
METABOLIC ENZYME ACTIVITIES OF BENTHIC ZOARCIDS OFF THE  
COAST OF CALIFORNIA 

 
 
 
 

A THESIS SUBMITTED TO  
THE GLOBAL ENVIRONMENTAL SCIENCE  

UNDERGRADUATE DIVISION IN PARTIAL FULFILLMENT OF THE 
REQUIREMENTS FOR THE DEGREE OF 

 
BACHELOR OF SCIENCE 

IN 
GLOBAL ENVIRONMENTAL SCIENCE 

 
DECEMBER 2011 

 
 
 
 
 

By 
Erica June Aus 

 
 
 

Thesis Advisor 
Jeffrey Drazen 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

ii 

 
 I certify that I have read this thesis and that, in my opinion, it is satisfactory in 

 scope and quality as a thesis for the degree of Bachelor of Science in Global 

 Environmental Science. 

 
 
 
 

THESIS ADVISOR 
 

_________________________________ 
    Jeffrey Drazen 

Department of Oceanography 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

iii 

ACKNOWLEDGEMENTS 
 

  

This research project would not have been possible without the support of 

many people.  It is an honor to have worked with my advisor Dr. Jeffrey Drazen, 

who has provided invaluable guidance and patience throughout this project.  I also 

want to express my gratitude to both Nicole Condon and Jason Friedman.  I 

wouldn’t have made it this far without their help, every step of the way.  Thank 

you to everyone in the Drazen lab, including Anela Choy, Chris Demarke, and 

William Misa.  Jane Schoonmaker, who has been there since day one of my 

journey through the Global Environmental Science degree, and provided much 

needed encouragement and assistance.  Last but not least, all of my fellow Global 

Environmental Science majors who have laughed, cried, and suffered with me 

along the way.  I appreciate all of the support. 

This research was conducted in accordance with the University of Hawaii 

Institutional Animal Care and Use Committee protocols.  NSF provided funding 

for this work through a grant to Jeffrey Drazen (OCE 0727135).   

 
 
 
 
 
 
 
 
 
 
 



 
 

iv 

ABSTRACT 
 

     

Our knowledge of deep-sea ecosystems is poor.  Specifically, knowledge is 

lacking concerning deep-sea benthic communities and their metabolic rates.  

There has been much debate concerning what controls metabolic rates in animals, 

whether it is size and temperature or declining light levels and the selective 

pressure for locomotory capacity.  Zoarcids are widely distributed and speciose, 

therefore, a great model for this research.  The rates of four enzymes in twelve 

species of zoarcids were examined as a biochemical proxy for metabolic activity.  

Enzyme assays were performed on two anaerobic enzymes, citrate synthase and 

malate dehydrogenase, and two aerobic enzymes, pyruvate kinase and lactate 

dehydrogenase.  Both benthic and benthopelagic species were analyzed, over a 

broad depth range and size gradient.  No significant decline in enzymatic 

activities with increasing median depth of occurrence for both benthic and 

benthopelagic zoarcids was found.  Only one benthic species, Lyconema 

barbatum exhibited changes in aerobic enzymatic activity with increasing mass, 

however only between the shallower specimens.  The results from this research 

show that variations in enzyme activities exist among the different species of 

benthic and benthopelagic zoarcids, but is not accounted for by depth of 

occurrence or size.  It is likely that the differences between species in enzymatic 

rates reflect the feeding and swimming lifestyles of these fishes.  Further study is 

needed to understand the factors affecting the variation in enzyme activity.  
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CHAPTER 1 
INTRODUCTION 

 
 

There is a significant lack of knowledge concerning the deep-sea 

ecosystem, which is one of the largest ecosystems on the planet.  As commercial 

fisheries move to depths beyond continental shelves, and the ocean continues to 

be affected by anthropogenic activities, it becomes essential to understand how 

marine organisms will respond to these disturbances (Glover and Smith, 2003).  

Much of the deep-sea remains to be studied in terms of its biodiversity, biological 

productivity, species physiological strategies, and processes that are linked with 

surface ocean productivity (Rex and Etter, 2010).  The benthic (on the seafloor) 

and benthopelagic (typically found near, but not on, the seafloor) communities, 

which make up a large proportion of this understudied realm of the ocean, are 

important for studying the energy requirements of organisms in the deep-sea 

ecosystem and need to be studied in more detail. 

Zoarcids are a family of perciform fishes, which are a dominant taxa 

among fishes throughout the oceans (Mecklenburg et al., 2002).  Popularly known 

as eelpouts, there are over 200 species, and they are found from shallow 

temperate waters to the polar seas, though species living in the tropics are found 

only in deep waters (Eschmeyer and Herald, 1983; Hildebrandt et al., 2011).  

