www.sciencemag.org/cgi/content/full/321/5885/51/DC1

Supporting Online Material for

Carbon Emissions and Acidification

Richard E. Zeebe,* James C. Zachos, Ken Caldeira, Toby Tyrrell

*To whom correspondence should be addressed. E-mail: zeebe@soest.hawaii.edu

Published 4 July 2008, *Science* **321**, 51 (2008) DOI: 10.1126/science.1159124

This PDF file includes:

Figs. S1 and S2 References

Fig. S1

Fig. S1: (a) Anthropogenic CO₂ emission scenarios (t_R = release time) and response of (b) atmospheric CO₂ (c) surface ocean saturation state of CaCO₃ mineral phases (d) surface ocean *p*H and *p*H decline. The projections were obtained using a carbon-cycle reservoir model coupled to a sediment module (*1–3*) and agree well with the results of other types of carbon-cycle models over the next few centuries (*4–6*). The estimated maximum *p*H decline displayed here is slightly smaller (more conservative) than in previous studies (*4–6*) because buffering by CaCO₃ sediment dissolution and weathering feedbacks have been taken into account (*3*). All scenarios are based on historic emission data with total emissions of 315 Pg C until year 2004 (*7*) and projected future emissions that match the prescribed total emissions and release time. Future emission curves in (a) are based on a single (or the sum of two) Gaussian function(s).

Fig. S2

Fig. S2: Expected maximum decline of calcite and aragonite saturation state (Ω) in the warm (a,b) and cold (c,d) surface ocean corresponding to carbon emissions, release times, and *p*H changes as illustrated in the primary figure of the article. The saturation state Ω is given by $\Omega = [CO_3^{2^-}]_{sw} \times [Ca^{2+}]_{sw} / K^*_{sp}$, where 'sw' refers to seawater concentrations and K^*_{sp} is the solubility product of calcite or aragonite at *in situ* conditions of temperature, salinity, and pressure [see (8) and references therein]. Warm and cold surface ocean conditions refer to initial (pre-industrial) seawater temperatures of 20°C and 2°C, respectively. The corresponding initial saturation state values are indicated by Ω_0 (upper left).

Acknowledgements. This work was supported by National Science Foundation grant NSF-OCE07-51959 to REZ.

References

- 1. Walker, J. C. G., and J. F. Kasting, *Palaeogeogr. Palaeoclim. Palaeoecology* 97, 151 (1992).
- Zeebe, R. E. and J. C. Zachos, *Paleoceanogr.* 22, PA3201, doi:10.1029/2006PA001395 (2007).
- 3. Zachos, J. C., G. R. Dickens, and R. E. Zeebe, *Nature* 451, 279 (2008).
- 4. Caldeira, K. and M. E. Wickett, *Nature* **425**, 365 (2003).
- 5. Orr, J. C. et al., *Nature* **437**, 681 (2005).
- 6. Montenegro, A., V. Brovkin, M. Eby, D. Archer, and A. J.Weaver, *Geophys. Res. Lett.* **34**, L19707, doi:10.1029/2007GL030905 (2007).
- 7. Marland, G., T. A. Boden, and R. J. Andres, *Global, regional, and national CO2 emissions*, CDIAC, ORNL, U.S. DOE (2007).
- 8. Zeebe, R. E. and D. A. Wolf-Gladrow, *CO2 in Seawater: Equilibrium, Kinetics, Isotopes* (Elsevier Oceanography Series, Amsterdam, pp. 346, 2001).