental variables. SVM (Supported Vector Machines) 

regression was used to build the prediction models.  

 

 

2.1 Data  

 

2.1.1Bird surveys  

  

Breeding Bird Survey (BBS) data was derived from Northern American Breeding 

Bird Survey website https://www.pwrc.usgs.gov/bbs/ (Goetz et al., 2014). This survey 

has been conducted since 1966, there are 5267 survey routes throughout Northern 

America by 2010, among which 3140 routes were surveyed in 2010 (Figure 1). Each 

route is 4 km long and contains 50 stops, each of which is 0.5 mi (800 m) apart. 

Observers make a 3-minute count of heard and seen birds within 0.25mi (400 m) 

radius from the stop and observations are made at each stop in sequence along each 

route. Surveys start half hour before sunrise during the peak of each year’s avian 

breeding season, and take about 5 hours to complete (Sauer et al., 2013).  

 

https://www.pwrc.usgs.gov/bbs/
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Figure 1. BBS route distribution in North America (Sauer et al., 2013). 
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Figure 2. Principle BBS observation routes in Minnesota.  

 

 

The data for each route for the year 2012 was chosen match the time when 

other variables especially the airborne LiDAR data were acquired. There were 91 

survey routes in Minnesota and 70 of them were surveyed in 2012. There are 87 bird 

species were recorded through all the routes in Minnesota in 2012. A total of 52963 
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individuals were observed. The distributions of bird species and abundance of the 

active routes in Minnesota in 2012 were shown in Figure 3 and Figure 4.  

 

 

Figure 3. Bird species richness observed on the 70 active routes in 2012 in Minnesota. 

The colored square showed the amount of bird species observed on each route.  

 

 

 

 



7 
 

 

 

 

Figure 4. Bird abundance observed on the 70 active routes in Minnesota in 2012. The 

colored square showed the amount of bird individuals on each route.   
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2.1.2 Physical environment  

 

Climate variables from temperature and precipitation, were derived from the 

WorldClim data set, which can be downloaded from http://www.worldclim.org/. The 

dataset is comprised of world climate map layers at 1 km spatial resolution. Climate 

conditions are represented from the year 1950 to 2000 (Hijmans et al., 2005).A total 

of 19 bioclimatic variables were studied (Table 1). 

Shuttle Radar Topography Mission (SRTM) was used to derive elevation 

information. This publicly available (CIAT-CSI SRTM website: 

http://srtm.csi.cgiar.org/ ) elevation dataset is derived from interferometric radar 

imaging which covers approximately 80% of the world' land surface (Reuter et al., 

2007). SRTM has a 30 meters spatial resolution in the United States. 

Variable name Description Source 

bio 1 Annual mean temperature WorldClim 

bio 2 Mean diurnal range (mean of monthly values) WorldClim 

bio 3 Isothermality WorldClim 

bio 4 Temperature seasonality WorldClim 

bio 5 Max temperature of warmest month WorldClim 

bio 6 Min temperature of coldest month WorldClim 

bio 7 Temperature annual range WorldClim 

bio 8 Mean temperature of wettest quarter WorldClim 

bio 9 Mean temperature of driest quarter WorldClim 

bio 10 Mean temperature of warmest quarter WorldClim 

bio 11 Mean temperature of coldest quarter WorldClim 

bio 12 Annual precipitation WorldClim 

bio 13 Precipitation of wettest month WorldClim 

bio 14 Precipitation of driest month WorldClim 

bio 15 Precipitation seasonality WorldClim 

bio 16 Precipitation of wettest quarter WorldClim 

bio 17 Precipitation of driest quarter WorldClim 

http://www.worldclim.org/
http://srtm.csi.cgiar.org/
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Table 1. Physical environmental variables. Descriptions and sources were shown. 

 

    

        

2.1.3 Satellite-based vegetation properties  

 

NLCD 2011(National Land Cover Database 2011) was used to derive 

vegetation cover information (Homer et al., 2015). This product reflects land cover of 

the United States at 30 m spatial resolution; and all classes are properly defined based 

on plant functional type mixtures and land cover types. All the 16 classes were 

categorized into 8 classes: LcWater (Land cover: water .etc.), LcShrubland, LcBarren, 

LcDeveloped, LcForest, LcWetlands, LcCultivated and LcHerbaceous. Within the 

class of Forests, 3 subclasses were created based on the longevity of leaves, they are 

LcDeciduous, LcEvergreen and LcMixed (Table 2). The proportional amounts of each 

cover variable was calculated and categorized as a particular vegetation function 

within the 500 m buffer of each BBS route. 

