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Abstract

Various isotope studies require accurate fractionation factors (a’s) between different chemical compounds in thermody-
namic equilibrium. Although numerous isotope systems involve aqueous solutions, the conventional theory is formulated
for the gas-phase and predicts incorrect a’s for many compounds dissolved in water. Here I show that quantum-chemistry
calculations, which take into account solute–water interactions, accurately predict, for instance, oxygen isotope fractionation
between dissolved CO2�

3 and H2O (hereafter aðCO2�
3 –H2OÞ). Simple force field and quantum-chemistry calculations for the ‘gas-

phase’ ion CO2�
3 predict aðCO2�

3 –H2OÞ ’ 1:015 (15&) at 25 �C. However, based on CO2�
3 � ðH2OÞn-clusters with up to 22 H2O

molecules, I calculate a value of 25&, which agrees with the experimental value of 24.5 ± 0.5&. Effects of geometry and
anharmonicity on the calculated a were also examined. The calculations reveal the critical role of hydration in solution, which
is ignored in the gas-phase theory. The approach presented provides an adequate framework for calculating fractionation fac-
tors involving dissolved compounds; it may also be used to predict a’s that cannot (or have not yet been) determined
experimentally.
� 2009 Elsevier Ltd. All rights reserved.
1. INTRODUCTION

The chemistry of isotopes is of fundamental and practi-
cal significance to disciplines including physical chemistry,
geo- and cosmochemistry, biochemistry, and many more
(e.g. Driesner et al., 2000; Kubicki and Sykes, 2004; Boyet
and Carlson, 2005; Hayes, 2006; Farquhar et al., 2007;
Richter et al., 2007). The foundation of many isotope stud-
ies is an accurate knowledge of the isotope partitioning be-
tween different chemical compounds in thermodynamic
equilibrium. The theoretical basis for calculating
equilibrium constants of isotopic exchange reactions from
first principles was formulated in the 1940s (Urey, 1947;
Bigeleisen and Mayer, 1947) and has successfully been ap-
plied since then (for review, see e.g. Richet et al., 1977;
Schauble, 2004). However, the conventional theory applies
only to molecules in the gas-phase and fails to accurately
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predict isotope fractionation factors (a’s) for many ex-
change reactions involving dissolved compounds in water.

For example, Urey (1947) predicted a value for the oxy-
gen isotope fractionation between CO2�

3 and liquid water of
aðCO2�

3 –H2OÞ ’ 1:016 at 25 �C. That is, CO2�
3 should be en-

riched in 18O by about 16& relative to H2O (see Section
2 for notation). However, the experimental value is
24.5 ± 0.5& (Beck et al., 2005). Thus, the conventional the-
ory underestimates the observed value for the dissolved
ion–water fractionation by more than 8&. This is excep-
tionally large, given that calculations and measurements
of true gas-phase equilibria often agree to within a few
tenths of a per mil (Richet et al., 1977). Here I show that
such large errors arise for dissolved compounds because
the conventional gas-phase theory ignores effects of hydra-
tion, which is critical for the solute energy in aqueous
solution. I employ a theoretical framework using quan-
tum-chemistry calculations of solute–water clusters that
accurately predict isotopic fractionation factors involving
dissolved compounds in water. The cluster calculations

http://dx.doi.org/10.1016/j.gca.2009.06.013
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Table 1
Frequencies (in cm�1) of H2

16O(g) given by Richet et al. (1977) and
of the C16O2�

3 -iona given by different authors.

x1 x2 x3 x4

Assignmentb sstr sb asstr
H2

16O(g) 3835.37 1647.59 3938.74

Assignment sstr opb asstr ipb
C16O2�

3
c 1087 878 1437(2) 714 (2)

C16O2�
3

d 1070 881 1460(2) 712 (2)
C16O2�

3
e 1064 880 1380/1436 684 (2)

a Twofold degeneracy indicated by ‘(2)’.
b Assignment: sstr = symmetric stretch, sb = symmetric bend,

asstr = asymmetric stretch, opb = out-of-plane bend, ipb = in-
plane bend.

c Urey and Greiff (1935) and Urey (1947): ‘‘Estimated by Dr.
Jennie Rosenthal”.

d C16O2�
3 in the calcite lattice (Bottinga, 1968).

e C16O2�
3 in water (Davis and Oliver, 1972). Values are nearly

identical to more recent results (Rudolph et al., 2006).
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include a significant number of H2O molecules in the first
few hydration shells of the solute. This has only recently be-
come possible due to progress in computational perfor-
mance (see e.g. Yamahira and Oi, 2004; Liu and Tossell,
2005; Rustad et al., 2008).