Many eelpouts are deep-sea forms, and the limited information available on their 

biology comes from only a few specimens.  Most species live associated with the 

seafloor between depths of 200-3000m, however there are some intertidal, 
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meso/bathy pelagic, and abyssal species.  For the very few species which have 

been studied, they are poorly equipped for speed, having reduced muscle mass, 

lower protein content, and lower activities of aerobic and anaerobic enzymes.  It 

is been suggested that this is due in part because they are visually limited tactile 

predators with an eel-like body form (Seibel and Drazen, 2007). 

 Metabolism is the most fundamental biological rate (Drazen and Seibel, 

2007).  It is the rate at which organisms acquire, transform, and use energy and 

materials.  Metabolism provides the foundation with which to link the biology of 

individual organisms to the ecology of ecosystems and the roles that the 

organisms play (Brown et al., 2004).  Most of the research to date related to deep-

sea metabolism has been conducted on pelagic species (Drazen and Seibel, 2007).  

There are many challenges associated with laboratory-based and in situ 

measurements of deep-sea organisms’ oxygen consumption.  Enzyme assays can 

be used as a substitute for the standard procedure of measuring oxygen 

consumption and are a biochemical proxy of metabolic rate (Drazen and Seibel, 

2007).  For this study, we are primarily interested in examining the enzymatic 

rates in white muscle tissue, which comprises the bulk of the body mass in these 

benthic and benthopelagic fishes and is the power source of anaerobic burst 

swimming for prey capture and predator avoidance (Somero and Childress, 1980; 

Sullivan and Somero, 1980).  We will be looking at the enzyme activities of two 

anaerobic enzymes associated with glycolysis, lactate dehydrogenase (LDH) and 

pyruvate kinase (PK), and two aerobic enzymes associated with the citric acid 

cycle, citrate synthase (CS) and malate dehydrogenase (MDH). 
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Currently there are two opposing theories about the differences in the 

metabolism between shallow and deep-water living species.  These differing 

schools of thought explain the variations in metabolic rate to either be attributed 

to anatomical or environmental constraints or the diversity of ecological roles and 

the energy demands associated with those roles (Seibel and Drazen, 2007).  

Specifically, one of those theories that is used to predict metabolic rates is the 

Metabolic Theory of Ecology (Gillooly et al., 2001; Brown et al., 2004).  These 

authors provide a model that characterizes the general effects of temperature and 

body mass on metabolic rate.  They found that resting metabolic rates of a wide-

range of organisms studied were correlated with temperature and body size.  

Therefore these two parameters were thought to be the major determinants of 

metabolic rates of any species of interest (Gillooly et al., 2001). However, there is 

a considerable amount of variability not explained by their relationship; more than 

a 300-fold variation between the fastest and the slowest marine animals after mass 

and temperature adjustments have been made (Seibel and Drazen, 2007).   

An alternative hypothesis, the Visual Interactions Hypothesis (VIH) 

attributes the decline in metabolic rates with depth not to resource limitation or 

temperature and pressure constraints, but to a correlation with the reduction of 

light with depth, which contributes to reduced predator-prey interactions for 

visually interacting taxa (Childress and Mickel, 1985; Seibel and Drazen, 2007).  

The reduction in predator-prey interactions results in a relaxation of the selective 

pressure for locomotory capacity, and therefore a reduction in metabolism 

(Drazen and Seibel, 2007).  Evidence supporting the VIH was found by Drazen 
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and Seibel (2007) who analyzed metabolic rates in a variety of marine taxa and 

observed a decline in metabolic rate with depth to be most pronounced in pelagic 

species, with less variation for benthic species.  This is a result of the fact that the 

sea floor offers more chances for crypsis than does the open ocean.  This relaxes 

predator-prey interactions and the need for long-range locomotory capacity. 

Benthopelagic species, which are more mobile than benthic species, tend to show 

a decline in metabolic rate with depth in between that of pelagic and benthic 

species.  In further support, Hand and Somero (1983) found that the enzymatic 

activities of animals from the hydrothermal vent habitat were similar when 

compared to the activities of shallow-water species.  With a high potential for 

energy metabolism, the hydrothermal vent species’ enzyme activities are evidence 

that the low temperatures and higher hydrostatic pressures of the deep-sea are not 

important factors selecting for reduced metabolic rates in deep-sea organisms.  

Lastly, evidence was found from studies of animals inhabiting the isothermal 

Antarctic water column that didn’t show declines in metabolic rates related to 

depth (Seibel and Drazen, 2007). 

This study will evaluate the metabolism of benthic and benthopelagic 

zoarcids off the coast of California over a broad depth gradient and size range. 

