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Abstract

The molecular diffusion coefficients of dissolved carbon dioxide ðCO2Þ, bicarbonate ion ðHCO�3 Þ, and carbonate ion
ðCO2�

3 Þ are fundamental physico-chemical constants and are of practical significance in various disciplines including geochem-
istry, biology, and medicine. Yet, very little experimental data is available, for instance, on the bicarbonate and carbonate ion
diffusion coefficient. Furthermore, it appears that no information was hitherto available on the mass-dependence of the dif-
fusion coefficients of the ionic carbonate species in water. Here I use molecular dynamics simulations to study the diffusion of
the dissolved carbonate species in water, including their dependence on temperature and isotopic mass. Based on the simu-
lations, I provide equations to calculate the diffusion coefficients of dissolved CO2;HCO�3 , and CO2�

3 over the temperature
range from 0� to 100 �C. The results indicate a mass-dependence of CO2 diffusion that is consistent with the observed
12CO2=

13CO2 diffusion ratio at 25 �C. No significant isotope fractionation appears to be associated with the diffusion of
the naturally occurring isotopologues of HCO�3 and CO2�

3 at 25 �C.
� 2011 Elsevier Ltd. All rights reserved.
1. INTRODUCTION

The molecular diffusion coefficients of the dissolved
carbonate species (CO2;HCO�3 , and CO2�

3 ) in aqueous
solution are fundamental physico-chemical parameters.
Knowledge of these parameters at various temperatures is
of practical value, for instance, in geochemical, biological,
and medical applications. A few examples include sediment
diagenesis, mineral precipitation and dissolution, fossil fuel
carbon sequestration, industrial engineering, carbon uptake
and calcification in phytoplankton and zooplankton, stud-
ies of duodenal ulceration, O2=CO2 exchange in red blood
cells, and metabolic models of cornea-contact-lens systems
(e.g. Berner, 1980; Uchida et al., 1983; Livingston et al.,
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1995; Wolf-Gladrow and Riebesell, 1997; Cadours and
Bouallou, 1998; Zeebe, 2007b; Kaufmann and Dreybrodt,
2007; Berne et al., 2009; Chhabra et al., 2009). While the
molecular diffusion coefficient of carbon dioxide in water
is relatively well known over a range of temperatures, less
is known about the bicarbonate diffusion coefficient, and
little information is available on the diffusion coefficient
of the carbonate ion.

As discussed below, diffusion coefficients of HCO�3 and
CO2�

3 at infinite dilution have been estimated based on
conductivity measurements from the 1930s and 1940s
(Robinson and Stokes, 1959; Li and Gregory, 1974). How-
ever, to the best of my knowledge, so far only a single
experimental study has been conducted to directly deter-
mine the CO2�

3 diffusion coefficient in water. The few data
points were published in a largely unknown short commu-
nication by a Japanese group in the 1960s (Kigoshi and
Hashitani, 1963). Furthermore, it appears that diffusion
studies of the ionic carbonate species have as yet been lim-
ited to temperatures 6 30 � C. While some information is
available on the mass-dependence of CO2 diffusion in
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water, e.g. on 12CO2 vs. 13CO2 diffusion (O’Leary, 1984;
Jähne et al., 1987), I am not aware of a theoretical or
experimental study that has hitherto tackled the mass-
dependence of the diffusion coefficients of the bicarbonate
and carbonate ion. The mass-dependence associated with
the diffusion of the ionic carbonate species has implications,
for instance, for understanding vital effects in carbonates
and clumped isotope studies (e.g. Thiagarajan et al.,
2009).

Given the geochemical, biological, and medical
significance of the molecular diffusion coefficients of
dissolved CO2;HCO�3 , and CO2�

3 , a comprehensive study
of these important parameters appears warranted. From a
geochemical point of view, such an effort also appears
timely, given the growing number of studies dealing with
the chemistry of dissolved CO2 in seawater and the cou-
pling of diffusion and reaction within the system (for funda-
mentals, see e.g. Wolf-Gladrow and Riebesell, 1997; Zeebe
et al., 1999; Zeebe and Wolf-Gladrow, 2001). In the present
study, I have used molecular dynamics (MD) simulations to
examine the diffusion coefficients of the dissolved carbonate
species in water, their temperature-dependence, and their
dependence on isotopic mass. Among other results, I will
provide equations to calculate the diffusion coefficients of
the dissolved carbonate species over the temperature range
from 0� to 100 �C.

Progress has recently been made in understanding diffu-
sion processes using experimental as well as theoretical
methods. This includes, for instance, laboratory experi-
ments and molecular dynamics studies to elucidate the fun-
damentals of diffusion and the nature of ionic diffusion in
aqueous solution and the influence of isotopic mass
(Koneshan et al., 2001; Richter et al., 2006; Bourg and
Sposito, 2007; Li et al., 2010). Several of these studies
highlight the critical role of hydration for diffusion in liquid
water, which is also fundamental to understanding
hydrogen-bonding environments, solvation motifs, calcite
growth, and carbon and oxygen isotope fractionation be-
tween dissolved compounds and water in thermodynamic
equilibrium (e.g. Zeebe, 1999; Zeebe, 2007a; Rustad et al.,
2008; Zeebe, 2009; Kumar et al., 2009; Garand et al.,
2010; Raiteri et al., 2010; Zeebe, 2010).

Advances in computational power and numerical meth-
ods including molecular dynamics now allow accurate
calculation of diffusion coefficients in many systems (see
e.g. Section 5; Bourg and Sposito, 2007; Bourg and Sposito,
2008; Kerisit and Liu, 2010). The system of dissolved CO2

in water is the focus of the present work. The manuscript
is organized as follows. A few basics on diffusion and earlier
estimates of ionic diffusion coefficients will be reviewed in
Section 2. The methods employed in the present study
and system-size effects on calculated diffusion coefficients
will be described in Sections 3 and 4. Several tests allowing
evaluation of the accuracy of MD-calculated diffusion coef-
ficients will be provided in Section 5, while results for the
carbonate species’ diffusion coefficients and their mass-
dependence will be presented and discussed in Sections 6
and 7. The errors involved in the present molecular dynam-
ics simulations will be examined in Section 8. Finally, the
conclusions will be given in Section 9.
2. SELF- AND TRACER-DIFFUSION COEFFICIENT

‘Self-diffusion’ is a process in which the molecules of, for
instance, a uniform liquid move randomly over time from
one point to another (Robinson and Stokes, 1959).
‘Tracer-diffusion’ usually refers to a process in which ions
of a certain kind and of very small concentration diffuse
in a large excess of other electrolyte. If both the tracer
and the electrolyte are of the same nature, e.g. 22Naþ in a
sodium chloride solution, the tracer-diffusion coefficient is
assumed to be equal to the self-diffusion coefficient.

2.1. Limiting conductivity

Limiting tracer- or self-diffusion coefficients of ions have
been estimated based on measurements of the limiting con-
ductivity using the Nernst–Einstein equation (Robinson
and Stokes, 1959; Li and Gregory, 1974):

D0 ¼ R T k0

z2F 2
ð1Þ

where D0 is the limiting tracer- or self-diffusion coefficient,
R ¼ 8:3145 J K�1 mol�1 is the gas constant, T is temperature
in Kelvin, k0 is the limiting conductivity (per mole), z is
charge, and F ¼ 9:6485� 104 C mol�1 is the Faraday
constant. Using k0

HCO�3
and k0

CO2�
3

of 4.45 and 13:86 m2

mS mol�1 (Robinson and Stokes, 1959; Li and Gregory,
1974), the self-diffusion coefficients of HCO�3 and CO2�

3 at
25 �C and infinite dilution may be estimated as 1.19 and
0:92� 10�9 m2 s�1, respectively.