MODIS (Moderate Resolution Imaging Spectroradiometer) products were used 

to derive the other vegetation property variables including: NPP (Net Primary 

Production), EVI (Enhanced Vegetation Index) area, and VCF (Vegetation Continuous 

Fields) (Table 2). These data sets were retrieved from https://lpdaac.usgs.gov.  

bio 18 Precipitation of warmest quarter WorldClim 

bio 19 Precipitation of coldest quarter WorldClim 

SRTM Elevation(m)  SRTM 

https://lpdaac.usgs.gov/
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Annual NPP information was provided by the MOD17A3H Version 6 product, 

which has a 500 m spatial resolution (Running et al., 2015). Data of the year 2012 

was chosen. 

MOD44B V006: the Terra MODIS Vegetation Continuous Fields (VCF) 

product was used for representing the surface vegetation cover annually and globally 

with a 500 m resolution (DiMiceli et al., 2017).   

NBAR_EVI_Area is the integration of daily EVI in growing season, which was 

derived from MODIS Vegetation Dynamics product (MCD12Q2) V005, which uses 

MODIS EVI that computed from the MODIS Nadir Bidirectional Reflectance 

Distribution Function (BRDF)-Adjusted Reflectance (NBAR) product (Huete et al., 

2002). This data sets are in a spatial resolution of 500 m on a global scale.   

 

Variable  Source Spatial resolution 

LcWater NLCD 30 m 

LcDeveloped NLCD 30 m 

LcBarren NLCD 30 m 

LcForest NLCD 30 m 

LcShrubland NLCD 30 m 

LcHerbaceous NLCD 30 m 

LcCultivated NLCD 30 m 

LcWetlands NLCD 30 m 

LcDeciduous NLCD 30 m 

LcEvergreen NLCD 30 m 

LcMixed NLCD 30 m 

NPP MOD17A3H V006 500 m  

EVIarea MCD12Q2) V005 500 m  

VCF MOD44B V006 500 m 

Table 2. Satellite based vegetation properties variables and their spatial resolutions  
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2.1.4 Airborne LiDAR derived canopy structure 

 

Airborne LiDAR data from airborne laser scanning (ALS) were used to derive 

canopy structure metrics (Chen, 2007a, 2007b; McRoberts et al., 2016). Acquired in 

2012 in Minnesota (Figure 5), the wall-to-wall ALS data were with a nominal pulse 

density of 0.67 pulses / m2. After being classified by the provider, the ground returns 

were then used to construct a digital terrain model via interpolation by using the Tiffs 

(Toolbox for Lidar Data Filtering and Forest Studies) software, which is dedicated to 

filtering point cloud and extracting individual tree structural information (Chen, 

2007a). Metrics such as the mean, standard deviation, skewness, kurtosis, quadratic 

mean height of the distributions of heights for all echoes were included for each cell 

and plot (Lefsky et al., 1999; Chen et al., 2012). Additionally, canopy densities were 

calculated as the proportions of echoes with heights that are 0%, 10%,…, 90% of the 

range from 1.3 m above ground to the 95th height percentile, the corresponding 

heights to the 10th, 20th, …, 100th percentiles of the distributions were also 

calculated (Gobakken and Næsset, 2008). 
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Figure 5. Study area (in purple) with airborne LiDAR coverage in Minnesota 

 

 

2.2 Geospatial processing 

 

The geospatial processing was performed in ArcMap 10.3. Each predictor 

variable data set was spatially intersected with the BBS routes. A 500 m buffer was 

created around each BBS route (Figure 6.) in order to corporate with the spatial 

resolutions of all variables, so that the average conditions for each BBS route can be 
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extracted properly. After overlapping the 70 active routes with the airborne LiDAR 

coverage area, 18 routes were qualified for next step analysis. Figure 7 shows an 

example of one of the predictor variables bio1 (Annual Mean Temperature) intersects 

with the areas that within the 500 m buffer of each route.  
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Figure 6. 500 m buffer was created for each of the 70 BBS routes in Minnesota.   
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Figure 7. Intersection of bio1 (Annual Mean Temperature) and the BBS routes with 

500 m buffer.  
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2.3 Statistical analysis  

 

Statistical analysis was performed in Matlab2015b. Correlation coefficient 

between each predictor variable and bird abundance was obtained. Stepwise 

regression was used to interactively explore predictor variables’ importance. Being 

simple and fast, stepwise regression is a process of building a model by adding or 

removing variables based on specified criterions (Hocking, 1976). Each predictor 

variable was assessed with the response variable (bird abundance) separately using 

the default criterion. In addition, all variables together were tested, so that the most 

significant variable could be obtained. Variables that fit the criterion were shown with 

corresponding P values. Prediction models were built for different variables by using 