The paper is organized as follows. Three fundamentally
different theoretical methods to determine the oxygen iso-
tope fractionation between carbonate ion and water are
introduced in Section 2. They are: (A) simple force field cal-
culations of the isolated (‘gas-phase’) CO2�

3 -ion, (B) quan-
tum-chemistry computations of the isolated CO2�

3 -ion,
and (C) quantum-chemistry computations of the hydrated
CO2�

3 � ðH2OÞn-ion. Definitions, notation, and an approach
to assess anharmonicity effects on aðCO2�

3 –H2OÞ are also de-
scribed in Section 2. The results of the calculations and
the predicted temperature dependence of aðCO2�

3 –H2OÞ are
presented in Section 3. The sensitivity of the calculations
to basis set, cluster geometry, and anharmonicity are dis-
cussed in Section 4. Finally, I conclude that the theoretical
approach described here (C: quantum-chemistry computa-
tions of the hydrated solute) provides a means of calculat-
ing reliable fractionation factors of dissolved compounds
based on first principles (Section 5). Mathematical formulae
for the simple force fields are given in Appendices A and B.
Appendix C provides a general discussion of the relation-
ship between fractionation factor and temperature.

2. METHODS

2.1. Notation and fractionation factor

The stable isotope fractionation factor between two
compounds A and B is given by a(A–B) = RA/RB, where
R’s are isotope ratios of the element of interest in the
respective compounds (e.g. in case of oxygen in water
RH2O ¼ ½H2

18O�=½H2
16O�). The fractionation is expressed in

per mil using e(A–B) = (a(A–B) � 1) � 103 or 103 � lna(A–B).
The d-value of a sample A is dA = (RA/Rstd � 1) � 1000,
where Rstd is the isotope ratio of the standard.

Isotopic fractionation factors are calculated from first
principles based on differences in the vibrational energy of
molecules. Fundamental frequencies and molecular forces
are usually determined based on spectroscopic data and
mechanical molecular models, or – more recently – using
computational methods such as ab initio molecular orbital
theory (AIMOT) (e.g. Jensen, 2004). Fractionation factors
were calculated from reduced partition function ratios
(Urey, 1947):

Q0

Q

� �
r

¼ s
s0
Y

i

u0i
ui

expð�u0i=2Þ
expð�ui=2Þ

1� expð�uiÞ
1� expð�u0iÞ

; ð1Þ

with s and s0 being symmetry numbers, ui = hcxi/kT and
u0i ¼ hcx0i=kT where h is Planck’s constant, c is the speed
of light, k is Boltzmann’s constant, T is temperature in Kel-
vin, and xi and x0i are the frequencies of the isotopic mol-
ecules or the solute–water clusters.

The theoretical calculations yield b-factors of the solute
and H2O(g) and thus the fractionation relative to water va-
por. In the present case, the b-factor of a compound A is
given by:
bA ¼
Q0A
QA

� �1
k

r

; ð2Þ

where k is the number of atoms being exchanged. The frac-
tionation relative to liquid water was obtained using the ob-
served water vapor–liquid water 18O fractionation at a
given temperature (Majoube, 1971). For example, at the
HF/6-31G(d) level of theory (see below), the fractionation
factor between CO2�

3 � ðH2OÞ22 and H2O(l) at 25 �C was cal-
culated as:

aðCO2�
3 �H2OðlÞÞ ¼

bðCO2�
3 �ðH2OÞ22Þ

bðH2OðgÞÞ

1

aðH2OðlÞ�H2OðgÞÞ
; ð3Þ

¼ 1:1035

1:0665

1

1:0094
¼ 1:025 ð25&Þ: ð4Þ
2.2. Theoretical methods to determine a

As mentioned above, three different methods were used
to determine aðCO2�

3 –H2OÞ. (A) Simple force field calculations
of the isolated (‘gas-phase’) CO2�

3 -ion, (B) quantum-chem-
istry computations of the isolated CO2�

3 -ion, and (C) quan-
tum-chemistry computations of the hydrated
CO2�

3 � ðH2OÞn-ion. The a value based on method (A) has
been widely cited since the original work by Urey (1947).
However, the method significantly underestimates a. I will
examine whether different force field assumptions and/or
different sets of frequencies yield results closer to the exper-
imental value. This turned out not to be the case. Method
(B) predicts similar values and shows that the incorrect the-
oretical a’s are unlikely due differences between the tradi-
tional and quantum-chemical treatment of the isolated
ion. Finally, method (C) shows that the problem can be
solved by including effects on a due to hydration of the dis-
solved CO2�

3 -ion in solution.
The hypothetical gas-phase CO2�

3 -ion is a planar mole-
cule of type XY3 with 6 normal modes (Table 1) and D3h

symmetry (see central molecule in Fig. 2). For this type of
molecule, simple force field calculations can be performed
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Fig. 1. Comparison between observed frequencies of dissolved
CO2�

3 and water vapor (Davis and Oliver, 1972; Richet et al., 1977;
Rudolph et al., 2006) and those calculated and scaled for
CO2�

3 � ðH2OÞ22 and water vapor at the HF/6-31G(d) level of
theory. For the calculation of aðCO2�

3 –H2OÞ, scaled numerical
frequencies were used based on the scaling factor obtained from
the least-squares fit between observed and calculated x’s (Scott and
Radom, 1996).
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to determine a (Section 2.2.1, Appendices A and B). Note
that quantum-chemistry computations predict spontaneous
ionization of the isolated CO2�

3 -ion (electronically unsta-
ble); the carbonate ion should therefore not exist in the
gas phase (Janoschek, 1992; Boldyrev et al., 1996). This
suggests that for this molecule, gas-phase calculations to
determine a may be inappropriate. Nevertheless, the force
field calculations for the gas-phase ion below will allow
comparison to previous force field calculations (Urey,
1947; Janz and Mikawa, 1960), as well as comparison to
the quantum-chemistry approach used here.

The carbonate ion is known to exist as a dissolved ion in
aqueous solution, representing an important component of
the CO2 system in natural waters (Davis and Oliver, 1972;
Zeebe and Wolf-Gladrow, 2001). When dissolved in water,
the interaction between solute and solvent leads to associa-
tion of a significant number of water molecules with the
ion, forming the hydration shell (e.g. Leung et al., 2007;
Kumar et al., 2009). This affects physico-chemical proper-
ties of the ion, including its fundamental vibrational modes.
For example, the highest CO3-frequency (asymmetric
stretch, single peak in D3h symmetry) splits into two bands
in the solution (Davis and Oliver, 1972; Rudolph et al.,
2006). Furthermore, hydration adds a number of cluster-
modes of the CO2�

3 � ðH2OÞn entity to the spectrum, which
do not exist in D3h symmetry. This in turn affects the re-
duced partition function ratio and thus the isotope parti-
tioning between carbonate ion and water, as shown below.

2.2.1. Simple force fields

The most important quantities that enter Eq. (1) are the
fundamental vibrational frequencies, x, of a molecule of a
given chemical formula and those of the isotopically substi-
tuted molecule, x0. One way to determine x and x0 is to
experimentally measure either one of the two frequencies
by infrared and/or Raman spectroscopy from which the
force constants in the molecule are determined, which is
then used to calculate the other frequency. For the
C16O2�

3 -ion, I have used frequencies based on observed
x’s in the calcite lattice and in solution, and x’s based on
theoretical estimates (Table 1). It turned out that the choice
of the C16O2�

3 -frequencies does not have a dominant effect
on the calculated a.

For polyatomic molecules, force field methods such as
simple central forces, simple valence forces, generalized va-
lence force fields (GVFF) and Urey–Bradley force fields
(UBFF) are often employed. I have calculated frequencies
of the isotopically substituted CO2�

3 -molecule based on
GVFF and UBFF (cf. Herzberg, 1966; Ross, 1972; Nakam-
oto, 1997). The details of the calculations are given in
Appendices A and B. In summary, given experimental fre-
quencies (Table 1), the molecular force constants and thus
the frequencies of the isotopically substituted molecule
can be determined. The fractionation factor a is then calcu-
lated using Eq. (1).