Considering ion mobility, a relation between conductiv-
ity and diffusion is to be expected. However, several
fundamental differences exist. For instance, in conduction
positive and negative ions move in opposite directions,
whereas in diffusion they move in the same direction. Also,
in conduction ions move independently at very low concen-
tration, whereas in diffusion they have to move at equal
speeds to ensure electroneutrality of the solution. Uncer-
tainties in estimating self-diffusion coefficients based on
conductivity data may arise from various issues, including
the fact that conductivity measurements at finite concentra-
tion have to be extrapolated to zero concentration (for a de-
tailed discussion of uncertainties, see Robinson and Stokes,
1959). Nevertheless, for a number of ions, measurement of
the limiting conductivity ðk0Þ provide quite accurate num-
bers for the self-diffusion coefficients.

In the case of HCO�3 and CO2�
3 , the k0 values used in the

past to estimate their diffusion coefficients (e.g. Li and
Gregory, 1974) actually originate from conductivity mea-
surements in the 1930s and 1940s (Shedlovsky and
MacInnes, 1935; Monk, 1949). The conductivity measure-
ments to derive k0

CO2�
3

(Monk, 1949) showed drifts over time
and required several corrections, including conductivity
corrections for NaOH and NaHCO3. Three different values
of k0

CO2�
3

at 25 �C are listed in Landolt-Börnstein (1960).
Experimental values for k0

CO2�
3

are available at 0�, 18�, and
25 �C, while measurement of k0

HCO�3
appears to be limited to

25 �C (Landolt-Börnstein, 1960). These data provide the ba-
sis for the values of the HCO�3 and CO2�

3 diffusion coefficients
frequently used in the literature. A comprehensive study of



Fig. 1. Molecular dynamics (MD) simulation cell used in standard
simulations: 215 water molecules plus one solute molecule or ion.
Example shows the carbonate ion ðCO2�

3 Þ, blue = carbon,
red = oxygen, white = hydrogen. Visualization: VMD (Humphrey
et al., 1996).
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these geochemically and biologically important parameters
thus appears timely. It turns out that the conductivity-de-
rived diffusion coefficients based on measurements from over
60 years ago are broadly consistent with the very limited data
on the diffusion of the ionic carbonate species that are based
on direct diffusion measurements. However, the values for
DCO2�

3
at 25 �C, for example, which have been widely used

in the literature and cited in textbooks (e.g. Boudreau,
1997; Reddi and Inyang, 2000; Hudak, 2005) are probably
too high by 15–20%.

2.2. Stokes–Einstein temperature-dependence

The temperature-dependence of diffusion coefficients is
often approximated using the Stokes–Einstein relation,
which actually applies to spherical suspended particles
(Einstein, 1905):

D ¼ kBT
6pgR

; ð2Þ

where kB ¼ 1:38� 10�23 kg m2 s�2 K�1 is Boltzmann’s
constant, T is temperature, g is the shear viscosity, and R

the radius of the particle. If D is known at temperature
T 1, then DðT Þ can be calculated from:

DðT Þ
DðT 1Þ

¼ gðT 1Þ
gðT Þ

T
T 1

: ð3Þ

The temperature-dependence of, for instance, diffusion
coefficients of spherical suspended particles, can then be
determined solely based on the shear viscosity of water
(Huber et al., 2009). It is emphasized that the Stokes–
Einstein relation does not apply to, for instance, ionic
solutes in aqueous solution, supercritical water etc. (e.g.
Kalinichev, 1993). Nevertheless, the temperature-depen-
dence implied by Eq. (3) – not the Stokes–Einstein relation
itself – also seems to hold approximately for the major sea-
water ions (Li and Gregory, 1974). The temperature-depen-
dence of diffusion coefficients based on the Stokes–Einstein
relation and based on molecular dynamics simulations for
the dissolved ionic carbonate species will be compared in
Section 6. The comparison is included here simply because
the Stokes–Einstein relation has been widely used in the lit-
erature to estimate the temperature-dependence of various
diffusion coefficients. It does not represent an alternative
theory applicable to ions in liquid water.

3. METHODS

Diffusion coefficients were calculated based on molecu-
lar dynamics simulations using the portable program Mol-
dy (version 3.6) (Refson, 2000), freely available at http://
ccpforge.cse.rl.ac.uk/gf/project/moldy/frs. The program
has been used to study various diffusion processes, includ-
ing diffusion characteristics at clay–fluid interfaces, ionic
mobilities in supercritical water, and the mass-dependence
of ionic diffusion in liquid water (e.g. Leote de Carvalho
and Skipper, 2001; Hyun et al., 2001; Bourg and Sposito,
2007). For the simulation of dissolved CO2;HCO�3 , and
CO2�

3 , the unit simulation cell contained 215 water
molecules plus one solute molecule or ion, unless stated
otherwise (Fig. 1). The H2Oþ CO2�
3 unit cell, for instance,

was cubic with cell vector length 18.69 Å at a temperature
of 298 K and density 1.0 g cm�3. The program imposes
periodic boundary conditions and treats molecules in the ri-
gid approximation by solving the Newton–Euler equations
of rotational dynamics. Simulations were initiated using the
skew start method (Refson, 2000). Long-range Coulomb
interactions were handled using the 3D Ewald sum technique
with a typical cut-off distance of �9 Å. Pair-potentials were
modeled using the Lennard–Jones potential:

U ijðrÞ ¼ 4eij
rij

r

� �12

� rij

r

� �6
� �

ð4Þ

where eij and rij are the Lennard–Jones parameters for
atom pairs i and j. The minimum of the potential well is
at r ¼ 21=6rij and the value of the potential at this distance
is �eij. Note that rij is effectively a size parameter (e.g. in
het Panhuis et al., 1998). For the values of eij and rij used
here, see below and Table 1.

Diffusion coefficients were calculated in two different
ways during production runs after equilibration (see be-
low). (i) From a fit to the mean square displacement,
MSDðtÞ, over the time interval in which MSDðtÞ increases
linearly with time (Einstein, 1905):

6 D t ¼ hjrðtÞ � rð0Þj2i ¼MSDðtÞ; ð5Þ

where rðtÞ ¼ ½xðtÞ; yðtÞ; zðtÞ� is the position of the particle at
time t. (ii) From the velocity autocorrelation function,
VAFðtÞ (Hansen and McDonald, 2006):

D ¼ 1

3

Z tu

0

hjvðtÞ � vð0Þjidt ¼ 1

3

Z tu

0

VAFðtÞdt ð6Þ

where vðtÞ ¼ ½uðtÞ; vðtÞ;wðtÞ� is the particle velocity and tu is
the upper time integration limit (note: while tu !1

http://ccpforge.cse.rl.ac.uk/gf/project/moldy/frs
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Table 1
MD simulation parameters for Lennard–Jones potentials and
partial charges.

Pair eij rij
aqj Ref.

i� j ðkJ mol�1Þ (Å)

OH2O �OH2O 0.65015 3.1656 �0:8476 b

OH2O � CCO2
0.51369 3.2618 þ0:6172 c

OH2O �OCO2
0.81057 3.0145 �0:3086 c

OH2O � CHCO�3
0.24112 2.7850 þ1:1230 d

OH2O �Oð1ÞHCO�3

e 0.65015 3.1656 �0:7907 f

OH2O �Oð2ÞHCO�3

e 0.65015 3.1656 �0:8985 f

OH2O �Oð3ÞHCO�3

e 0.65015 3.1656 �0:8338 f

OH2O �HHCO�3
� � þ0:4000 f

OH2O � CCO2�
3

0.24112 2.7850 þ1:1230 d

OH2O �OCO2�
3

0.65015 3.1656 �1:0410 d

a Partial charge on atom j.
b Berendsen et al. (1987).
c in het Panhuis et al. (1998).
d Wang and Becker (2009).
e Label 1 denotes O of the O�H group, 2 and 3 the remaining O

proximal and distal to H, respectively.
f Wang and Becker (2009), Duffy et al. (2005). Partial charges

from ab initio calculations (see text).

Fig. 2. (a) Example of MD-calculated mean square displacement
of CO2�

3 at 298 K based on a set of 16 simulations (dotted lines).
The solid line indicates the mean value of all runs. Note that results
shown are for N ¼ 216 (to obtain final values, system-size
correction needs to be applied). Inlet: note different axes limits.
(b) The quantity 1=6� dðMSDÞ=dt used for time series error
analysis (see text) shown for three arbitrary runs from the set of 16.
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theoretically, in practice tu may be rather small). The two
methods and the associated errors are discussed in detail
in Section 8.