SVM regression.  
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CHAPTER 3. RESULTS 

 

3.1 Variable correlations 

  

The correlation coefficient and the corresponding P value of each variable was 

shown in Table 3. Significance tests were done by applying stepwise regression for 

each group of variables. Among the physical environmental variables, BIO8 showed 

the strongest positive correlation with bird abundance (p=0.0057). Abundance 

increases as BIO8 increases. LcHerbaceous that within the vegetation property 

variables was most significant (p=4.3452e-06), showed positive correlation: as 

LcHerbaceous increasing, abundance also increasing. It’s also the most significant 

variable of all assessed variables. A positive correlation was showed on Skewness, 

highest importance (p=0.0014) among these LiDAR derived metrics: when Skewness 

is increasing, bird abundance increases.  

 

  

Variable r  p 

LcWater -0.0649 0.7982 

LcDeveloped -0.2395 0.0338* 

LcBarren 0.1017 0.6880 

LcForest -0.4712 0.0484* 

LcShrubland -0.0398 0.8753 

LcHerbaceous 0.8616 0.0000* 

LcCultivated 0.4344 0.0716 

LcWetlands 0.085 0.7375 

LcDeciduous 0.4246 0.0790 

LcEvergreen -0.4086 0.0923 

LcMixed -0.2179 0.3850 

NPP -0.4039 0.0965 

EVIarea 0.4603 0.0546 

VCF -0.5139 0.0291* 

BIO1 0.5576 0.0162* 

BIO2 0.1083 0.6687 
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BIO3 -0.3013 0.2244 

BIO4 0.3596 0.1428 

BIO5 0.5901 0.0099* 

BIO6 0.1311 0.6041 

BIO7 0.2969 0.2316 

BIO8 0.6236 0.0057* 

BIO9 0.1184 0.6399 

BIO10 0.6223 0.0058* 

BIO11 0.1351 0.5931 

BIO12 0.1699 0.5003 

BIO13 0.6013 0.0083* 

BIO14 0.0974 0.7006 

BIO15 0.2118 0.3989 

BIO16 0.4447 0.0644 

BIO17 -0.1836 0.4657 

BIO18 0.4435 0.0653 

BIO19 -0.1837 0.4656 

SRTM -0.3971 0.1028 

Mean -0.6075 0.0075* 

Std -0.5377 0.0214* 

Skewness 0.6952 0.0014* 

Kurtosis 0.2038 0.4174 

CC -0.6641 0.0027* 

Pct10 NaN NaN 

Pct20 -0.4374 0.0695 

Pct30 -0.479 0.0443* 

Pct40 -0.4681 0.0501 

Pct50 -0.4831 0.0423* 

Pct60 -0.4795 0.0441* 

Pct70 -0.5197 0.0271 

Pct80 -0.6273 0.0053* 

Pct90 -0.6861 0.0017* 

 

Table 3. Correlation between predictor variable and bird abundance: r: correlation 

coefficient; p: p-value. Variable with “*” has p<0.05. Variables were bolded have the 

highest correlations among their variable group.   
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3.2 Prediction models  

 

SVM regression was used to build prediction models. Each of the three 

categories of predictor variables were assessed with the response variable, in our case, 

bird abundance. Figures of the models between true response (observed bird 

abundance) and predicted response (predicted bird abundance) based on the three 

groups of predictor variables were listed below. The model based on airborne LiDAR 

derived canopy structure predictors and bird abundance had the lowest RMSE (134.89) 

and the highest R2 (0.24) (Figure 9). The model based on physical environmental 

predictor variables and bird abundance had a RMSE of 140.45 and a R2 of 0.18 

(Figure 7).The prediction model based on vegetation properties and bird abundance 

had a RMSE of 140.25 and a R2 of 0.18 (Figure 8).  
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Figure 8. Predicted bird species abundance based on physical environmental 

variables vs. actual abundance (RMSE: 140.45, R2: 0.18).  
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Figure 9. Predicted bird species abundance based on satellite-derived vegetation 

variables vs. actual abundance (RMSE: 140.25, R2: 0.18). 