Zoarcids are a good model to use for this research because they are widely 

distributed and speciose.  In addition, zoarcids are visually limited predators, 

which also makes them a good model to use to test the VIH, particularly because 

there should be little or no decline in metabolic rate with depth.  To test this 

hypothesis, the enzymatic rates of both aerobic and anaerobic enzymes in white 
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muscle tissue as a proxy for metabolic rate will be determined.  The proposed 

research will contribute significantly to the understanding of the metabolism and 

ecology of zoarcids, a widely distributed group of fishes.  In addition, it will 

supplement our lack of knowledge concerning the deep-sea ecosystem and energy 

transfer with depth.  Lastly, the proposed research will help to implement 

sustainable fisheries management policies and assess how deep-sea fish will 

respond to future anthropogenic threats.  

 

The null hypotheses that will be addressed in this study are: 

 

H1: There is no change in metabolic enzyme activities of benthic and 

benthopelagic zoarcids with increasing depth. 

My first objective will be to analyze biochemical indicators (CS, PK, MDH, and 

LDH) for metabolism in white muscle tissue in benthic and benthopelagic zoarcid 

teleosts caught off the coast of California between 100-3000m. 

 

H2: There is no difference in metabolic enzyme activities between benthic 

and benthopelagic species of zoarcids. 

My second objective will be to analyze biochemical indicators (CS, PK, MDH, 

and LDH) for metabolism in white muscle tissue between groups of zoarcid 

teleosts (benthic vs. benthopelagic) caught off the coast of California between 

100-3000m. 
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H3: There is no difference in metabolic enzyme activities of benthic and 

benthopelagic zoarcids with increasing size. 

My third objective will be to analyze biochemical indicators (CS, PK, MDH, and 

LDH) for metabolism in white muscle tissue in benthic and benthopelagic zoarcid 

teleosts over a broad size range intraspecifically.  
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CHAPTER 2 
METHODS 

 
 

2.1 Sample Collection 

Stratified trawls were conducted in April and October of 2009, off the 

coast of California in Monterey Bay.  Specimens were collected across a broad 

depth range, between 100-3000m.  In April, otter trawls were deployed to 1000m, 

and beam trawls were used at 2000m and 3000m.  In October, otter trawls were 

deployed at all depths.  Specimens were placed on ice immediately after being 

sorted from the trawl, then weighed and measured.  White muscle tissue was 

sampled below the first dorsal fin within hours of capture, and then transferred to 

liquid nitrogen for storage during the cruise.  Once brought back to the laboratory, 

the samples were stored in a -80°C freezer until enzyme assays were performed. 

 

2.2 Enzyme assays 

Two aerobic enzymes, CS and MDH, and two anaerobic enzymes, PK and 

LDH, were assayed using standard protocols described in the literature (Childress 

and Somero, 1979; Somero and Childress, 1980; Hand and Somero, 1983).  Our 

enzyme activity values reflect the highest potential activities possible in the 

tissues, which is the Vmax of enzymatic rates (protocol established so that there is 

no rate limitation) (Somero and Childress, 1980).  Lactate dehydrogenase was 

selected because it is the terminal enzyme in anaerobic glycolysis in vertebrate 

tissues and along with pyruvate kinase, provides a good measure of a tissue’s 
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capacity for anaerobic metabolism (Somero and Childress, 1980).  LDH activity 

can be analyzed to determine a fish’s ability for burst locomotor capacity (Hand 

and Somero, 1983; Somero and Childress, 1980).  Malate dehydrogenase is an 

important component of the citric acid cycle, involved in shuttling electrons 

between the cytosol and the mitochondria as well as, the maintenance of redox 

balance in the cell (Sullivan and Somero, 1980; Thuesen and Childress, 1994).  It 

is also an indicator of intermediary aerobic metabolism (Somero and Childress, 

1980).  Citrate synthase plays a key regulatory role in the citric acid cycle and 

serves as a quantitative measure of a tissue’s aerobic activity potential (Somero 

and Childress, 1980).  Also, CS activity can be scaled to body size and represent 

whole body metabolism (Somero and Childress, 1980). 

For each fish, two homogenates of white muscle were prepared.  The 

frozen muscle tissue was weighed then an ice-cold Tris HCl buffer was added as a 

homogenizing medium (10mM, pH 7.55 at 10°C).  The tissues were always kept 

on ice, and homogenized at 10°C using a motorized Dual-Kontes ground glass 

homogenizer.  Any tissue not sufficiently homogenized using the motorized 

homogenizer was homogenized by hand.  

Assays were run in a total volume of 2.0 ml at 10°C using a temperature 

controlled Shimadzu spectrophotometer with a temperature controlled water-

jacketed 12-cell cuvette changer and a temperature controlled water bath.  To 

account for temperature related metabolic variation, 10°C was chosen; a 

temperature that is within the range that all of the species included in this study 

can tolerate.  Additionally, it is below the temperature known to cause the 
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denaturation of proteins, which results in the inactivation of enzymes.  The CS 

assays were run at 412 nm, and PK, LDH, and MDH were run at 340 nm 

(International Units (IU)).  After the CS assays, the homogenates were 

centrifuged (5000 g) for 5 minutes.  The supernatant was then removed carefully 

to avoid the lipid layer.  The supernatant was used for the remaining PK, LDH, 

and MDH assays. 