2.2.2. Quantum-chemistry calculations

Numerical frequencies were calculated using the quan-
tum-chemistry package GAMESS (Gordon and Schmidt,
2005) in parallel execution on a 12-CPU Linux cluster after
geometry optimization. Geometric stability was inferred
from the absence of imaginary eigenvalues in the Hessian
matrix. Numerical frequencies were scaled by a scaling fac-
tor based on least-squares fits between observed frequencies
of water vapor and solute (Table 1) and those calculated for
water vapor and the largest solute–water cluster for a given
basis set and level of theory (Fig. 1). It is well known that
the different quantum-chemistry methods systematically
over- or underestimate molecular frequencies (Scott and
Radom, 1996), which can lead to errors in the calculated
a. For example, at the HF/6-31G(d) level of theory, bond
lengths are usually too short and corresponding frequencies
systematically too high (Jensen, 2004). The calculated fre-
quencies were therefore scaled by the scaling factor ob-
tained for the CO2�

3 � ðH2OÞn–water system studied here.
At the HF/6-31G(d) level of theory (see Gordon and
Schmidt, 2005; Jensen, 2004), the root-mean-square (rms)
error of individual fits for the CO2�

3 -cluster and H2O at
HF/6-31G(d) were 30 and 40 cm�1. The scaling procedure
yielded a scaling factor of 0.925 for the combined carbonate
ion and water frequencies. Note that this value was used
here rather than the average value given by Scott and
Radom (1996) for HF/6-31G(d). The former was obtained
here specifically for the CO2�

3 � ðH2OÞn-water frequencies
and should be more accurate for the current purpose. The
scaling factor for a given basis set and level of theory was
used to scale x’s and calculate a’s for all solute–water
clusters.

Density functional theory methods were also tested
including diffuse functions [for instance, B3-LYP/6-
31+G(d) (see Gordon and Schmidt, 2005; Jensen, 2004)].
This had a minor effect on calculated a’s, provided that
appropriate scaling factors were used (see above). At B3-
LYP/6-31+G(d), the scaling procedure for the frequencies
of the CO2�

3 � ðH2OÞ22-cluster and water yielded a scaling
factor of 1.021 and individual rms errors of 23 and 35 cm�1.



Fig. 2. Optimized geometry of a hydrated carbonate ion (center)
including 22 water molecules (C1 symmetry) based on Hartree–
Fock theory (see Section 2) calculated with the quantum-chemistry
package GAMESS (Gordon and Schmidt, 2005). Black: carbon,
red: oxygen, white: hydrogen. Dotted lines indicate hydrogen
bonds.

5286 R.E. Zeebe / Geochimica et Cosmochimica Acta 73 (2009) 5283–5291
2.3. Anharmonicity

Anharmonicity effects on the calculated a were also
examined. It is noted that simply inserting anharmonic fre-
quencies into Eq. (1) to calculate a is incorrect because the
formula is based on the harmonic approximation by defini-
tion. Instead, anharmonicity effects were treated as follows.
Including quartic terms in the potential energy, the anhar-
monic zero-point energy contribution to the partition func-
tion ratio for polyatomic molecules may be written as
(Richet et al., 1977):

Q0

Q

� �0

anh

¼ exp � hc
kT

X
i6j

ðx0ij � xijÞ
,

4

" #
; ð5Þ

where xij are anharmonic constants (in cm�1), which are of-
ten negative for higher fundamentals. Note that the contri-
bution due to anharmonicity of excited vibrational states is
usually small at room temperature and will be neglected.
Unfortunately, the xij are generally unknown for large mol-
ecules. However, if harmonic and anharmonic x’s have
been calculated numerically, Eq. (5) can be evaluated with-
out knowing the individual xij. The relationship between
harmonic (xi) and anharmonic frequencies (superscript a)
may be approximated by (Herzberg, 1966):

xa
i ¼ xi þ xii þ

1

2

X
j–i

xij ¼ xi þ Dxi; ð6Þ

where xij = xji. The sum over all differences between xa
i and

xi is:X
ðxa

i � xiÞ ¼
X

Dxi ¼
X
i6j

xij; ð7Þ

which is just the sum required to evaluate Eq. (5). Thus gi-
ven harmonic and anharmonic frequencies of a molecule
and its isotopologue (e.g. obtained using quantum-chemis-
try packages), the anharmonic contribution to the partition
function ratio and thus to a may be calculated.