For the calculation of the diffusion coefficients of dis-
solved CO2;HCO�3 , and CO2�

3 , sets of sixteen production
runs over 500 ps were performed (see below) with constant
numbers of particles, volume, and energy for each run
(microcanonical or NVE ensemble). Maximum changes in
total energy over the 500 ps time span were typically less
than 0.1%. The temperature – pressure – volume (TVP)
relationship for the run was set by the input parameters
temperature and density. The density was adjusted at differ-
ent temperatures to maintain approximately constant pres-
sure using a temperature–density relationship for the water
model used here (see Section 5.2).

3.1. CPU-ensemble approach

The numerical computation of diffusion coefficients re-
quires averaging over long time intervals and/or large
ensemble sizes for statistical reasons (see Section 8). For
example, for the diffusion of a single ion in aqueous solu-
tion (ensemble size ne ¼ 1), simulation times are typically
of order ns, which requires � 106 numerical steps at a time
step of Dt ¼ 0:001 ps. In the present study, I used a 16-CPU
cluster to run sixteen simultaneous 500 ps-long simulations
with different initial conditions for a given solute (‘CPU-
ensemble’, ne ¼ 16). Runs were preceded by temperature
equilibration of 2 ps at Dt ¼ 0:0001 ps and 100 ps at
Dt ¼ 0:001 ps (Bourg and Sposito, 2007). Note that each in-
stance of the program was run on one processor in sequen-
tial mode using the serial version of the code (not the
parallel version). The 16 simulations were set up with differ-
ent ’initial conditions’ by performing short scaling runs
before equilibration with different numbers of steps be-
tween scalings for each run. This led to rapid divergence
of trajectories and velocities between runs, as confirmed
by the variability in the mean square displacement (MSD)
and the velocity autocorrelation function (VAF) of the
CPU-ensemble (see inlet Figs. 2a and 3).

In addition, possible correlations between runs were
checked by calculating correlation coefficients Rr

ij ¼
corrðjriðtÞj; jrjðtÞjÞ and Rv

ij ¼ corrðjviðtÞj; jvjðtÞjÞ, where riðtÞ
and viðtÞ refer to solute coordinates and velocities, and
i; j ¼ 1; . . . ; 16ði–jÞ. These may be compared to correla-
tions within a single run, for instance, between the first
and second half of a given run Rr

i;t ¼ corrðjriðt0Þj; jrjðt00ÞjÞ,
where f0 6 t0 6 tr=2g; ftr=2 < t00 6 trg, and tr is total
run time. For example, for CO2�

3 at 298 K, the absolute
means of the correlation coefficients are Rr

ij ’ 0:3 and
Rv

ij ’ 0:0004, while Rr
i;t ’ 0:1 and Rv

i;t ’ 0:002. These num-
bers indicate little difference in the correlation of variables
between multiple runs with different initial conditions on
the one hand (CPU-ensemble), and the correlation of
variables within a single run on the other (time series). This
is corroborated by the variability in MSD and VAF (see



Fig. 3. (a) Example of MD-calculated velocity autocorrelation
function VAFðtÞ of CO2�

3 at 298 K based on a set of 16 simulations.
(b) Diffusion coefficient calculated by integrating VAFðtÞ over time
(see text). Dotted lines: all 16 runs; solid line: mean value.
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Section 8) and is to be expected if the system is ergodic
(ensemble averages and time averages are equivalent).

On a parallel cluster, the CPU-ensemble used here for
the simulation of solute diffusion is computationally cost-
effective. For a 16-CPU cluster, the method effectively pro-
vides the equivalent of a serial 16-ns run for the time cost of
a 1-ns run. Also, using multiple CPUs for multiple sequen-
tial runs allows simultaneous computation of MSD and
VAF (which can be time-consuming), once the MD simula-
tions have been completed.

3.2. Water model

For the MD simulations of the present study, the ex-
tended simple point charge (SPC/E) model for water was
used (Berendsen et al., 1987). The rigid SPC/E water model
has a fixed O–H bond length of 1 Å and an HOH angle of
109:47�. The point charges and Lennard–Jones parameters
are summarized in Table 1. Note that the MD-calculated
self-diffusion coefficient of water depends on the size of the
simulation cell (e.g. Dünweg and Kremer, 1991; Dünweg
and Kremer, 1993; Yeh and Hummer, 2004; Kerisit and
Liu, 2010). At a cubic cell length of � 19 Å ðN ¼ 216Þ
and at 25 �C, the self-diffusion coefficient of the SPC/E
water model agrees well with observations. However, this
is not the case at different cell lengths and all temperatures
over the range 0–100 �C (see Sections 4 and 5.2).

3.3. Solute models

The Lennard–Jones parameters, partial charges and
C–O bond length (1:162 ÅÞ for dissolved CO2 were taken
from in het Panhuis et al. (1998), see Table 1. The Len-
nard–Jones parameters for oxygen and carbon for HCO�3
and CO2�

3 and the partial charges for CO2�
3 were taken

from Wang and Becker (2009), who used the parameters
for the carbonate ion in the vaterite mineral ðCaCO3Þ.
Note, however, that the parameters were originally used
in aqueous solution (Kalinichev et al., 2001). The O–H
bond length in HCO�3 was set to 0.96 Å, the C–O–H bond
angle to 115�, and the hydrogen partial charge to þ0:4e
(Duffy et al., 2005). To maintain charge balance, Duffy
et al. (2005) raised the charge of the oxygen atom of the
O–H group in HCO�3 by 0:6e and left the charges of the
remaining two oxygen unchanged (relative to the partial
charges in CO2�

3 ).
However, I performed ab initio calculations using

GAMESS (Gordon and Schmidt, 2005), which indicated
that the charge is distributed more homogeneously among
the three oxygen atoms of the bicarbonate ion. After geom-
etry optimization based on e.g. HF/6-31G(d) and B3-LYP/
6-31++G(d), charge fitting to the electrostatic potential
gave a charge ratio of qO1

: qO2
: qO3

’ 1 : 1:14 : 1:05, where
O1 denotes the O of the O–H group, and O2 and O3 the
remaining O proximal and distal to H, respectively. I tested
two different levels of theory with and without diffuse func-
tions and three different charge fit methods, which all gave
very similar results. In addition, I calculated the HCO�3 par-
tial charges including a continuum solvent model for water.
While the resulting charge distribution was slightly differ-
ent, the effect on the HCO�3 diffusion coefficient was insig-
nificant (for instance, 1:14� 0:04 vs. 1:12� 0:04 based on
MSD at 298 K). Consequently, the oxygen partial charges
of HCO�3 were set according to the charge ratio obtained
from ab initio calculations. The parameters for the solute
models are summarized in Table 1.

The calculated radial distribution functions (gðrÞ, Fig. 5)
and hence the coordination numbers of the solute species
agree very closely with those obtained from ab initio molec-
ular dynamics methods (Leung et al., 2007; Rustad et al.,
2008; Kumar et al., 2009). For CO2, the similarity between
radial distribution functions of classical force field studies
(in het Panhuis et al., 1998) and ab initio-MD methods
was noted previously (Leung et al., 2007). One minor differ-
ence appears to be the fact that the first peak in gC�Ow

ðrÞ of
the present CO2�

3 model occurs at a slightly shorter distance
compared to ab initio-MD results (Rustad et al., 2008;
Kumar et al., 2009).