To assure that there was no rate limitation during the enzyme assays, the 

chemical cocktails were prepared at the following saturating substrate conditions.  

For the CS cocktail, the following chemicals and amounts were used: 0.1 mM 

dithiobis-nitrobenzoic acid, 0.1 mM acetyl CoA, 2 mM MgCl2, and 50 mM 

Imidazol HCl (pH 8 at 10°C).  The reaction was initiated by 0.5 mM oxaloacetate. 

For the PK cocktail we mixed: 0.1 mM fructose 1,6 bisphosphate, 5.0 mM ADP, 

0.15 mM NADH, 10 U of LDH, 10 mM MgSO4, 100 mM KCl, and 80 mM Tris 

HCl (pH 7.8 at 10°C).  The reaction was initiated by 1.0 mM phosphoenol 

pyruvate.  For the MDH cocktail we mixed: 0.15 mM NADH, 0.5 mM 

oxaloacetate, 20 mM MgCl2, and 100 mM Tris HCl (pH 8.1 at 10°C).  Finally, for 

the LDH cocktail we mixed: 0.15 mM NADH, 2 mM sodium pyruvate, 100 mM 

KCl, and 80 mM Imidazole HCl (pH 7.8 at 10°C).  Enzyme activity is expressed 

in units (µmol substrate converted to product per min) per gram wet weight of 

tissue.  For all assays, the homogenates were done in duplicate and the average 

value was used in further statistics. 
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 2.3 Median depth of occurrence 

To analyze the relationship between metabolism and depth, the median 

depth of occurrence (MDO) was used.  In previous studies, the minimum depth of 

occurrence has been used to analyze depth related trends in metabolism (Childress 

and Somero, 1979; Sullivan and Somero, 1980; Drazen and Seibel, 2007).  The 

minimum depth of occurrence is defined as the depth below which 90% of the 

adult individuals of a species are caught (Seibel and Drazen, 2007).  The 

minimum depth of occurrence takes into account the fact that a fish may not 

always occupy a certain depth, due to possible diel vertical and ontogenetic 

migrations (Collins et al., 2005).  However, diel vertical migration has not been 

documented in demersal fishes off the coast of California.  Therefore, the MDO is 

believed to better represent the given species as a whole.  The minimum and 

maximum depths of occurrence were obtained from the literature and from the 

trawl data for all species, and the median was calculated from the two values 

(Anderson, 1989; Anderson, 1995; Andriashev, 1986; Eschmeyer and Herald, 

1983; Lauth, 1999; Mecklenburg et al., 2002; Miller and Lea, 1972). 

 

 2.4 Statistical Analysis 

 The overall mean values for each species’ enzyme activities were 

calculated.  Power regressions were applied to explore relationships between 

enzyme activities, depth, and body mass.  A log-log transformation was 

conducted prior to the regression analysis, when necessary.  A Mann-Whitney U 

test was used to test for differences in enzyme activities between benthic and 
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benthopelagic species.  Analyses were performed with Statistica, version 7.1 

(StatSoft, Inc., www.statsoft.com).  
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CHAPTER 3 
RESULTS 

 
  

 Twelve species of zoarcids were captured from 100 to 3000m off the 

California coast.  One of them, a previously unknown species of eelpout, 

designated Pachycara n. sp. A by Dr. Eric Anderson (SAIAB), was new to 

science and is being described elsewhere. 

 

3.1 Enzyme activities 
 

The highest potential enzyme activities of CS, MDH, PK, and LDH in 

WM tissue were measured for 53 individuals of 12 species and are presented in 

Table 1.  Activities are expressed in units (µmol substrate converted to product 

per min) per gram wet weight of tissue.  For each species, the activity value is an 

average for all individuals studied.  Overall, anaerobic enzyme activities (PK and 

LDH) were higher than aerobic enzyme activities (CS and MDH) for all species.  

Specifically, L. barbatum exhibited the highest enzyme activities for both aerobic 

and anaerobic enzymes (CS 1.88 units g-1, MDH 28.40 units g-1, PK 74.87 units  

g-1, LDH 331.83 units g-1).  B. brunneum exhibited the lowest CS and MDH 

activity (CS 0.13 units g-1, MDH 4.86 units g-1), while B. molle exhibited the 

lowest PK and LDH activity (PK 9.33 units g-1, LDH 18.87 units g-1).  One 

species of the deepest dwelling zoarcid included in this study (median depth of 

capture 3050.5 m), Lycenchelys sp. B, had relatively high aerobic enzyme 

activities (PK 54.76 units g-1, LDH 134.44 units g-1). 
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  3.2 Enzyme activities versus MDO 

