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S1 Time-series analysis (stationary)

For the stationary (transformed) time series we determine possible systematic

leads/lags across the full Millville carbon and oxygen isotope records using time-

series analysis. The raw data series (X = δ13C, Y = δ18O) are non-stationary and

inadequate for determining leads/lags based on autocorrelation function (ACF) and

cross-correlation function (CCF)1,2. Thus, we use first-order differencing:

xi = Xi+1 − Xi ; yi = Yi+1 − Yi . (1)

The normalized CCF sequence of length 2N − 1 is given by:

rxy(k) = c−1
N−k

∑
i=1

x̃i · ỹi+k/N ; k = 0, 1, . . . , N − 1 (2)

rxy(k) = c−1
N

∑
i=1−k

x̃i · ỹi+k/N ; k = −1,−2, . . . ,−(N − 1) (3)

where

c =
√

∑ x̃2
i /N · ∑ ỹ2

i /N (4)

and x̃i = xi − x, ỹi = yi − y are deviations from the respective means. Significant rxy

at k > 0 indicate leads of x over y.

The ACFs of the differenced series (see main manuscript) are similar to white-

noise ACFs, except for significant negative correlations (95% level) at ∆k = ±1,±2,

which can lead to biases in the CCF1–3. Thus, the x and y series were prewhitened,

using an autoregressive (AR) process of order p = 6, AR(6), which yields the x′ and

y′ series (see main manuscript). We choose p = 6, as p ≥ 6 is necessary to obtain

white-noise ACFs for x′ and y′.

Briefly, prewhitening of time series removes spurious correlations introduced

into the CCF due to significant autocorrelations in the individual time series (for

© 2016 Macmillan Publishers Limited. All rights reserved. 

 



3

details, see refs. 1–3). For example, consider the process Xt with mean µ = 0 given

by:

Xt = α Xt−1 + Zt , (5)

where α is a constant and Zt is a purely random process with mean zero. Xt is called

an autoregressive process of order one, AR(1). Given N observations (time series xt),

the parameters µ and α can be estimated by, say, least squares. Assume for simplicity

xt = µ = 0, then the prewhitened (or filtered) time series is given by2,3:

x′t = xt − α xt−1 . (6)

Thus, the filtered time series consists of the residuals of the fit model. If the

underlying process is indeed an AR(1) process, then x′t will be white noise and for

large N its ACF coefficients rk ≃ 0 (k ̸= 0), with mean ≃ zero and variance 1/N. In

summary, prewhitening effectively removes autocorrelation from a time series and

may need to be applied before calculating cross-correlations between time series.

S2 Apparent leads and lags

Visually, the graphs representing the %response of the raw, non-stationary

isotope records at Millville may suggest apparent δ18O leads over δ13C during some

intervals and apparent lags during others (Fig. 3). However, as the time series

analysis shows, no significant leads/lags are detected, except for a contemporaneous

correlation (∆k = 0, see main manuscript). Apparent visual leads/lags between two

non-stationary time series can be easily generated if, for instance, their relative trends

differ across some interval; yet their relationship may be perfectly contemporaneous

(see Fig. S1a, for example). In fact, in the example shown, the detrended series

are identical. At Millville, the differenced (or detrended) δ18O and δ13C series are
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Figure S1. Time series examples. (a) Contemporaneous relationship (∆k = 0, dashed lines),

visually suggesting Series 2 to lead over 1 (label ζ) due to different relative trends. The

apparent lead disappears after detrending (detrended series are identical). (b) Series 1 leads

over 2 by ∆k = 5 (dashed lines).

not identical. However, the situation is similar. Systematic changes and noise

from global/local climate/carbon cycle processes, proxy recording, etc. affect the

individual series differently. Hence, it is not to be expected that the series will show

the same relative amplitude of change across all intervals. It is the timing and the sign

of the changes in the two series (e.g., alignment of characteristic features, see Figs. 2

and S1b) that is critical to determine lead-lag relationships in noisy time series, rather

than the relative amplitude of the changes.

For the model output (Fig. 3), lead-lag determination using cross-correlation is

unsuitable because of the mostly smooth curves and large individual autocorrelation,

which leads to bias in the cross-correlation1–3. In fact, model lead-lag determination

is less complex (Section S8) because the models were forced by a simple, known

function. Also, the models do not exhibit internal noise from climate/carbon

cycle dynamics, neither is noise from ’proxy recording’ involved at the output

grid-points/boxes. Thus, the model lead-lag relationship can be directly determined

from the normalized response (Fig. 3, Section S8).
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Figure S2. Different carbon release patterns at input time tin = 2, 000 y and the same total

carbon input of 3,000 Pg C yr−1 for all scenarios. The ’Noise’ scenario is based on a constant

mean value and random noise added on a 100-year time scale.

