LONG-TERM CARBON CYCLE TRENDS: FROM THE LATE PALEOCENE TO THE EARLY EOCENE CLIMATIC OPTIMUM

A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI'I IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

OCEANOGRAPHY

AUGUST 2012

By Nemanja Komar

Thesis Committee:

Richard E. Zeebe, Chairperson Fred T. Mackenzie Gregory E. Ravizza

Abstract

A prominent decrease of δ^{13} C as well as δ^{18} O over the late Paleocene and early Eocene (~57-52 Ma) has been observed in many sediment records. The δ^{18} O paleorecords indicate a longterm warming trend ($\sim 4^{\circ}$ C) of the Earth system over this time interval, while planktic and benthic stable carbon isotope ratios appear to gradually drop by about 2%, signifying a possible change in the carbon cycle. Concurrently, deep-sea carbonate records at several sites indicate a deepening of the calcite compensation depth (CCD). This study investigates possible causes (e.g. increased volcanic degassing and/or decreased organic carbon burial) for the observed climate shifts and unlike other studies, the evolution of the CCD is also considered in the model. The model employed here is a modified version of the GEOCARB III model, which uses more accurate input data (e.g. δ^{13} C of carbonate records), coupled to the LOSCAR model. Besides the CCD, the coupled model separately simulates surface and deep ocean δ^{13} C and it also includes full CO₂ seawater chemistry. Several different scenarios are investigated with the goal of achieving a consistent scenario with respect to the observed temperature increase, the CCD change and the surface to deep ocean δ^{13} C gradient. The results indicate that the most likely cause of the climate shift during the late Paleocene and early Eocene was mainly due to a decrease in net organic carbon burial, although an increase in metamorphic activity might have contributed to the overall trend. The model successfully recreates the temperature change, inferred from the δ^{18} O record, caused by the radiative forcing of atmospheric CO₂, as well as the drop in the CCD. At the moment, the model cannot recreate the surface to deep gradient in δ^{13} C, which according to data remained constant during the studied time interval; the deep δ^{13} C change predicted by the model is too small. The model also shows potential for explaining a 2 million year lag between the cessation of the carbon cycle perturbation (\sim 52 Ma) and the onset of the cooling of the Earth system (\sim 50 Ma) in the early Eocene.