  There is no significant decline (p>0.05) in enzymatic activities (CS, PK, 

MDH, and LDH) with increasing median depth of occurrence for both benthic 

and benthopelagic zoarcids (Figure 1).  The trend of a slight decline in enzymatic 

activity with MDO is driven by the species, L. barbatum.  Removing the data 

point for this species reveals the complete lack of a relationship between enzyme 

activity and depth (Figure 2).  L. barbatum is the shallowest dwelling species 

included in this study, with a MDO of 227.5 m.  It is interesting that L. 

cortezianus, another shallower dwelling species with an MDO of 358.5 m did not 

have comparable enzymatic activities (CS 1.11 units g-1, MDH 16.38 units g-1, PK 

60.29 units g-1, LDH 118.11 units g-1).  

 

3.3 The influence of body mass 

 Table 1 summarizes the activities of CS, PK, MDH, and LDH in WM 

tissue for all species, presented with each species’ mass ranges.  B. brunneum, the 

largest zoarcid included in this study (606.5 – 890.1 g) exhibited the lowest CS 

and MDH activities (CS 0.13 units g-1, MDH 4.86 units g-1).  Surprisingly, the 

next lowest MDH activity was shown by B. molle, represented by relatively small 

specimens (15.01 – 72.12 g).  However, the next lowest CS activity was exhibited 

by P. lepinium at 490.7 g, but only represented by one individual in this study.  

The smallest individuals included in this study, L. barbatum, with a weight range 

of 2.46 – 12.27 g, did exhibit the highest enzyme activities across all four 

enzymes. The activities of CS, PK, LDH, and MDH in WM tissue of the different 
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species are plotted as functions of the species’ body mass (g) in Figure 3.  Figure 

3a shows one significant decreasing linear trend in intraspecific CS activity with 

increasing mass in L. barbatum (y=3.829 – 0.2432*x, R2=0.7489, p-

value=0.0260).  L. barbatum also exhibits a significant decreasing linear trend in 

MDH activity with increasing mass, shown in Figure 3d (y=50.2908 – 2.7335*x, 

R2=0.7432, p-value=0.0272.  CS and MDH activities showed no significant trends 

for all other species.  In addition, both PK and LDH activities showed no 

significant trends for all species.  

 

3.4 The influence of lifestyle 

 A comparison of the enzymatic activities between benthic and 

benthopelagic species was performed using a Mann-Whitney U test.  CS enzyme 

activities showed no significant difference between benthic and benthopelagic 

species.  However, a significant difference in enzyme activities was found for PK 

(p<0.05), LDH (p<0.05), and MDH (p<0.05). 
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Table 1. Summary of the highest potential white muscle enzyme activities for both aerobic (CS and MDH), and anaerobic (PK and LDH) enzymes at 10°C ± 1 standard 
deviation where applicable, presented with species’ mass ranges and depths of occurrence and capture. Median depths of occurrence were obtained from Miller and Lea 
(1972), Eschmeyer and Herald (1983), Anderson (1995), Lauth (1999), and Mecklenburg (2002).  Lifestyle BP refers to benthopelagic and B refers to benthic. 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Figure 1. Plot of mean white muscle CS enzyme activities (IU/g wet weight) ± 1 standard deviation where applicable for all species at 10°C plotted  
versus MDO (m). 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Figure 2. Plot of mean white muscle PK enzyme activities (IU/g wet weight) ± 1 standard deviation where applicable for all species at 10°C plotted 
versus MDO (m). 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Figure 3. Plot of mean white muscle LDH enzyme activities (IU/g wet weight) ± 1 standard deviation where applicable for all species at 10°C plotted 
versus MDO (m). 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Figure 4. Plot of mean white muscle MDH enzyme activities (IU/g wet weight) ± 1 standard deviation where applicable for all species at 10°C plotted 
versus MDO (m). 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Figure 5. Plot of mean white muscle CS enzyme activities (IU/g wet weight) ± 1 standard deviation where applicable for all species at 10°C plotted 
versus MDO (m), after removing Lyconema barbatum. 
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Figure 6. Plot of mean white muscle PK enzyme activities (IU/g wet weight) ± 1 standard deviation where applicable for all species at 10°C plotted 
versus MDO (m), after removing Lyconema barbatum. 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Figure 7. Plot of mean white muscle LDH enzyme activities (IU/g wet weight) ± 1 standard deviation where applicable for all species at 10°C plotted 
versus MDO (m), after removing Lyconema barbatum. 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Figure 8. Plot of mean white muscle MDH enzyme activities (IU/g wet weight) ± 1 standard deviation where applicable for all species at 10°C plotted 
versus MDO (m), after removing Lyconema barbatum. 
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Figure 9. Plot of white muscle CS enzyme activities (IU/g wet weight) for all species at 10°C plotted versus body mass (g). Shows a significant 
decreasing linear trend with increasing mass in Lyconema barbatum (y=3.829 – 0.2432*x, R2=0.7489, p‐value=0.0260).
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 Figure 10. Plot of white muscle PK enzyme activities (IU/g wet weight) for all species at 10°C plotted versus body mass (g).
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 Figure 11. Plot of white muscle LDH enzyme activities (IU/g wet weight) for all species at 10°C plotted versus body mass (g). 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Figure 12. Plot of white muscle MDH enzyme activities (IU/g wet weight) for all species at 10°C plotted versus body mass (g). Shows a significant 
decreasing linear trend with increasing mass in Lyconema barbatum (y=50.2908 – 2.7335*x, R2=0.7432, p‐value=0.0272). 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Figure 13. Plot of white muscle enzyme activities (IU/g wet weight) for Lyconema barbatum at 10°C plotted versus body mass (g). CS enzyme activity 
is plotted on the left y‐axis and PK, LDH, and MDH are plotted on the right y‐axis. Plot shows the variability of CS enzyme activity in the smaller sized 
specimens, compared to the larger sized specimen.