S3 Sedimentation rate and carbon release pattern

Our approach yields a time constraint for the minimum overall onset interval

and is thus based on an average sedimentation rate rsed (see main manuscript).

Importantly, however, we do not require the sedimentation rate, rsed(t), to be constant

over time. First, our time-series analysis is based on the cross-correlation function

(CCF), which does not explicitly depend on space or time coordinates (zi, ti) at which

the measurements were taken (Eqs. 2, 3). This CCF property is intuitively obvious

because the time series variables (X = δ13C, Y = δ18O) are both measured at the same

zi for all i, making the actual zi values irrelevant for the correlation. Thus, even if the

sedimentation rate varied widely, it has no effect on the cross-correlation function and

hence no effect on the lead/lag relationship we have obtained in the depth-domain

(∆k).

Second, it is important that the ∆k were derived from the analysis of the entire

time series and hence represent an overall correlation across the onset. The ∆k are
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not to be confused with individual leads/lags that may change from one part of the

series to another. If those were translated into the time domain, then variations in

rsed(t) would indeed matter. But this is not the case. Our method first determines

the overall lead/lag in the depth-domain and translates it into an overall lead/lag in

the time-domain, considering (and ultimately determining) the total time represented

across the onset. Our method is not primarily designed to determine whether parts

of the onset were completed slower or faster than average due to variations in rsed(t).

However, if the pacing did vary, say, systematically across the onset, then we would

find significant correlations at different ∆k, for example, during the first and second

half of the onset. This is also not the case. During the first half, we do not find

a significant correlation at any ∆k (not shown), consistent with the inconclusive

lead/lag correlation of the raw (non-stationary) time series across the start of the

onset, as discussed in the main manuscript. During the second half, we find a

significant correlation at ∆k = 0, i.e. the same as for the entire onset and the complete

time series (see main manuscript). In summary, the sedimentation rate is (i) unlikely

to have varied systematically across the onset and (ii) if varied, has no effect on our

overall lead/lag relationship.

One factor that can indirectly cause variations in sedimentation rate and, more

directly, in the timing of the recorded δ13C and δ18O is the pattern of the carbon

release over time. Given a total integrated carbon release, the simplest assumption

is a constant release rate RC, which we have used in our standard model scenarios.

However, this assumption can easily be relaxed and the effect on the calculated

model time lag (τmod) be tested. Hence in addition to a constant carbon release rate,

we tested (1) an increasing rate, (2) a decreasing rate, and (3) a rate with constant

mean plus random noise (Fig. S2). For each given total carbon input and model
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release time, tin, the three scenarios were adjusted to yield the same total carbon

input. Certainly, more extreme scenarios could be imagined such as a linear increase

starting at RC = 0 Pg C yr−1 or a Gauss peak centered halfway across the onset.

However, such scenarios would substantially alter the effective tin, which should

then be reduced to, say, half the onset interval or the width of the Gauss curve. These

scenarios are thus covered under shorter average release time, rather than release

pattern. The tests were performed with LOSCAR and indicate a sensitivity to the

release pattern similar to the sensitivity to other parameters (see Fig. 4 and Section S9

for discussion).

S4 Bulk carbonate diagenesis

We assume the bulk carbon isotope records from the New Jersey siliciclastic

sequences capture the relative timing of the CIE with respect to climate (i.e., δ18O).

This assumption is supported by the observation that, for instance, the Millville bulk

isotope records are consistent with data from planktonic foraminifera at the same

site4. However, we recognize that absolute values are not necessarily representative

of the values of seawater DIC. This recognition is based on previous studies of NJ

margin cores which show that bulk carbonate δ13C can be offset toward lower values

relative to planktonic foraminifera from the same samples, say at Wilson Lake5,6

(Fig. S3). This offset is not constant over time or in space, increasing within the CIE

and with proximity of the core to the coastline, suggesting that a process associated

with either reworking or diagenesis is responsible. In samples within the CIE the bulk

δ13C is often several per mil lower than values for planktonic foraminifera. The low

δ13C bulk values recorded in several cores reflect either the presence of authigenic

and/or diagenetic carbonate phases.