4. SYSTEM-SIZE DEPENDENCE OF DIFFUSION

COEFFICIENTS

Long-range interactions in molecular dynamics
simulations with finite system size and periodic boundary
conditions can lead to significant effects on the simulated



Fig. 5. Calculated radial distribution functions of the dissolved
carbonate species at 298 K. C = central carbon atom in (a) CO2,
(b) HCO�3 , and (c) CO2�

3 ; Ow=Hw ¼ oxygen/hydrogen of water.
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diffusion coefficient (Dünweg and Kremer, 1991; Dünweg
and Kremer, 1993; Yeh and Hummer, 2004; Kerisit and
Liu, 2010). In agreement with these studies, the present sim-
ulations yielded a significant increase in DH2Oð� 25% at
298 K) as the system size tended from N ¼ 128 towards
infinity, i.e. as the inverse of the simulation’s cell box length
(L) tended towards zero (Fig. 4). In fact, it can be shown
theoretically that the simulated diffusion coefficient should
depend inversely on L (Dünweg and Kremer, 1991; Yeh
and Hummer, 2004). The diffusion coefficient at infinite sys-
tem size D1i may be obtained from:

D1i ¼ DMD
i þ fkBT

6pgðT ÞL ; ð7Þ

where DMD
i is the MD-calculated diffusion coefficient of spe-

cies i at the system size of the simulation, f ¼ 2:837297
arises from Ewald summation in a cubic lattice, and gðT Þ
is the simulated shear viscosity at temperature T. Note that
Eq. (7) applies to both solute and solvent. The final calcu-
lated value should of course be independent of the size of
the simulation cell. Thus the size-independent solute-to-sol-
vent ratio of diffusion coefficients is determined first, from
which the final diffusion coefficient of solute species i is cal-
culated as:

Di ¼ D1i
Dexp

H2O

D1H2O

; ð8Þ

where Dexp
H2O is the observed diffusion coefficient of water

(e.g. Holz et al., 2000).
As mentioned above, Eq. (7) applies to both solute and

solvent. Indeed, the slopes of DMD
H2O and DMD

CO2�
3

as a function

of 1=L as derived here at 298 K are essentially the same
(Fig. 4). This is critical for the calculated solute-to-solvent
ratio of diffusion coefficients, particularly for species with
significantly smaller or larger diffusion coefficients than
water. For instance, at 298 K and N ¼ 216, the VAF-calcu-

lated DMD
CO2�

3
equals 0:53� 10�9 m2 s�1 and DMD

CO2�
3
=DMD

H2O ¼
Fig. 4. System-size dependence of MD-calculated diffusion coeffi-
cients. Diffusion coefficients of solute and solvent increase linearly
as 1=L! 0 (i.e. L!1, where L is the box length of the cubic unit
cell).
0:22. However, at infinite system size, D1
CO2�

3
¼ ð0:53þ

0:48Þ � 10�9 m2 s�1 ¼ 1:01� 10�9 m2 s�1 (see Eq. (7)) and
D1

CO2�
3
=D1H2O ¼ 0:35 (Fig. 4, Table 4). Using Eq. (8), the final

VAF-calculated diffusion coefficient of the carbonate ion at

298 K is DCO2�
3
¼ 1:01� 10�9 � 2:29=2:85 m2 s�1 ¼ 0:81�

10�9 m2 s�1 (Table 4).

5. TESTING DIFFUSION COEFFICIENTS

CALCULATED FROM MOLECULAR DYNAMICS

SIMULATIONS

Before using molecular dynamics simulations to tackle
diffusion properties that have not been studied until pres-
ent, it is instructive to test whether the methods employed
here produce results that are in agreement with independent
theoretical and observational results. This includes, for in-
stance, values of diffusion coefficients of solvent and solute,
their temperature-dependence, and the mass-dependence of
different isotopologues. In the following, molecular
dynamics will be applied to noble gas diffusion and their
mass-dependence and the temperature-dependence of the
self-diffusion coefficients of water and dissolved CO2.
Examinations of MD-simulated diffusion and mobility of
dissolved ions and noble gases, and their mass-dependence
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have been reported earlier (e.g. Koneshan et al., 2001;
Bourg and Sposito, 2007; Bourg and Sposito, 2008; Kerisit
and Liu, 2010).

5.1. Noble gases and mass-dependence

The following section is relevant to the calculation of the
mass-dependence of the carbonate species (Section 6.2). Be-
fore using MD simulations to predict the yet unknown
mass-dependence of the ionic carbonate species for which
no observational or theoretical comparison exists so far,
it is useful to test whether or not the MD simulations repro-
duce the known mass-dependence of a monoatomic noble
gas.

Based on first principles, the Chapman–Enskog theory
predicts the self-diffusion coefficient of a gas consisting of
spherically symmetrical molecules as (Chapman and
Cowling, 1970):

Ds
g ¼

3

8

kB T

P d2 W

kB T
p m

� �1=2

; ð9Þ

where kB ¼ 1:38� 10�23 kg m2 s�2 K�1 is Boltzmann’s
constant, T is temperature, P is pressure, d is the collision
diameter, and m is the mass. The collision integral W de-
pends on the type of interaction between the molecules
(see Chapman and Cowling, 1970). Eq. (9) shows that Ds

g

should be / T 3=2, inversely proportional to P, and propor-
tional to m�1=2. The Chapman–Enskog predictions agree
well with observations. For instance, using m ¼
39:95 amu, d ¼ 3:54 Å, and W ¼ 0:935 (Cussler, 1984),
the predicted self-diffusion coefficient of argon is DAr ¼
0:182� 10�4 m2 s�1 at 295 K and 1 atm. The correspond-
ing observed value is 0:178� 10�4 m2 s�1 (Winn, 1950).
For Ne at 300 K and 1 atm, the predicted and observed val-
ues are 0:517� 10�4 m2 s�1 and 0:516� 10�4 m2 s�1

(Winn, 1950), respectively.
The Ds

g’s of noble gases predicted by Eq. (9) at 300 K
and 1 atm and those summarized in Kestin et al. (1984)
are shown in Fig. 6. Also shown are results of the present
Fig. 6. Diffusion coefficients of noble gases. Calculations using
Chapman–Enskog theory are based on Eq. (9). The simulated
mass-dependence of DAr is in agreement with the theoretical slope
of �1/2 for spherically symmetrical molecules (dotted lines).
study for variable Ar mass based on MD simulations
with Lennard–Jones parameters eij ¼ 0:9977 kJ mol�1 and
rij ¼ 3:4 Å (e.g. Rahman, 1964; Allen and Tildesley,
1987). Note that for statistical reasons, the simulations were
performed at T ¼ 140 K; q ¼ 0:035 g cm�3 ðP ¼ 9:3 atmÞ.
Under these conditions (as well as at room temperature)
Ar is a gas experimentally (Tegeler et al., 1999) and in the
simulations. Yet the simulations are significantly less time
consuming than, for instance, at 300 K and 1 atm. The
MD-based diffusion coefficients have been plotted so that
the calculated DAr (at mass 39.95 amu) matches the ob-
served DAr at 300 K and 1 atm for comparison with the
Ds

g’s of noble gases (Fig. 6). Several conclusions can be
drawn. First, the collision parameters r and W of the noble
gas series (He, Ne, Ar, Kr, Xe) cause a stronger decrease of
the self-diffusion coefficient than expected from the mass-
dependence alone (slope < �1=2 in a log–log plot,
Fig. 6). Second, the features of noble gas diffusion are well
captured by the Chapman–Enskog theory, including the
well-known m�1=2-dependence of the diffusion coefficient
of a monoatomic noble gas (Eq. (9)). As mentioned above,
this refers to a gas consisting of spherically symmetrical
molecules, not to gas mixtures or fluids. Finally, the numer-
ical results for variable Ar mass (diamonds) show that
the results of the present MD simulations are in agreement
with the theoretically predicted mass-dependence of
slope = �1/2 for spherically symmetrical molecules (dotted
lines). While this is no guarantee that the MD simulations
correctly predict the diffusion mass-dependence in aqueous
systems, it confirms that the MD simulations correctly pre-
dict the diffusion mass-dependence in simple gas systems.
5.2. Water self-diffusion coefficient vs. temperature

One critical prerequisite for appropriate simulation of
solute diffusion is an adequate self-diffusion coefficient of
the solvent itself. As mentioned above, the SPC/E water
model was used in the present study (Berendsen et al.,
1987). Observations of the self-diffusion coefficient of water
ðDH2OÞ are numerous and can be represented over the tem-
perature range 0–100 �C with an error limit of 6 1% by
(Holz et al., 2000):