Anharmonic frequencies forCO2�
3 � ðH2OÞn were obtained

using the quartic force field approximation (Gordon and
Schmidt, 2005) with and without 2-mode coupling for up to
n = 3 and n = 10, respectively. Note that the calculations are
computationallyveryexpensive,particularlywhenmodecou-
pling is included. Anharmonic corrections to a computed for
CO2�

3 � ðH2OÞn, n 6 10 using GAMESS without mode cou-
pling were consistently smaller than 0.9& (see Section 3).
Additional corrections due to 2-mode coupling (n 6 3) were
larger(upto2&)andmorevariable,dependingonn, themeth-
od (e.g. HF/6-31G(d) vs. MP2/6-31G(d)), and coordinate
choice [e.g. Cartesian vs. internal (Z-matrix)].
3. RESULTS

I have determined stable geometries of CO2�
3 � ðH2OÞn-

clusters with up to 22 H2O molecules based on quantum-
chemistry calculations (Fig. 2). In contrast to the hypothet-
ical gas-phase CO2�

3 -ion with 6 normal modes (D3h symme-
try), the CO2�

3 � ðH2OÞ22-cluster has 204 normal modes (C1

symmetry). None of the calculated frequencies is imaginary,
indicating a minimum on the potential energy surface, i.e.
geometric stability. The highest CO3-frequency (asymmetric
stretch, single peak in D3h symmetry) splits into two bands
in the cluster, in agreement with observations (Davis and
Oliver, 1972; Rudolph et al., 2006). The predicted oxygen
isotope enrichment for the ‘gas-phase’ CO2�

3 -ion and the
dissolved CO2�

3 � ðH2OÞ22-ion relative to H2O at 25 �C are
13& and 25&, respectively (Fig. 3).

The simple force field calculations (Fig. 3, lower gray area)
are based on general valence forces (GVFF) and Urey–Brad-
ley force fields (UBFF) (Urey, 1947; Zeebe, 2005). They yield
e-values between 13& and 17& for the isolated CO2�

3 -ion at
25 �C. Note that for water, the b-factor of the HF/6-31G(d)
calculation was used here to allow comparison with the
quantum-chemistry results. The force field results include
GVFF and frequencies (x’s) from Urey (1947): 16.6& (see
Table 1 for x’s), GVFF and x’s from Bottinga (1968) and
Chacko et al. (1991) for CO2�

3 in the calcite lattice: 16.4&,
GVFF and x’s from Davis and Oliver (1972) for dissolved
CO2�

3 : 16.8&, UBFF and x’s from Bottinga (1968) for
CO2�

3 in the calcite lattice: 15.5&, and UBFF and x’s from
Davis and Oliver (1972) for dissolved CO2�

3 : 13.2&.
Thus the force field values are close to the corresponding

results of the quantum-chemistry calculations for the iso-
lated ion. Note that the latter approach predicts spontane-
ous ionization of the isolated CO2�

3 -ion (electronically
unstable); the carbonate ion should therefore not exist in
the gas phase (Janoschek, 1992; Boldyrev et al., 1996).
The computed fractionation factor increases with the num-
ber of water molecules in the cluster (n) but reaches a limit
above a certain cluster size (Fig. 3). Adding more H2O mol-
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ecules beyond a certain n has little effect on a because the
influence of a water molecule in the outer hydration shell
on the oxygen bonds of the central CO3-group decreases
with increasing distance between them. Note that the calcu-
lated a for the CO2�

3 � ðH2OÞ18-cluster is larger for the D3h-
symmetry conformer than for the C1 conformer (Fig. 3).
However, the C1 conformer has a lower energy, which is
a more favorable geometry in thermodynamic equilibrium.
The final theoretical a is given by the limiting value at large
n of the lowest energy conformer that is electronically and
geometrically stable (here 25& at C1 symmetry and
25 �C). This value agrees with the experimental value of
24.5 ± 0.5& within errors (Beck et al., 2005).

3.1. Temperature dependence

As described above, the calculated fractionation factor
at a given temperature is much larger for the dissolved
ion than for the hypothetical ‘gas-phase’ ion. In addition,
the calculated temperature dependence of aðCO2�

3 –H2OÞ for

the carbonate ion–water cluster is significantly steeper than
for the ‘gas-phase’ ion (Fig. 4). Over the temperature range
0–300 �C, a drops by �27& and �16& for the dissolved
and isolated ion, respectively. Note also that the theoretical

relationship between 103 � ln aðCO2�
3 –H2OÞ

h i
and temperature

is non-linear when plotted vs. 1/T2. The 1/T2 relationship
used to fit experimental data in the range 15–40 �C should
therefore not be extrapolated to other temperatures. The
fractionation factor is approximately linear in 1/T and
1/T2 only within certain temperature ranges. However, over
the entire temperature range this is generally not the case
(see Appendix C).
4. DISCUSSION

As shown above, the calculated oxygen isotope fraction-
ation for the ‘gas-phase’ CO2�

3 -ion and the dissolved
CO2�

3 � ðH2OÞ22-ion relative to H2O are 13& and 25&,
respectively (Fig. 3). In other words, the calculated a nearly
doubles due to hydration (Fig. 2). This difference in a could
be due to (a) stronger overall fractionation between the hy-
drated CO2�

3 � ðH2OÞn-ion and bulk water and/or (b) stron-
ger fractionation between the CO3-skeleton and bulk water.
Case (b) may be examined by recalculating the fraction-
ation factor using only the frequencies of the hydrated
ion that fall within the range of the skeletal CO3 modes
(corresponding to the fundamental XY3 modes, see Table
1). This yields an a of �16.5&, i.e. 3.5& heavier than the
gas-phase calculation. The remaining 8.5& are due to other
CO2�

3 � ðH2OÞ22-cluster modes that involve the oxygen of
the CO3 group. These frequencies fall mostly below the low-
est CO3 skeletal mode (in-plane-bend at �680 cm�1). As a
result, for the calculated a in solution, the overall fraction-
ation between the hydrated CO2�

3 � ðH2OÞn-ion and bulk
water is more important than changes in the fractionation
between the CO3-skeleton and bulk water.

I have also tested whether the calculations indicate 18O-
enrichment of the water within the hydration shell of the
ion. The reduced partition function ratios showed little dif-
ference for water molecules within the first or second hydra-
tion shell and were similar to those obtained for pure water
clusters with up to eight water molecules. In general, when
compared to calculated reduced partition function ratios
for water vapor, the ratios obtained for water in the hydra-
tion shell of the ion and for the pure water clusters were
consistent with those expected from the observed water va-
por–liquid water 18O fractionation (Majoube, 1971). Thus,
the quantum-chemical calculations presented here do not
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indicate significant differences between the 18O/16O ratios of
the hydrated water in the CO2�

3 � ðH2OÞn-cluster and the
bulk water. This result appears to be consistent with obser-
vations that oxygen isotope effects in H2O in the hydration
shells of cations are much larger than in anions (e.g. Taube,
1954).

4.1. Basis set and level of theory

The quantum-chemistry calculations used here to deter-
mine fractionation factors (see Section 2) are based on Har-
tree–Fock theory [see Jensen (2004) and Gordon and
Schmidt (2005) and reference cited therein]. Other methods
are available, which mostly differ in the size of the set of
mathematical functions used to describe the molecular orbi-
tals (basis set) and the treatment of electron correlation (le-
vel of theory). The question arises whether or not the results
presented here are method-specific. It is well known that the
different quantum-chemistry methods systematically over-
or underestimate molecular frequencies (Scott and Radom,
1996). The calculated frequencies are therefore scaled by a
specific scaling factor obtained from least-squares fits of
calculated vs. observed frequencies (for values and root-
mean-square errors obtained in this study, see Section 2).
I have tested the most successful methods for predicting
molecular frequencies including Hartree–Fock theory and
density functional theory (Scott and Radom, 1996), with
and without diffuse functions. Diffuse functions account
for the long-range behavior of molecular orbitals and are
potentially important when anions are involved (Jensen,
2004). However, it appears that for the current system,
the quantum-chemistry method used is of minor impor-
tance, provided that appropriate scaling factors are used.
For example, for the CO2�

3 � ðH2OÞn-cluster at n = 10 and
n = 22, the calculated a differs by 0.3& and 0.5&, respec-
tively, between a Hartree–Fock method with a standard ba-
sis set and a density functional theory method including
diffuse functions (see Section 2).

4.2. Cluster geometry and anharmonicity

I have also tested the sensitivity of the calculated frac-
tionation factor to the cluster geometry. Several configura-
tions of the CO2�

3 � ðH2OÞ22-cluster with different energies
were optimized at C1 symmetry. The difference in a between
the two lowest energy conformer was �1&. The total range
between all clusters was �2&. However, this included con-
former with substantially higher energy. Thus, the sensitiv-
ity to cluster symmetry appears to be small, provided that
similar (low) energy conformer are used in the calculation.