© 2016 Macmillan Publishers Limited. All rights reserved. 
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Figure S3. Bulk and foraminifer isotope data at Wilson Lake across PETM onset, main-,

and recovery phase.5,6. bent = benthic, Moroz. a = Morozovella aequa, Subb. tri. = Subbotina

triangularis.

The upper Paleocene and lower Eocene facies of the NJ Margin sequences are

comprised predominantly of clays and silts with very minor amounts of carbonate

due to the high input of siliciclastics, particularly within the CIE interval (Marlboro

Clay). The low porosity clays retard carbonate recrystallization related to diagenesis,

particularly meteoric, and as a consequence, the preservation of foraminifer shells

is generally excellent. The high sedimentation rates, however, likely promoted

bacterial mediated sulfate reduction and the formation of authigenic carbonate

phases such as siderite7,8. Because the carbon is sourced from respired organic matter,

the δ13C is much lower than that of biogenic carbonate phases9,10. The increased

flux of siliciclastics tends to promote authigenic carbonate formation while diluting
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biogenic carbonate, thus shifting the bulk δ13C toward lower values. This scenario is

supported by the relatively high δ18O values consistent with early diagenesis in the

presence of seawater (for instance, at Wilson Lake, Fig. S3). In contrast, bulk δ13C and

δ18O at Millville4 and at Bass River more closely track foraminiferal values6,11,12 (see

Fig. 1). The extent to which the Millville bulk isotope records might be affected by

early diagenesis is not precisely known. However, we note that both absolute isotope

values and excursions (∼3h in δ13C and ∼1h in δ18O, indicating ∼5 K warming)

are consistent with most other pelagic sequences13 and foraminiferal data from Bass

River6,11,12 (Fig. 1). Most importantly, the Millville bulk isotope records are consistent

with data from planktonic foraminifera at the same site4, which lends confidence in

our approach as foraminifera are considered robust recorders of changes in δ13C and

δ18O. Moreover, diagenetic processes would alter the magnitude of the signals, rather

than the relative timing of change.

Finally, we emphasize that the resolution of other PETM sections across the onset

(including at Bass River and Wilson Lake) is currently insufficient to determine leads

and lags between δ13C and δ18O. We hence use the Millville record as the target

for our approach and derive an estimate for the maximum sustained rate of carbon

release across the PETM onset.

S5 Couplets, contamination, cycles, and bioturbation

Wright and Schaller14 described rythmic ’couplets’ in the Millville core,

subsequently identified as artifacts of drilling disturbance, so-called biscuiting or core

discing15. As a result of core discing, drilling slurry can be injected between the discs,

potentially leading to sample contamination from the slurry with a distinct δ18O

signature (we discuss δ18O in the following but found essentially the same results

© 2016 Macmillan Publishers Limited. All rights reserved. 
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Figure S4. δ18O and couplet positions (black triangels, gray lines) across the PETM onset

at Millville14. The dominant couplet spacing or period is P ≃ 2 cm. Note reversed y-scale

(minima point upwards).

for δ13C). If so, one would expect either anomalously light or heavy δ18O values

associated with the couplets. This is not the case (Fig. S4). Visual inspection reveals

that five minima and three maxima occur close to 8 out of 15 couplets across the onset

(note reversed y-scale). The relationship between the remaining 7 couplets and δ18O

extrema is inconclusive. Hence there is no systematic relationship between couplets

and light/heavy δ18O values, providing no obvious evidence for contamination.

We also tested if a potential contamination could have affected δ18O values

more subtly by imprinting a cyclicity on δ18O associated with the dominant couplet

frequency of ∼0.5 cycles/cm (14 cycles/27 cm, mean period P ≃ 2 cm). Given that

the couplets resulted from core discing, a spectral peak at the couplet frequency is

not to be expected, except if contamination occurred or if the primary δ18O record

coincidentally carried a signal at the same frequency. However, spectral analysis

using the multi-taper method and background noise estimation16 shows reduced

power at the mean couplet period P ≃ 2 cm (Fig. S5). In fact, the noise background

estimate shows that the spectrum is consistent with simple red noise (same for δ13C).

The peak at P ≃ 3 cm is barely significant at the 99% confidence level (CL) and is

not surprising as M × 0.01 ≃ 0.6 random peaks >99% CL are to be expected, where

© 2016 Macmillan Publishers Limited. All rights reserved. 
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Figure S5. Multi-taper spectrum of δ18O across the PETM onset at Millville. The dominant

couplet period is P ≃ 2 cm.