DH2O ¼ D0
H2O ½ðT=T SÞ � 1�c ð10Þ

where D0
H2O ¼ 16:35� 10�9 m2 s�1; T S ¼ 215:05 K, and c ¼

2:063. The self-diffusion coefficient of the SPC/E water
model agrees well with observations at a cubic cell length
of � 19 Å ðN ¼ 216Þ and at 25 �C (Fig. 7). However, this
is not the case at different cell lengths and different temper-
atures. At N ¼ 216, the calculated temperature-dependence
is too weak and the simulations significantly underestimate
DH2O above 50 �C (Fig. 7). While the calculated, size-inde-
pendent water diffusion coefficient (N !1) shows an im-
proved temperature-dependence, it overestimates DH2O

over the entire temperature range from 0� to 100 �C
(Fig. 7). Caution is therefore advised when using absolute
values of the water diffusion coefficient based on the SPC/
E model at varying system size or temperature. For solute
diffusion, these issues can be addressed by using Eq. (8),



Fig. 7. Water diffusion coefficient based on observations (solid line,
Holz et al., 2000) and present MD simulations at N ¼ 216 (open
diamonds) and N !1 (closed diamonds), see text. Dashed line:
T-dependence based on Stokes–Einstein relation relative to
observed value at 25 �C.

Fig. 8. Diffusion coefficient of dissolved CO2 based on observa-
tions and present MD simulations (diamonds). Confidence inter-
vals (95%) of simulated values are based on ensemble statistics.
Solid line: fit to simulated values (see text). Dashed line:
T-dependence based on Stokes–Einstein relation relative to calcu-
lated value at 25 �C.
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which corrects for system-size effects and normalizes to the
observed DH2O.

Furthermore, the simulated diffusion coefficient of water
depends on the pressure of the simulation cell. In order to
adjust the input density parameter to maintain approxi-
mately constant pressure during production runs at differ-
ent temperatures (V ¼ const: during individual runs), a
temperature-density relationship for the SPC/E water mod-
el was obtained based on a separate set of runs at constant
pressure. Over the temperature range from 273 to 373 K,
the T-q-relationship for the water model and the present
simulation cell ðN ¼ 216Þ may be represented as:

qSPC=E ¼ 6:8869� 10�1 þ 3:5308� 10�3 � T

� 1:1268� 10�5 � T 2 þ 9:7349� 10�9 � T 3 ð11Þ

where T is in Kelvin. At a given input temperature, Eq. (11)
was used to determine the input density for the simulations.
Note that small variations in density/pressure have a minor
effect on the calculated diffusion coefficients. For example,
at 348 K and q ¼ 0:9631 vs. q ¼ 0:9550 ð� 15 MPa pres-
sure difference), the calculated DCO2

’s are identical within
errors. On the contrary, factors such as the system size have
a much larger effect. For example, DCO2

increases by 21% at
348 K as N tends from 216 towards infinity (Table 4).

5.3. Dissolved CO2

Using the SPC/E water model, MD parameters for dis-
solved CO2 given by in het Panhuis et al. (1998), and Eq.
(8), the computed CO2 diffusion coefficient at 298 K based
on VAF equals 2:02� 0:19� 10�9 m2 s�1 (Table 4). This is
in good agreement with observations (Fig. 8). Note that the
confidence interval given here reflects the statistics of the
simulations, rather than biases due to systematic errors
(for detailed discussion, see Section 8). The simulated val-
ues agree well with observations over the temperature range
0–75 �C (Davidson and Cullen, 1957; Himmelblau, 1964;
Thomas and Adams, 1965; Jähne et al., 1987; Tamimi
et al., 1994). The two data points above 75 �C (Tamimi
et al., 1994) indicate higher values than the simulations.
However, note that Tamimi et al.’s values are also higher
than other observational results across the entire tempera-
ture range.

6. RESULTS

The tests described in the previous section indicate that
reliable diffusion coefficients can be obtained from molecu-
lar dynamics simulations, if carefully applied (taking into
account system-size effects, for instance). In the following,
MD-based results for the diffusion coefficients of HCO�3
and CO2�

3 and their mass-dependence will be presented,
for which little or no experimental data is currently
available.

6.1. Diffusion coefficients of dissolved CO2;HCO�3 , and

CO2�
3

The MD-calculated diffusion coefficients of dissolved
CO2;HCO�3 , and CO2�

3 as a function of temperature are
shown in Figs. 8–10 (for discussion including experimental
results, see Section 7). Over the temperature range 0–
100 �C, a power-law equation (Speedy and Angell, 1976)
was fit to the MD-calculated diffusion coefficients for
CO2;HCO�3 , and CO2�

3 :

Di ¼ D0
i ½ðT=T iÞ � 1�ci ð12Þ

where D0
i ; T i, and ci are fit parameters for the individual car-

bonate species i (Table 2). Note that the choice of the fit
equation is somewhat arbitrary, given the uncertainties of
the calculations. However, Eq. (12) resulted in a much



Fig. 9. Diffusion coefficient of dissolved HCO�3 based on observa-
tions (squares, triangle) and present MD simulations (diamonds).
Confidence intervals (95%) of simulated values are based on
ensemble statistics. Solid line: fit to simulated values (see text).
Cross: DHCO�3

at 25 �C based on limiting conductivity. Dashed line:
T-dependence based on Stokes–Einstein relation relative to calcu-
lated value at 25 �C.

Fig. 10. Diffusion coefficient of dissolved CO2�
3 based on observa-

tions (squares) and present MD simulations (diamonds). Confi-
dence intervals (95%) of simulated values are based on ensemble
statistics. Solid line: fit to simulated values (see text). Crosses: DCO2�

3

based on limiting conductivity. Dashed line: T-dependence based
on Stokes–Einstein relation relative to calculated value at 25 �C.

Fig. 11. Mass-dependence of diffusion coefficients at 298 K
(m = molecular mass). (a) CO2: closed diamonds indicate results
of MD simulations based on velocity autocorrelation function
(VAF). Open diamonds: based on mean square displacement
(MSD). Confidence intervals (95%) of simulated values are based
on ensemble statistics, see text. The solid and dashed lines indicate
observed mass-dependence during 12CO2=

13CO2 diffusion. (b)
HCO�3 simulations. (c) CO2�

3 simulations.

Table 2
Fit parameters for MD-calculated diffusion coefficients.a

Diffusion
coefficient

Temp. range
(K)

D0
i
ð10�9 m2 s�1Þ

T i (K) ci (�)

DCO2
273� 373 14.6836 217.2056 1.9970

DHCO�3
273� 373 7.0158 204.0282 2.3942

DCO2�
3

273� 373 5.4468 210.2646 2.1929

a Results were fitted to Di ¼ D0
i ½ðT=T iÞ � 1�ci , where T is in K.
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better fit than, for instance, a fit based on an Arrhenius
equation or a polynomial. This is not surprising because
the temperature dependence of the solutes is mostly deter-
mined by the observed temperature-dependence of water
(Eq. (8)), which follows the same power-law (Eq. (10)).
Minor contributions come from variations in the ratio
r1 ¼ D1i =D1H2O (Table 4).
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The dashed lines in Figs. 8–10 indicate the temperature-
dependence according to the Stokes–Einstein relation (Eq.
3), relative to the calculated value at 25 �C. Note that the
Stokes–Einstein temperature-dependence is included here
simply because it has been widely used in the literature. It
does not represent an alternative theory applicable to ions
in liquid water.