Another potential source of uncertainty in the calcula-
tions is the use of quadratic terms only in the potential en-
ergy (harmonic approximation), which neglects higher
order terms (anharmonicity). First, it is important to note
that simply using Eq. (1) with anharmonic frequencies is
incorrect because the formula is based on the harmonic
approximation by definition. However, if harmonic and
anharmonic frequencies can be obtained (e.g. from quan-
tum-chemistry packages), a revised expression may be used
to correct for anharmonicity effects on the calculated a (see
Section 2). Anharmonic frequencies for CO2�
3 � ðH2OÞn were

calculated using the quartic force field approximation (Gor-
don and Schmidt, 2005) with and without 2-mode coupling
for up to n = 3 and n = 10, respectively. Note that the cal-
culations are computationally very expensive. Note also
that the method implemented in the quantum-chemistry
package GAMESS (Gordon and Schmidt, 2005), for in-
stance, is limited to molecular systems of up to 12–15 atoms
and is less accurate for weak intermolecular vibrations of
hydrogen-bonded clusters (Chaban et al., 2000). The calcu-
lated effect on a was 0.7& at n = 10 without mode coupling
and less than 0.9& for all n tested. For n 6 3, mode cou-
pling was included, which added corrections of up to
�2& to these values (see Section 2). Thus within the meth-
odological limits mentioned above, anharmonicity does not
appear to have a dominant effect on the calculated a-values
for the system tested.

5. CONCLUSIONS

A theoretical framework for accurate predictions of
fractionation factors involving dissolved compounds is
both of fundamental and practical significance. For in-
stance, understanding isotope fractionation in the dissolved
carbonate system is critical for areas including ocean up-
take of anthropogenic CO2, biomineralization, and climate
reconstructions (Zeebe and Wolf-Gladrow, 2001; Beck
et al., 2005). The stable oxygen isotope fractionation be-
tween HCO�3 =CO2�

3 and water, for example, plays a critical
role in a recent debate about the primary driver of Phanero-
zoic climate change (Spero et al., 1997; Zeebe, 1999; Shaviv
and Veizer, 2003; Rahmstorf et al., 2004).

In general, the theoretical approach used here should be
applicable to any isotope system involving dissolved com-
pounds. It provides a means of calculating thermodynamic
properties of dissolved compounds (including dissolved
gases, ions, metal complexes, etc.) based on which reliable
fractionation factors can be derived from first principles.
The theory may therefore be used to predict a-values of ex-
change reactions that cannot (or have not yet been) deter-
mined experimentally. The expected advances in
computational performance in the future will enable appli-
cation of the current approach to significantly larger and
more complex systems.
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APPENDIX A. GENERALIZED VALENCE FORCE

FIELDS (GVFF)

In the framework of GVFF, the GF matrix method is
used (Wilson, 1939, 1941). The frequencies of molecular
vibration are related to the forces in the molecule by the
matrix secular equation:

GF � Ekj j ¼ 0; ðA:1Þ
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where the G matrix depends on the atomic masses and
molecular geometry (see below), F contains the force con-
stants, E is the identity matrix, and ki ¼ 4p2c2x2

i are the
eigenvalues of GF. The G and F matrices for a XY3 mole-
cule of D3h symmetry can be written as:

G ¼

G11 0 0 0

0 G22 0 0

0 0 G33 G34

0 0 G34 G44

0
BBB@

1
CCCA;

F ¼

F 11 0 0 0

0 F 22 0 0

0 0 F 33 F 34

0 0 F 34 F 44

0
BBB@

1
CCCA; ðA:2Þ

with G11 ¼ ly , G22 ¼ ð3=d2Þðly þ 3lxÞ, G33 ¼ ly þ 3lx=2,
G34 ¼ ð3

ffiffiffi
3
p

=2dÞlx, G44 ¼ ð3=d2Þðly þ 3lx=2Þ, where li’s
are the reciprocal masses of X and Y and d is the bond dis-
tance. From the secular equation (Eq. (A.1)), F11 and F22

can be calculated as F11 = k1/G11 and F22 = k2/G22 using
ki ¼ 4p2c2x2

i , where the xi’s are taken from the literature,
including experimental results (Table 1). The force con-
stants F33, F34 and F44 are determined from:

F 33G33 þ F 44G44 þ 2F 34G34 ¼ k3 þ k4; ðA:3Þ
G33 G34

G34 G44

����
���� F 33 F 34

F 34 F 44

����
���� ¼ k3k4; ðA:4Þ

using the assumption that the ratio of force constants and
kinetic constants is the same (Thirugnanasambandam and
Srinivasan, 1969; Zeebe, 2005). From the molecular force
constants, the frequencies of isotopically substituted mole-
cules are determined; the fractionation factor a is then cal-
culated using Eq. (1).