 



22 
 

 

 

Figure 10. Predicted bird species abundance based on airborne LiDAR derived 

canopy structure variables vs. actual abundance (RMSE: 134.89, R2: 0.24). 
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CHAPTER 4. DISCUSSION 

 

The correlations between climate variables and bird abundance of our results 

were generally positive, while it was generally negative between canopy height and 

bird abundance. Correlations between vegetation properties and bird abundance 

varied, however, the importance was highest between LcHerbaceous and bird 

abundance (correlation coefficient = 0.742).  

Temperature is an important factor on bird abundance from our results: BIO1, 

BIO5 and BIO8 all showed high positive correlations with bird abundance. Previous 

studies (Williams & Middleton, 2008; Zamora-Vilchis et al., 2012) all found that 

temperature is a significant climate variable on bird abundance. Annual mean 

temperature affects bird abundance could be related with breeding birds’ laying dates. 

Annual mean laying date for breeding bird is strongly correlated with annual mean 

temperature, the earlier it gets warmer the earlier birds will bred (Møller et al., 2010). 

However, our results showed that bird abundance increases as mean temperature of 

wettest quarter increases, although few previous studied shown such direct 

relationship.   

Airborne LiDAR derived metrics are correlated with bird abundance. Variables 

like Mean, Std, Skewness and CC, all have relative high correlations with bird 

abundance. Skewness showed the highest importance with bird species abundance 

among the group of variables of airborne LiDAR derived metrics. The overall 

negative relation between airborne LiDAR derived canopy structure height and bird 
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abundance was observed: as the canopy heights increase, the bird abundance decrease, 

which was not as expected. However, the opposite relations between canopy 

characteristics such us canopy height and bird distribution was pointed out in other 

pervious works (Goetz et al., 2007; Lesak et al., 2011; Bradbury et al., 2005) that 

demonstrated bird habitat assessment with LiDAR data. Both bird species richness 

and abundance increase when canopy height increase in these studies, and therefore, 

forests could sometimes be crucial on avian community compositions, and so that 

forest managements could also be important on bird conservations. Theses possible 

causes of unexpected observations in this study were discussed below.     

NLCD derived variable LcHerbaceous was the most significant variable with 

bird abundance. Herbaceous cover percentage was also found strong relationship with 

bird distribution in previous studies (Phillips et al., 2008). We anticipated that 

LcForest could be positively significant in our models, but it showed negative relation 

with bird abundance, which was not as expected. That might be because most of 

thirds observed were belong to the habitat guild of grassland, this could be future 

studied by tracing the observed birds’ habitat types. However, that might also be 

related with the limitations of this study, such as the small sample size: even though 

the study area that covered with airborne LiDAR shots is relatively big, the available 

number of BBS routes within this area is only 18, despite with a 500 m buffer around 

each route, the total area of all created polygons is still small. Moreover, the buffer 

created around each BBS route was 500 m, which is bigger than the original 
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observation radius (400 m). This could potentially lead to unexpected errors such as 

birds being less counted. Besides, the method of field data collection of breeding bird 

in BBS itself could have some uncertainties; observers’ visions and hearings, 

distributions from environments, familiarities with bird morphology, observing time 

differences, etc., could all be the factors that might contribute to errors.   

The overall R2 of each prediction models were generally not strong, which may 

indicate that some predictor variables chosen in this study might not have more 

complex relations with bird abundance. Besides, low R squares might, again, caused 

by the small sample size in this study and other potential limitations mentioned above. 

However, the model with only airborne LiDAR derived canopy structure variables 

performed the best. As Lindberg et al. (2015) suggested that our availability to predict 

bird species abundance and distribution could be improved with considerations of 

ALS data.  
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CHAPTER 5. CONCLUSION 

 

This study assessed bird species habitat using airborne LiDAR data, along with 

physical environmental data and satellite based vegetation properties data. A 3-D bird 

habitat structure was assessed for studying its distribution, which may help us get a 

better understanding of the relations between bird species and environmental variables. 

This relations could be useful for the future conservation and protection activities and 

research studies of biologists and environmentalists. However, besides the potential 

drivers mentioned in the study, other human induced factors could also affect bird 

distributions, such as the edge effect caused by forest clear cutting (Manolis et al., 

2000), and the long term effect from global warming (Butler, 2003).    

This study can be further developed to predict birds’ population in a certain area 

with proper predictor variables data and high spatial resolution predicting maps could 

be produced; and when airborne LiDAR data is available, similar researches can also 

be done in other areas such as Hawai’i, of which bird species diversity is highly 

threatened.  
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APPENDIX  

 

Scatter plots of predictor variables and bird abundance, only with p<0.05 were shown.  
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