  29 

CHAPTER 4 
DISCUSSION 

  

This is the first study to evaluate the metabolism of zoarcids over a broad 

depth gradient and size range.  The results from this study contribute greatly to 

our understanding of the biology and ecology of this widespread and speciose 

group of fishes. 

 

4.1 Effects of size on enzyme activities 

 It continues to be a mystery as to which species will show allometric 

scaling and which ones will not.  In this study, L. barbatum was the only species 

that exhibited variation in enzyme activities with changes in body mass.  Both CS 

and MDH activities decreased with increasing mass, a trend that has been noted 

before for more active fishes, such as pelagic fishes (Figures 3-7; Somero and 

Childress, 1980).  While depth doesn’t explain this variation in enzyme activity 

across all specimens, there is variation that exists between the shallower 

specimens of L. barbatum (Figure 7).  However, Drazen and Seibel (2007) found 

body mass to not fully explain the variability in metabolic rate exhibited by 

benthic and benthopelagic fishes. 

 

4.2 Visual interactions hypothesis 

Our results for benthic zoarcids support the visual interactions hypothesis, 

which states that deeper living benthic organisms will show no decline in 
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metabolism with increasing depth when compared to their shallower living 

counterparts (Figure 1; Drazen and Seibel, 2007).  The reasoning behind this, is 

that the sea floor offers more chances for crypsis than does the open ocean, which 

relaxes the need for long-range locomotory capacity for benthic organisms in 

response to predator-prey interactions.  Other studies have found similar results 

for other benthic animal groups.  For example, Childress et al. (1990) found that 

benthic crustaceans do not exhibit a decline in metabolism with increasing depth 

other than what can be explained by the effects of temperature and size.  In 

addition, benthic hagfishes show variation in metabolic rates but this variation 

doesn’t correlate with depth (Drazen et al., 2011).  Interestingly, Drazen and 

Seibel (2007) found sedentary benthic species to show a decline in enzymatic 

activity with increasing depth.  The caveat is that they only compared benthic 

species at 400-500 m MDO to much shallower species at 10-40 m MDO.  In 

contrast our study uses zoarcids, which are visually limited tactile predators, 

across a very broad depth range.  Our results are similar to those for other taxa 

that do not rely heavily on vision, such as copepods, medusae, and chaetognaths 

(Seibel and Drazen, 2007). 

The results from this study are comparable to the enzymatic rates of 

benthic and benthopelagic rockfishes from southern California in a study by 

Ombres et al. (2011).  LDH (excluding Lyconema barbatum), PK, and CS values 

were very similar for the rockfishes and the zoarcids.  The only values that were 

considerably higher for the rockfishes were for MDH.  Interestingly, Ombres et 

al. (2011) used LDH activity as a tool for indentifying species that are 
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morphologically very similar.  For CS activities, Ombres et al. (2011) had 

behavioral observations and oxygen consumption data from the literature to 

compare to.  They found the enzymatic activities to correlate well with observed 

swimming activities (higher CS values for species that have been observed to 

have more active swimming behavior), in addition to the oxygen consumption 

data correlating with the enzyme activity results.  They concluded that the species 

with lower CS values were more sedentary in habit, and relied on burst swimming 

for fight or flight situations.  The species with the higher CS values were 

benthopelagic species, and were more active swimming species.  Aside from the 

results and conclusions made for the benthopelagic species, we can draw similar 

conclusions for the benthic species about their lifestyle and predation strategies, 

which will be discussed in more detail.   