M = 59 is the number of independent frequencies extracted from the N = 118

data points across the onset. Also, the peak at P ≃ 3 cm can not be associated with

a potential split of the couplet frequency into two bands. All distances between

individual couplets are <2.85 cm.

Thus, we also do not find evidence for cycles associated with the couplets from

potential contamination or other factors. In fact, we do not find evidence for any

dominant cycles at all in both δ18O and δ13C. Any strong harmonic signal in the

record (such as the annual cycle) would produce a large spectral peak ≫99% CL.

Wright and Schaller14 indeed suggested the imprint of the seasonal cycle on δ18O.

However, a spectral analysis was not presented, rather the output from a filter with

too narrow a bandwidth (±2%).

Finally, the features of the isotope record (Fig. S4) also address concerns about

potential effects of bioturbation and sediment mixing across the onset record at

Millville. The δ18O record shows significant fluctuations (consistent with red noise) of

up to ∼1h, which are resolved by multiple data points across mm to cm scale (Fig. S4).
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For example, at z = 12 − 13 cm and 15 − 16 cm, the increases in δ18O are resolved by

5 and 4 data points, respectively (note reversed y-scale). Bioturbation/mixing would

smooth, homogenize, or eliminate such features across cm scale. Thus, if bioturbation

and/or sediment mixing did occur across the onset, the effect on the isotope records

is likely small.

S6 GENIE model

We used the Earth system model cGENIE17 in its late Paleocene configuration

as described in ref. 18. The only changes we make are firstly to enable temperature-

dependent silicate and carbonate weathering and apply a background rate of volcanic

CO2 emissions, all as described in ref. 19. In this setup, terrestrial carbonate and

silicate weathering are split 1:1 in order to balance a total global CaCO3 burial flux of

14.7 Tmol Ca2+ yr−1 (i.e. 7.35 Tmol Ca2+ yr−1 each), with a CO2 volcanic outgassing

rate of 7.35 Tmol Ca2+ yr−1 to balance silicate weathering. The second change we

make compared to ref. 18 is to create a shallow shelf region corresponding to the paleo

vicinity of Millville, comprising a single new ocean grid point with 81 m water depth

(the uppermost layer in the cGENIE ocean circulation model). Also, we add two

new ocean grid points at 175 m water depth (the uppermost two ocean model layers)

adjacent to the grid point representing Millville’s paleo-location (cf. star in Fig. S6).

As per ref. 17, we first spin-up the climate system and atmosphere-ocean-sediment

carbon cycle for 20 kyr as a ’closed system’, with weathering set to automatically

track carbonate burial and with atmospheric CO2 prescribed to be 836 ppmv and

δ13C = −4.9h (ref. 18). This is followed by 100 kyr of ’open system’ spin-up

with terrestrial weathering now allowed to freely respond to climate. In this open

system phase, δ13C of volcanic CO2 is set at −6h and weathered carbonates are

© 2016 Macmillan Publishers Limited. All rights reserved. 
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Figure S6. Bathymetry used in our PETM simulations with GENIE to determine model

time lags (see main manuscript). We analyzed GENIE’s global mean properties as well as

GENIE’s grid-point output on the North-West Atlantic shelf (NWA-shelf, corresponding to

Millville’s paleo-location, red star).

simply assigned an isotopic value in order to balance the global isotopic budget in

the absence of marine organic carbon burial (necessitating a δ13C value of 13.58h).

All subsequent experiments (including a control) are run for a duration of 10 kyr,

following on from the end of the 100 kyr, 2nd-stage spin-up. In addition to global

mean sea-surface temperature (SST) and δ13C, we analyzed GENIE’s grid-point

output on the North-West Atlantic shelf (NWA-shelf, corresponding to Millville’s

paleo-location, Fig. S6).

S7 LOSCAR model

The LOSCAR model (Long-term Ocean-atmosphere-Sediment CArbon cycle

Reservoir model) computes the partitioning of carbon between ocean, atmosphere,

and sediments on time scales ranging from centuries to millions of years20,21.