6.2. Isotopic mass

To examine the dependence of CO2 diffusion on isotopic
mass, the carbon mass in CO2 was varied between hypothet-
ical values of 2 and 72 amu at 298 K. In other words, diffu-
sion coefficients were calculated for 12C16O2 and the
fictitious molecules 2C16O2;

24C16O2;
48C16O2, and 72C16O2

with molecular masses m ¼ 34; 44; 56; 80, and 104
(Fig. 11a). Note that simulations spanning only the small
mass-range of naturally occurring isotopes would not allow
to deduce meaningful trends of calculated diffusion coeffi-
cients vs. isotopic mass. This is due to the statistical uncer-
tainty in the mean value of calculated diffusion coefficients
(see Section 8). For instance, the reported values for carbon
isotope fractionation during 12CO2=

13CO2 diffusion are
0:7& (25 �C) and 0:87& (O’Leary, 1984, 1987). In contrast,
the 95% confidence interval of the present MD simulations is
several percent of the calculated mean value (Section 8,
Fig. 11).

The results of the MD simulations at different CO2

masses indicate a small isotope effect for CO2 diffusion,
consistent with observations (Fig. 11a). However, the statis-
tical uncertainties of the simulations impede precise calcula-
tion of the isotopic fractionation. For the VAF-calculated
diffusion coefficients, a simple linear regression (random
Gaussian errors) of logðDCO2

=D0Þ vs. logðm=m0Þ yields
slopes between �0.14 and �0.01 at the 95% confidence level
(D0 ¼ 10�9 m2 s�1;m0 ¼ 1 amu). For comparison, the ob-
served slopes are �0.03 and �0.04. The mass-dependence
of HCO�3 and CO2�

3 diffusion was examined based on sim-
ulations at 298 K using carbon masses 2, 12, 24, and 48 at
oxygen mass 16 and carbon mass 2 at oxygen mass 12. The
results are shown in Fig. 11b and c as a function of the
molecular mass m on a logarithmic scale (horizontal axis).
For HCO�3 , the VAF-based slopes ranged from �0.17 to
+0.04 at the 95% confidence level. For CO2�

3 , the corre-
sponding slopes ranged from �0.13 to +0.04.
7. DISCUSSION

Sufficient experimental data is available on CO2 diffu-
sion in water to evaluate the MD simulations of dissolved
CO2. As mentioned above, while observations and simula-
tions of DCO2

show good agreement from 0 to 75 �C
(Fig. 8), the two data points above 75 �C (Tamimi et al.,
1994) indicate higher values than the simulations.
However, Tamimi et al.’s numbers are also higher than
other observational results across the entire temperature
range. The MD-predicted temperature-dependence of
DCO2

is slightly less than the Stokes–Einstein tempera-
ture-dependence (Eq. 3).
Significantly less experimental data have been published
on HCO�3 diffusion (Fig. 9). A few measurements of DHCO�3
in NaHCO3 solutions were conducted at 0, 25, and 30 �C
(Kigoshi and Hashitani, 1963; Hashitani and Kigoshi,
1965). Their value for DHCO�3

at 25 �C appears to be slightly
higher than the value obtained in seawater (Poisson and Pa-
paud, 1983).

The estimates of diffusion coefficients based on limiting
conductivity for both HCO�3 and CO2�

3 (Li and Gregory,
1974) are higher than the experimental values (crosses in
Figs. 9 and 10). This could be due to general limitations in-
volved in deriving diffusion coefficients from conductivity
data (see Section 2.1). Alternatively, the conductivity-based
values could be higher because they actually apply to infi-
nite dilution, whereas diffusion experiments are conducted
at finite dilution. Overall, the MD-calculated results are in
good agreement with the sparse direct observations, given
uncertainties in force fields, etc. The direct diffusion mea-
surements and the present MD simulations suggest that
the values of 0:92 and 0:96� 10�9 m2 s�1 for DCO2�

3
at

25 �C (Robinson and Stokes, 1959; Li and Gregory, 1974)
that have been widely used in the literature and cited in
textbooks (e.g. Boudreau, 1997; Reddi and Inyang, 2000;
Hudak, 2005) are probably too high by 15–20%.

It seems desirable to clarify these issues in a comprehen-
sive experimental study that examines various effects
including temperature, concentrations, ionic strength, and
isotopic mass on the diffusion coefficients of the dissolved
carbonate species. For marine applications, it is also impor-
tant whether or not there is a significant difference in the
diffusion of the carbonate species in dilute solutions vs. sea-
water. While observations seem to suggest a slightly re-
duced HCO�3 mobility in seawater (Fig. 9), the data is too
sparse to draw firm conclusions (Kigoshi and Hashitani,
1963; Poisson and Papaud, 1983).

Using molecular dynamics simulations, Bruneval et al.
(2007) recently calculated a value of DCO2�

3
’ 0:6�

10�9 m2 s�1 at 300 K, which is probably too low (see
Fig. 10). The present simulations give DCO2�

3
’ 0:8�

10�9 m2 s�1 at 298 K. Also based on MD, Kerisit and Liu
(2010) calculated a ratio of DCO2�

3
=DH2O ¼ 0:353 at

298.15 K. Using DH2O ¼ 2:3� 10�9 m2 s�1, yields DCO2�
3
¼

0:81� 10�9 m2 s�1, close to the result of the present study.
The results of the MD simulations indicate a small isotope

fractionation associated with the diffusion of CO2, consistent
with the reported values for carbon isotope fractionation
during 12CO2=

13CO2 diffusion of 0:7& (25 �C) and 0:87&

(O’Leary, 1984; Jähne et al., 1987). However, the statistical
uncertainties of the simulations prevent precise calculation
of the isotope fractionation during diffusion for CO2, as
well as for the ionic carbonate species. The simulations
do not suggest a significant isotope fractionation associated
with the diffusion of HCO�3 and CO2�

3 at 25 �C. Yet, a small
isotope effect cannot be ruled out. For the divalent carbon-
ate anion, a very small (or no) kinetic isotope effect during
diffusion is consistent with its stronger solute–solvent inter-
action, relative to monovalent ions. Experimental and the-
oretical results also indicate very small (or no) kinetic
isotope effects during diffusion of the divalent cations
Ca2þ and Mg2þ (Richter et al., 2006; Bourg et al., 2010).



Fig. 12. Typical temperature fluctuations (example: CO2�
3 at

298 K) during 500 ps simulation averaged and plotted every 1000
steps at a time step of 0.001 ps (solid line, diamonds) and standard
deviation (dotted lines, see text).

Table 3
Estimated statistical errors of MD simulations for CO2�

3 at 298 K.a

Variable Meane re Se ðneÞ CIe rt St ðnt; nÞ
T(K) 298.4 0:90 0:23 (16) �0:45 9:0 0:57 (500, 2)
DMSD

b 0.52 0:08 0:02 (16) �0:04 0:06 0:03 (1700, 350)
DVAF

b 0.53 0:10 0:03 (16) �0:05 0:11c � �
a ri ¼ standard deviation, Si ¼ standard error of the mean, ni ¼

# ensemble runs or # time series entries, n ¼ statistical inefficiency.
Subscripts e and t refer to ensemble and time series. CIe ¼ 95%

confidence interval of ensemble runs (�2 re=
ffiffiffiffiffi
ne
p

), see text.
b All values before system-size correction. Unit: 10�9 m2 s�1.
c Method to estimate rt for DVAF differed from that for T and

DMSD, see text.
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8. ERRORS AND UNCERTAINTIES OF THE

SIMULATIONS

Different classes of errors affect the calculations of diffu-
sion coefficients based on molecular dynamics simulations.
First, errors arise due to general limitations of the theoret-
ical method to describe the real physical system. These in-
clude simplification and truncations made to derive
molecular interaction terms, the limited size of the simula-
tion cell, uncertainties in input values such as Lennard–
Jones parameters, etc. Some of those errors have been
discussed above (Section 3). On the other hand, errors of
statistical nature arise due to the limited time span and/or
ensemble size of the simulations, which affect the statistical
reliability of the results.

For instance, simulated thermodynamic quantities such
as temperature fluctuate significantly around the mean over
time. The finite integration time and the correlation of sim-
ulation output affect the standard error of the mean of such
quantities because the states of consecutive simulation
steps, for example, are generally not statistically indepen-
dent. Because of finite integration times, the limited ensem-
ble size becomes an issue, particularly in the present case
where the path of a single dissolved molecule or ion is
followed over time. This introduces uncertainties in the
calculation of diffusion coefficients because diffusion is a
statistical process, which requires averaging over long time
intervals and/or large ensembles. Such errors are less prob-
lematic for the calculated properties of water, for instance,
because the ensemble size is typically much larger (e.g. 215
molecules per cell).