The enzyme activities of hagfishes off the coast of California were 

analyzed by Drazen et al. (2011).  They found interspecific variation in enzyme 

activities as well as, some of the lowest rates known for all fishes.  Hagfishes are 

benthic, characterized by sluggish behavior, and poor burst swimming abilities, so 

the results were not surprising.  Comparing the enzyme activities of the hagfishes 

to the activities for the zoarcids, in general there were much lower aerobic 

enzyme activities and much higher anaerobic enzyme activities for the zoarcids 

(Bothrocara spp. exhibited similar anaerobic enzyme activities).  From this, it is 

probable that zoarcids have better burst swimming abilities and may be more 

active in general.   
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Curiously, the two benthopelagic fishes included in this study, B. 

brunneum and B. molle exhibited the lowest enzyme values for all species studied 

(Table 1).  Both species were deep living so there is no comparison across depths 

that can be made.  This is inconsistent with the VIH, which predicts that 

benthopelagic fishes would have higher enzymatic activities than benthic species 

because of greater locomotory requirements (Drazen and Seibel, 2007).  These 

results are very interesting, because both species spend time in the water column 

and are thought to be more active than the other ten species.  It is possible that our 

results may be due to sampling size, and further study should include specimens 

from the shallower end of their depth range in order to make a comparison across 

depth. 

A comparison of the two benthopelagic species included in this study to 

other deep living benthopelagic species reveals interesting insights into how the 

results can be interpreted for Bothrocara.  Past studies including species of 

macrourids and a synaphobranchid eel with MDOs greater than 1,500 m have 

exhibited relatively high enzyme activities for deep living fishes (Drazen and 

Seibel, 2007).  Siebenaller et al. (1982) also studied various macrourid species 

and looked at the same four enzymes across a depth distribution.  They found 

large interspecific differences in enzyme activities, which they concluded wasn’t 

related to depth, but to size and predation strategies.  Comparing Siebenaller et 

al.’s results to this study, it is notable that there was considerable interspecific 

variation between the macrourids, while the Bothrocara species had similar 

enzymatic activities.  Looking at the actual enzymatic values for the different 
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enzymes, CS activities were much higher for the macrourids, and Siebenaller et 

al. (1982) did mention that their CS values were comparable to the shallower 

living species included in their study.  MDH was higher for the macrourids as 

well.  On the other hand, both PK and LDH (except for one macrourid’s LDH 

value) were higher for both Bothrocara species (Table 1).  Siebenaller et al. 

(1982) concluded based on the macrourids’ low LDH enzyme activities, that they 

possibly have some of the lowest metabolic rates of any fishes.  With this in mind, 

considering the low enzymatic values exhibited by the two Bothrocara species, 

these zoarcids may be included with the macrourids in the group of fishes with 

some of the lowest metabolic rates known.   

 

4.3 Food limitation hypothesis 

The deep sea is characterized by reduced productivity and is generally a 

food poor environment, with exceptions such as hydrothermal vents (Seibel and 

Drazen, 2007).  The food limitation hypothesis has often been cited as the reason 

for declines in metabolic rates with increasing depth (Drazen and Seibel, 2007).  

Our results do not support the food limitation hypothesis, as there was no decline 

in enzymatic activity with depth.  If food were the factor affecting metabolic 

rates, then we would have expected the enzyme activities to mirror the decrease in 

food availability with depth.  Past studies have looked at regional differences in 

productivity and not found food to be the factor affecting variation in metabolic 

rates (Drazen and Seibel, 2007).  Specifically, for benthic and benthopelagic 

fishes, water and protein contents of white muscle tissue have been analyzed to 
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address the food limitation hypothesis, as muscle composition relates to 

locomotory capacity and correlates well with metabolic rate (Drazen and Seibel, 

2007; Seibel and Drazen, 2007).  While there was a lack of clear trends in the 

muscle composition of benthic fishes, it was suggested that the ecologies of the 

fishes played a stronger role than food supply (Drazen, 2007).  

 

4.4 Effects of lifestyle and predation strategy 

The results from this research show that variations in enzyme activities 

exist among different species of benthic and benthopelagic zoarcids that are not 

accounted for by depth of occurrence or size.  It is likely that the differences 

between species’ enzymatic rates reflect the lifestyles and predation strategies of 

these fishes.  In past studies, certain deeper dwelling species have shown high 

levels of enzyme activity and are thought to most likely be active predators like 

their shallow water counterparts.  Whereas species with lower enzyme activities 

have most likely evolved sit-and-wait predator strategies (Sullivan and Somero, 

1980).  Sit-and-wait predators would exhibit higher LDH and PK activities than 

aerobic enzymes such as CS, in order to meet their glycolytic needs during burst 

swimming locomotion, which was exhibited by all species included in this study.    

Relatively high enzyme activities have been shown for deeper-living 

scavengers, which may be a result of competition for limited available carrion 

(Drazen and Seibel, 2007), and our data for zoarcids supports this contention.  Of 

the species examined, Pachycara spp. are likely facultative scavengers.  P. 

lepinium was found to be attracted to baited traps by Cailliet et al. (1999), and 



  35 

Pachycara spp. were found to be attracted to baited cameras in several studies 

(Drazen, 2007; Gutowska et al., 2004; Yeh and Drazen, 2011).  Also, Jones et al. 