© 2016 Macmillan Publishers Limited. All rights reserved. 
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LOSCAR couples ocean-atmosphere routines to a computationally efficient

sediment module. This allows adequate computation of CaCO3 dissolution, calcite

compensation, and long-term carbon cycle fluxes, including weathering of carbonate

and silicate rocks. The ocean component includes biogeochemical tracers such as

total carbon, alkalinity, phosphate, oxygen, and stable carbon isotopes. LOSCAR’s

configuration of ocean geometry is flexible and allows for easy switching between

modern and paleo-versions. The global ocean is geometrically divided in LOSCAR

into separate ocean basins representing Atlantic, Indian, and Pacific Ocean (plus

Tethys in the Paleocene/Eocene-version). In turn, each ocean basin is subdivided

into surface, intermediate, and deep ocean. In addition, the model includes a generic

high-latitude box, representing cold surface waters. The Paleocene/Eocene ocean

bathymetry in LOSCAR is based on ref. 22. The model’s architecture, its components,

tuning, and examples of input and output are described in detail in ref. 21. Additional

parameterizations necessary to calculate model time lags such as a climate response

function for different values of climate sensitivity are described in ref. 23.

S8 Percent response at which to determine model time lag

As mentioned in the main manuscript, simulated δ13C leads the model climate

response at the onset’s start because the models are forced by carbon input. In

reality, temperature may have led carbon input initially24,25, although the data do

not support any significant δ18O-lead at the start (Fig. 2d). Nevertheless, to avoid

potential model bias during the initial onset phase, we omit the first 40% of the

normalized δ13C (X) and temperature (Y) rise when determining the model time lag.

Furthermore, note that the end of the onset interval in the data record could be located

within the data gap (Fig. 2). Hence, we also omit the final 20% when determining

© 2016 Macmillan Publishers Limited. All rights reserved. 
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τmod. As a result, we calculate τmod as the average model time lag between 40% and

80% response of X and Y. The averaging produced smoother τmod sequences for

different carbon release times, as the increase in both X and Y with time is generally

non-linear (Fig. 3).

In cases when the model output was stored at discrete times ti and coarse ∆ti,

then Xi and Yi were first interpolated onto a fine time axis (e.g., at 1-yr resolution,

index j). Next, the times were determined at which Xj and Yj were closest to

percent-values (index p) between 40% and 80% (e.g., in steps of 1%), yielding the

model time lags at a given percentage:

τ
p
mod = tp

Y − tp
X , (7)

where p = 1, . . . , K (and e.g., K = 41). Finally, the average model time lag between

40% and 80% response in normalized δ13C and temperature is given by:

τmod =
1
K

K

∑
p=1

τ
p
mod . (8)

S9 Sensitivity of minimum onset interval to parameter variation

To evaluate the sensitivity of the calculated minimum onset interval to parameter

variations, we focus on the calculated model lag, τmod. We consider effects of various

parameters and assumptions, including model release time, release pattern, total

carbon input, climate sensitivity, initial pCO2, and atmospheric vs. deep-ocean

carbon injection (for the last item, see Section S10). The model release time was

varied in both models, GENIE and LOSCAR. However, full runs for all parameter

variations are time-consuming with GENIE and were hence performed with

LOSCAR (computationally much less expensive)21,23. LOSCAR uses a climate

response function parameterization23, which may produce less accurate results than

© 2016 Macmillan Publishers Limited. All rights reserved. 
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GENIE when the forcing is changing with time. The runs showed that LOSCAR’s

τmod are similar, albeit mostly larger, than GENIE’s τmod (see main manuscript).

Nevertheless, the LOSCAR results provide insight into the general effect of various

parameters on the calculated minimum onset interval. Note that because all LOSCAR

runs yielded τmod larger than the GENIE scenario on the North-West Atlantic shelf

(main manuscript), our estimate of 4,000 yr for the minimum onset interval remains

unchanged.

At very short release times, τmod approaches a finite value, corresponding to

instant release (see Fig. 4). The model lag then increases with release time on century

time-scale until reaching a maximum on millennial time-scale. Subsequently, the

release becomes slow enough for the climate response to keep up with the forcing

and the model lag drops. Eventually, τmod intercepts τdat (the lag allowed by the data

records), yielding the minimum carbon release time (arrow, Fig. 4).

Standard model runs with both GENIE and LOSCAR use 3000 Pg C carbon input

and climate sensitivity S2× = 3 K per CO2 doubling; the initial atmospheric CO2

concentration in the standard runs with GENIE and LOSCAR is 836 and 1000 ppmv,

respectively. The total carbon input has a small effect on the calculated τmod in

LOSCAR (Fig. 4) as the carbon-cycle-, climate forcing-, and climate response all

somehow scale with the amount of carbon released. The different carbon release

patterns (Fig. S2) have a moderate effect on the calculated τmod (Fig. 4). The

increasing (decreasing) rates give somewhat shorter (longer) τmod. The reason is that,

for example, a higher rate at the start of the onset (declining subsequently) causes

a more rapid initial 13C excursion and hence a larger lead relative to the climate

response, similar to a shorter release time. As might be expected, the random noise

scenario produces variations, but no consistent trend in τmod relative to the standard

© 2016 Macmillan Publishers Limited. All rights reserved. 
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scenario.