In the following, statistical errors and uncertainties of
the simulations will be discussed for temperature and diffu-
sion coefficients based on mean square displacement and
velocity autocorrelation function. It is important that these
errors are valid within the statistical framework of the
molecular dynamics simulations. Their examination is crit-
ical for testing whether the results are meaningful in terms
of their statistical significance. However, because of the
additional limitations mentioned above, the results of the
statistical error analyses alone do not imply that the theo-
retical results have to agree with the true values of the real
system within the statistical error bounds obtained.

8.1. Temperature

The typical temperature fluctuation during the simula-
tions was about �9 K (Fig. 12). This is the standard devia-
tion of the time series, rt, which needs to be explicitly stated
in the program output because the printed output is usually
averaged over a significant number of time steps. Here,
averages were printed every 1000 steps at a time step of
0.001 ps over a total time interval of 500 ps, giving
nt ¼ 500 temperature values total. If all states of the series
would be uncorrelated (statistically independent), the stan-
dard error of the mean would be St ¼ rt=

ffiffiffiffi
nt
p ¼ 9 K=ffiffiffiffiffiffiffiffi

500
p

¼ 0:4 K. However, consecutive steps of MD simula-
tions are generally correlated (e.g. Allen and Tildesley,
1987). Following the analysis of Fincham et al. (1986), it
turned out that only about half the values are statistically
independent, i.e. a statistical inefficiency of n ’ 2. This cor-
responds to a correlation time of roughly 500 ps/(500/
2) = 2 ps. Hence St ¼ 9 K=

ffiffiffiffiffiffiffiffiffiffiffiffi
500=2

p
¼ 0:57 K. This is the

standard error of the mean temperature for the time series
of one simulation over 500 ps (see Table 3).

A total of 16 independent simulations were performed to
obtain the ensemble diffusion coefficient of each compound
(see Section 3). For instance, for CO2�

3 at 298 K, the ensem-
ble mean, standard deviation, and standard error of the
mean temperature are �T e ¼ 298:4 K, re ¼ 0:90 K, and
Se ¼ 0:90 K=

ffiffiffiffiffi
16
p

¼ 0:23 K (Table 3).

8.2. Mean square displacement

As mentioned above, the diffusion coefficient can be cal-
culated from a fit to the linear part of the mean square dis-
placement (MSD):

6 D t ¼ hjrðtÞ � rð0Þj2i ¼MSDðtÞ ð13Þ

(see Fig. 2a). Taking the time derivative yields:

D ¼ 1

6

d

dt
MSDðtÞ ¼ const: ð14Þ

Thus for time intervals over which the MSD increases line-
arly, the right-hand side is constant, except for fluctuations
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around the mean. Hence in order to estimate errors in D, a
time series analysis analogous to that of temperature may
be applied (Fig. 2b). Note, however, that the non-linear
part of MSD for t ! 0 has to be excluded from the analysis
(Allen and Tildesley, 1987). In addition, for large t, the
MSD curves show non-linear behavior and larger variabil-
ity (inlet Fig. 2a). In most cases, this had little effect on the
final ensemble mean but increased the range of computed
MSD values. Thus the relevant time interval for error anal-
ysis was chosen roughly between 1 ps and 10 ps.

Fig. 2b shows 1=6� dðMSDÞ=dt for three arbitrary runs
from the set of 16 for CO2�

3 at 298 K. For example, the solid
line yields a time series mean and standard deviation of
0:52� 0:06� 10�9 m2 s�1ðnt ¼ 1700). Ignoring correla-
tions, the standard error of the mean would be 0:06�
10�9 m2 s�1=

ffiffiffiffiffiffiffiffiffiffi
1700
p

¼ 0:001� 10�9 m2 s�1. However, on
average only about 5 of the values are statistically indepen-
dent, i.e. a statistical inefficiency of n ’ 350. Hence
St ¼ 0:06� 10�9 m2 s�1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1700=350

p
¼ 0:03� 10�9 m2 s�1.

Note that this yields a correlation time of about 10 ps/
5 = 2 ps, consistent with the correlation time obtained for
the temperature analysis. The mean diffusion coefficient of
the ensemble based on MSD calculations of all 16 runs be-
fore system-size correction is 0:52� 10�9 m2 s�1, with a
standard deviation and standard error of the mean of
re ¼ 0:08� 10�9 m2 s�1 and Se ¼ 0:02� 10�9 m2 s�1

(Table 3).

8.3. Velocity autocorrelation function

The diffusion coefficient can also be calculated from the
velocity autocorrelation function (VAF):

D ¼ 1

3

Z tu

0

hjvðtÞ � vð0Þjidt ¼ 1

3

Z tu

0

VAFðtÞ dt ð15Þ

where the average runs over particles and time:

VAFðtÞ ¼ 1

NN t

XN

i¼1

X
t0

viðt0 þ tÞ � viðt0Þ: ð16Þ

For large t, the normalized standard deviation of a time
correlation function may be estimated according to
Zwanzig and Ailawadi (1969), which reads for VAFðtÞ:

rnVAF ¼
2s
trN

� �1=2

ð17Þ
Table 4
Results of MD-simulationsa at N ¼ 216 ðD216Þ, values at infinite system-

T (K) gMD gexp H2Ob CO2
c

d d D216 D1 Dexp D216 D1 r1

273 12.5 18.0 1.30 1.55 1.09 1.20 1.45 0.93
298 6.9 8.9 2.37 2.85 2.29 2.03 2.51 0.88
323 4.5 5.5 3.74 4.53 3.94 3.29 4.09 0.90
348 3.9 3.8 5.42 6.40 6.06 4.65 5.63 0.88
373 2.6 2.8 7.48 9.05 8.65 6.21 7.78 0.86

a Only values based on VAF are listed.
b D’s in units of 10�9 m2 s�1.
c r1 ¼ D1i =D1H2O.
d Shear viscosity in units of 10�4 kg m�1 s�1.
where tr is the total run time, N is the number of particles,
and s is the mean relaxation time (see below). Note that
rnVAF is normalized to the value of the time correlation
function at t ¼ 0 (e.g. VAFð0Þ). Note also that for large t,
rnVAF is independent of time, which means that even after
decay of the time correlation function (fluctuating around
zero, see Fig. 3), the error remains constant. Zwanzig and
Ailawadi (1969) defined the mean relaxation time as:

s ¼ 2

Z tu

0

dt0
½VAFðt0Þ�2

½VAFð0Þ�2
: ð18Þ

For an exponential decay, s is equal to the e-folding time
and thus shorter than the correlation time discussed above.
For instance, for CO2�

3 at 298 K the relaxation time s is
about 0.05 ps (Fig. 3), while the correlation time is �2 ps.
Hence for N ¼ 1 and 16, the normalized standard deviation
of the velocity autocorrelation function, rnVAF ¼ ½2�
0:05 ps=ð250 ps� NÞ�1=2, is about 2% and 0.5% of the initial
value VAFð0Þ, respectively.

Note that we only considered the velocity autocorrela-
tion function so far, not the diffusion coefficient. The stan-
dard deviation of the diffusion coefficient, calculated by
integrating VAFðtÞ over time (Eq. (15)), may be estimated
as follows. For t < s, the error in VAFðtÞ is small (Zwanzig
and Ailawadi, 1969) and we may focus on the interval
where the error estimate (Eq. (17)) is valid, i.e. s < t < tu,
where tu is the upper integration limit in Eq. (15). Over this
interval, VAFðtÞ is nearly constant and close to zero, except
for fluctuations with constant standard deviation rnVAF.
Hence rDVAF

may be estimated as (see Appendix A):

rDVAF
¼ 1

3

t	ffiffiffiffiffi
M
p rVAF ¼

1

3

t	ffiffiffiffiffi
M
p VAFð0Þ 2 s

tr

� �1=2

ð19Þ

where t	 ¼ tu � s, M is the number of VAF values over the
interval t	, and rVAF is the standard deviation of the veloc-
ity autocorrelation function for a single run corresponding
to Eq. (17). Eq. (19) indicates that the uncertainty in DVAF

grows with the upper integration limit tu for a given M.
Thus, in practice the value picked for tu may be only a
few ps (e.g Bourg and Sposito, 2007). Here, DVAF was cal-
culated using the average integrated value between 2 and
4 ps. The VAF was printed every five steps at a time step
of 0.001 ps, which, over 4 ps gives M ¼ 4 ps=0:005 ps ¼
800. Finally, the standard deviation of the calculated diffu-
sion coefficient for a single run for e.g. CO2�

3 at 298 K may
size ðD1Þ, and final values (D, see text).