(1998) found P. bulbiceps to be scavengers, as they were present at dolphin 

carcasses.  High CS activity, an indicator of aerobic potential, implies that an 

organism is a more active swimming species (Ombres et al., 2011).  P. bulbiceps 

exhibited a relatively high CS value (1.10 units g-1).  The MDH and LDH values 

for P. gymninium were also relatively high, at 19.74 units g-1 and 117.32 units g-1, 

respectively.  However, both Pachycara n. sp. A and P. lepinium (n=1) exhibited 

relatively low enzyme activities for all enzymes.  The Pachycara n. sp. A 

specimens had a noticeably large gelatinous layer under their skin.  White muscle 

was also observed to float in cold seawater and was very watery (Yancey and 

Drazen, unpub data).  Moreover, all specimens were considerably larger than the 

other Pachycara species.  An increase in the water content and a change in 

buoyancy partially explains the lower enzyme activities of this species.  From 

these results and observations, it is possible that P. bulbiceps and P. gyminium are 

both more active scavengers than the other Pachycara species included in study.  

Few have studied the food habits of zoarcids directly, and the dietary 

information available for zoarcids is sparse (Ferry, 1997; Stevenson and 

Hibpshman, 2010).  Ferry (1997) studied the food habits of B. brunneum and 

found the species to prey on a narrow range of benthopelagic fauna, which 

consisted primarily of shrimp-like crustaceans and small zoarcid fishes.  

Stevenson and Hibpshman (2010) also analyzed the diet of B. brunneum, but 

concluded that they are dietary generalists, feeding on a broad range of benthic 
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fauna.  However, they similarly found the majority of their prey items to consist 

of various crustaceans, such as shrimps and mysids, in addition to small fishes, 

such as myctophids, zoarcids, and snailfishes.  With fairly mobile prey, it was 

interesting to find that B. brunneum from this study had such low enzyme 

activities.  L. cortezianus and other Lycodes spp. have also been found to prey on 

mostly benthic species by Ferry (1997), and their enzyme activities were found to 

be relatively high in this study.  Polar Lycodes species’ feeding habits were 

examined by Hildebrandt et al. (2011), and they found similar results.  They 

found their prey items to consist mostly of benthic fauna, such as polychaetes, 

crustaceans, and molluscs, in addition to other fishes.  Moller and King (2007) 

noted that the genus Lycenchelys, which includes 59 species, is more diverse with 

a wider vertical range than the genus Pachycara, which includes only 21 species. 

Similarly, the genus Lycodes includes 60 species, and is considered one of the 

most diverse and widespread among the eelpouts (Stevenson and Sheiko, 2009). 

Keeping this in mind, one could speculate that Lycenchelys and Lycodes species 

fill various niches, and may employ a wide range of predation habits and prey 

preferences.  In general, literature concerning the food habits of Lycodes, 

Lyconema, and Lyncenchelys is unfortunately scant.  A direction for future 

research would be to analyze the head morphology of these eelpouts, which is 

abundant in the literature, to gain insight into the feeding habits of these fishes.  

This has been done in the past on macrourid fishes (McLellan 1977), and would 

help to fill in the knowledge gaps that exist for eelpouts (Siebenaller et al., 1982).   
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CHAPTER 5 
CONCLUSION 

 

This research emphasizes the fact that enzymes are a useful tool in 

evaluating an organisms locomotory behaviors, based on the relationship of the 

expression of aerobic and anaerobic enzymes in their tissues.  Therefore, 

metabolic enzymes activities can be used in combination with observational data 

to infer the lifestyles of fishes that are difficult to observe and monitor (Ombres et 

al., 2011). 

 As a result of this study, it is understood that temperature and body mass 

do not fully explain the variations in enzyme activities for benthic and 

benthopelagic fishes.  It is likely that the differences between species’ enzymatic 

rates reflect the lifestyles and predation strategies of these fishes.  Further study is 

needed to compare the enzymatic rates of the zoarcids included in this study with 

the protein and water content of their tissues.  Proximate composition (water, 

lipid, and protein) is a useful tool in indicating locomotory habits and energetic 

adaptations, and will help to make more definite conclusions (Drazen, 2007).  In 

addition, studies focusing on the enzymatic activities of other tissues, such as 

heart and liver are needed.  

Eelpouts do inhabit a wide range of habitats, as they are found in all 

oceans in the world, at all depths, and a range of lifestyles.  This should be 

reflected in the variation of their enzymatic activities.  Since we only examined 12 

of the over 200 species of zoarcids, it remains open as to how these results apply 

to the zoarcid family as a whole. 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