Higher climate sensitivity causes the model lag to rise, which is expected from

basic feedback analysis26,27. If anything, climate sensitivity during the PETM was

higher than 3 K, not lower20,23, again suggesting that our minimum onset interval

holds, even if S2× was higher than 3 K. Lowering the initial pCO2 from 1,000 to

750 ppmv in LOSCAR lowers τmod to values closer to GENIE’s τmod, which is

initiated at 836 ppmv. At lower initial pCO2 both the normalized model δ13C and

pCO2 response are more rapid because of lower initial DIC, which makes the system

more sensitive to the perturbation (at the same carbon input). However, due to

non-linearities in carbonate chemistry, the speedup in the pCO2 response slightly

outpaces that in δ13C. Hence τmod drops slightly. Overall, the effect is small and given

the pre-PETM Eocene warmth, an initial pCO2 of 750 ppmv is probably a lower limit,

meaning that also varying this parameter does not alter our 4,000 yr-estimate for the

minimum onset.

S10 Long release time: Model temperature leads δ13C

As mentioned in the main manuscript, for long release times τmod reverses sign,

i.e. the model temperature starts leading δ13C, which may appear counterintuitive.

The reason is as follows. For release times shorter than a few millennia, surface-ocean

δ13CDIC initially drops rapidly in response to the release of isotopically light carbon

(the normalized %response rises, Fig. S7a). Note that:

δ13CDIC =

(
DI13C/DIC

Rstd
− 1

)
× 1, 000 . (9)

Hence for δ13CDIC, the time evolution of the ratio DI13C/DIC matters rather than the

evolution of individual concentrations. While the increases in individual DI13C and
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Figure S7. LOSCAR model results for carbon release times (tin) of (a) 2,000 yr and (b)

10,000 yr (note different time axes). All model output is for the surface ocean and is

normalized to 100% response at t = tin (δ13C = δ13CDIC; DIC = total dissolved inorganic

carbon).

DIC are rather smooth, the normalized increase in DIC is slightly faster than in DI13C

(Fig. S7) — the reason being that CO2 equilibration is faster than carbon isotope

equilibration28. As a result, the initial DI13C/DIC ratio and hence δ13CDIC drops

rapidly (%response rises). In contrast, the initial temperature response over centuries

is delayed due to the climate system’s thermal inertia (see main manuscript). The

normalized δ13C response is thus faster than the normalized temperature response,

provided the release time is a few millennia or less (Fig. S7a).

For much longer release times, the difference between CO2 and carbon isotope

equilibration becomes less important relative to the input time and the initial

© 2016 Macmillan Publishers Limited. All rights reserved. 
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drop in δ13CDIC (rise in normalized %response) is less pronounced (Fig. S7b). The

temperature response, on the other hand, is hardly delayed on this time scale as the

full surface warming is realized over many millennia. As a result, model temperature

starts leading δ13C, which explains the sign reversal in τmod for long release times

(see main manuscript).

In our model scenarios, the carbon mass is injected into the atmosphere, which

is partly responsible for creating differences between surface CO2 and carbon isotope

equilibration and hence contributes to the rapid initial δ13CDIC surface response

(Fig. S7). Alternatively, one could inject the carbon mass (or part of it) into the deep

ocean, which would tend to reduce rapid changes in the surface DI13C/DIC ratio

as result of atmospheric forcing. Hence we also tested a scenario in LOSCAR in

which 3,000 Pg C were injected into the deep Atlantic instead of the atmosphere.

The result was a substantial delay in the rise of atmospheric CO2 (and hence

temperature), which outweighed the less rapid initial surface δ13C response (not

shown). For millennial release times, the calculated model lag, τmod, was thus longer

for deep-ocean carbon injection than for atmospheric injection. Because the goal

here is to constrain the minimum onset time interval, the relevant scenario is hence

atmospheric injection (yielding shorter model lags), rather than deep-ocean injection.

All τmod discussed in the main manuscript were calculated for carbon injection into

the atmosphere.
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