HCO�3 CO2�
3

D D216 D1 r1 D D216 D1 r1 D

1.02 0.48 0.72 0.47 0.51 0.29 0.53 0.34 0.37
2.02 0.97 1.45 0.51 1.17 0.53 1.01 0.35 0.81
3.56 1.46 2.26 0.50 1.97 0.82 1.61 0.36 1.40
5.33 2.16 3.15 0.49 2.98 1.26 2.24 0.35 2.12
7.44 3.13 4.70 0.52 4.50 1.68 3.25 0.36 3.10
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be estimated using tu ¼ 4 ps, s ¼ 0:05 ps, VAFð0Þ ¼
12 Å

2
ps�2, and rnVAF ¼ 2%, which gives rDVAF

¼ 0:11�
10�9 m2 s�1.

The mean diffusion coefficient of the ensemble based on
VAF calculations of all 16 runs is 0:53� 10�9m2 s�1, with a
standard deviation and standard error of the mean of
re ¼ 0:10� 10�9 m2 s�1 and Se ¼ 0:03� 10�9 m2 s�1

(Table 3).

8.4. Errors: summary

The analysis of statistical errors above shows that the
ensemble standard errors of the mean for DMSD and DVAF

are less than �6% of the respective mean values (Table
3). The corresponding ensemble standard deviations, which
provide a measure of the fluctuations around the mean, are
less than � 20%. The confidence intervals for the calculated
diffusion coefficients indicated in the figures were deter-
mined based on the ensemble statistics at 95% confidence le-
vel ð�2re=

ffiffiffiffiffi
ne
p Þ and scaled based on Eqs. (7) and (8). Given

the total time interval of integration and the ensemble size,
these uncertainties appear acceptable within the statistical
framework of the MD simulations. However, as mentioned
above, due to systematic errors, this does not imply that the
MD results have to agree with the true values of the diffu-
sion coefficients within the statistical error bounds
obtained.

9. CONCLUSIONS

I have used molecular dynamics simulations to study the
diffusion of dissolved CO2;HCO�3 , and CO2�

3 in water.
Equations have been provided to calculate the diffusion
coefficients of the dissolved carbonate species over the
temperature range from 0� to 100 �C. Overall, the MD-
calculated results are in good agreement with the sparse
observations, given uncertainties in force fields, etc. Fur-
thermore, the results indicate a mass-dependence of CO2

diffusion that is consistent with the observed 12CO2=
13CO2

diffusion ratio at 25 �C (O’Leary, 1984; Jähne et al.,
1987). The isotope fractionation associated with the diffu-
sion of naturally occurring isotopologues of HCO�3 and
CO2�

3 at 25 �C is probably insignificant.
The theoretical results of the present study are relevant

to various research areas dealing with the molecular diffu-
sion of dissolved CO2;HCO�3 , and CO2�

3 . This includes,
for instance, sediment diagenesis, mineral precipitation
and dissolution, fossil fuel carbon sequestration, industrial
engineering, carbon uptake and calcification in phytoplank-
ton and zooplankton, studies of duodenal ulceration,
O2=CO2 exchange in red blood cells, and metabolic models
of cornea-contact-lens systems (e.g. Berner, 1980; Uchida
et al., 1983; Livingston et al., 1995; Wolf-Gladrow and
Riebesell, 1997; Cadours and Bouallou, 1998; Zeebe,
2007b; Kaufmann and Dreybrodt, 2007; Berne et al.,
2009; Chhabra et al., 2009). Until present, very few experi-
mental data exist on the diffusion coefficients of the ionic
carbonate species in water. To the best of my knowledge,
no experimental data on DHCO�3

and DCO2�
3

has been ob-
tained for temperatures above 30 �C. The present study
provides values for DHCO�3
and DCO2�

3
up to 100 �C. The val-

ues of 0.92 and 0:96� 10�9 m2 s�1 for DCO2�
3

at 25 �C (Rob-
inson and Stokes, 1959; Li and Gregory, 1974) that have
been widely used in the literature and cited in textbooks
(e.g. Boudreau, 1997; Reddi and Inyang, 2000; Hudak,
2005) are probably too high by 15–20%. This can lead,
for instance, to overestimates of the carbonate dissolution
flux from sediments, which is proportional to DCO2�

3
(e.g.

Keir, 1982; Boudreau and Guinasso, 1982; Zeebe, 2007b).
It also appears that no information was hitherto avail-

able on the mass-dependence of the diffusion coefficients
of the ionic carbonate species in water. In the past, it has
generally been assumed that no fractionation is associated
with H12CO�3 =H13CO�3 and 12CO2�

3 =13CO2�
3 diffusion,

respectively (e.g. McCorkle et al., 1985; Gehlen et al.,
1999; Zeebe, 2007a). The present results justify this assump-
tion. Likewise, no significant effect on the diffusion coeffi-
cients of HCO�3 and CO2�

3 appears to be associated with
the substitution of naturally occurring stable oxygen iso-
topes (or the various combinations of 12C;13C;16O;17O,
and 18O). This has implications, for instance, for under-
standing vital effects in carbonates and clumped isotope
studies (e.g. Thiagarajan et al., 2009). Beyond the theoreti-
cal results obtained here, a comprehensive experimental
study on the diffusion of the ionic carbonate species appears
desirable to examine various parameters such as tempera-
ture, solute concentrations, ionic strength, and isotopic
mass.
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APPENDIX A. QUADRATURE ERROR

PROPAGATION

Calculation of the diffusion coefficient from the velocity
autocorrelation function (VAF) requires integration of the
VAF over a certain time interval (Section 8.3). This is usu-
ally accomplished via a quadrature approximation of the
integral. In the following, an estimate is provided for the
standard deviation of the integrated result, given the stan-
dard deviation of the integrand. Consider a function
f ðtÞ; 0 6 t 6 t	, represented at discrete times ti by
f 0ðtiÞ ¼ yi with standard deviations ryi

, where
ti ¼ ði� 1Þ � Dt and i ¼ 1; . . . ;M þ 1. For simplicity, the
integral may be approximated by:

Z t	

0

f 0ðtÞ dt ’ F ðy1; y2; . . . ; yM Þ ¼
XM

i¼1

h� yi ðA1Þ

where h ¼ Dt and the total integration interval is t	 ¼ M h.
Note that the integral approximation is reasonable only for
large M (the trapezoidal rule or Simpson’s rule may be used
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for small M). Given uncorrelated standard deviations ryi
,

the variance, r2
F , is:

r2
F ¼

@F
@y1

� �2

r2
y1
þ @F

@y2

� �2

r2
y2
þ � � � þ @F

@yM

� �2

r2
yM

ðA2Þ

¼
XM

i¼1

@F
@yi

� �2

r2
yi
¼
XM

i¼1

h2r2
yi

ðA3Þ

If the standard deviations ryi
are constant and equal to ry

(as is the case for the VAF at t > s), then r2
F ¼ M � h2 r2

y

or rF ¼
ffiffiffiffiffi
M
p
� h ry . Using

ffiffiffiffiffi
M
p

¼ M=
ffiffiffiffiffi
M
p

and M h ¼ t	,
we have

rF ¼
t	ffiffiffiffiffi
M
p ry : ðA4Þ
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