APPENDIX B. UREY–BRADLEY FORCE FIELDS

(UBFF)

In the framework of UBFF, the four force constants K,
H, F, and F0 for the in-plane vibrations of planar XY3 mol-
ecules (see Janz and Mikawa, 1960) have to be determined
from three frequencies using

F 0 ¼ cF : ðB:1Þ

Janz and Mikawa (1960) showed that c = �1/10 or �1/
13 works well for various types of XY3 molecules. The
equations for the normal frequencies are (note that the Uii

used below are different from the Fii used in GVFF):

k1 ¼ G11U11; ðB:2Þ
k3 þ k4 ¼ G33U33 � ð9=4ÞG34U34 þ G44U44 ¼: s; ðB:3Þ
k3k4 ¼ U33U44 � ð3=16ÞU2

34

� �
GG ¼: p; ðB:4Þ

where G11 ¼ ly , G33 ¼ ð3=2Þlx þ ly , G34 ¼ lx,
G44 ¼ ð9=2Þlx þ 3ly , GG ¼ 3l2

y þ 9lxly , and
U11 = K + 3F, U33 = K + (3/4)F0 + (3/4)F, U34 = F0 + F,
U44 = H � (3/4)F0 + (1/4)F.

Using Eq. (B.1) and eliminating U44 (essentially H),
yields a quadratic equation for F:

a2F 2 þ a1F þ a0 ¼ 0; ðB:5Þ
with

a2 ¼ �
1

16
9ðc� 3Þ2G33 þ 27ðc� 3Þðcþ 1ÞG34

h
ðB:6Þ

�3ðcþ 1Þ2G44

i
;

a1 ¼
1

4
3ðc� 3Þs� 6ðc� 3Þk1G33=ly

�
ðB:7Þ

þ9ðcþ 1Þk1G34=ly

	
; ðB:8Þ

a0 ¼ sk1=ly � ðk1=lyÞ
2G33 � p G44=GG: ðB:9Þ

Once this equation is solved, F0 is determined from Eq.
(B.1). Furthermore,

U33 ¼ ðk1=lyÞ þ 3F ðc� 3Þ=4; ðB:10Þ
U34 ¼ F ðcþ 1Þ; ðB:11Þ
U44 ¼ ðp=GGþ 3U2

34=16Þ=U33; ðB:12Þ

and finally:

K ¼ ðk1=lyÞ � 3F ; ðB:13Þ
H ¼ U44 þ F ð3c� 1Þ=4; ðB:14Þ

from which all force constants K, H, F, and F0 were calcu-
lated. From the molecular force constants, the frequencies
of isotopically substituted molecules are determined; the
fractionation factor a is then calculated using Eq. (1).

APPENDIX C. TEMPERATURE DEPENDENCE OF

FRACTIONATION FACTOR

It can be shown that the fractionation factor (more pre-
cisely 103 � lna) is approximately linear in 1/T and 1/T2

within certain temperature ranges. However, over the entire
temperature range this is generally not the case, as illus-
trated in the following for an isotopic exchange reaction be-
tween diatomic molecules. Diatomics were chosen in this
example (rather than carbonate ion and water) because
the formulas are less complicated and the 1/T and 1/T2

dependence of 103 � lna is more obvious.
The reduced partition function ratio for diatomics reads

(subscript r will be omitted):

Q0

Q

� �
¼ s

s0
u0

u
expð�u0=2Þ
expð�u=2Þ

1� expð�uÞ
1� expð�u0Þ ; ðC:1Þ

where u = hcx/kT, and x and x0 are the frequencies of the
isotopic molecules (for other symbols, see Eq. (1)). Thus
(Q0/Q) and a are in general non-linear functions of u or
1/T. However, at low temperatures or high frequencies,
Eq. (C.1) may be approximated by (Bigeleisen and Mayer,
1947; Urey, 1947; Criss, 1999):

ln
Q0

Q

� �
¼ ln

s
s0

x0

x

� �
þ u� u0

2
: ðC:2Þ

At high temperatures, Eq. (C.1) may be approximated by:

ln
s0

s
Q0

Q

� �
¼ u2 � u02

24
: ðC:3Þ

Because u is proportional to 1/T, the natural logarithm of
the partition function ratio and 103 � lna is linear in 1/T
and 1/T2 at low and high temperatures, respectively. This
behavior is illustrated in Fig. C.1, in which 103 � lna is
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Fig. C.1. Illustration of the temperature dependence of 103 � ln a for an isotopic exchange reaction between diatomic molecules. (a) Correct
relationship (solid line, Eq. (C.1)), low temperature approximation (/1/T, dashed line, Eq. (C.2)), and high temperature approximation (/1/
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plotted vs. T, 1/T, and 1/T2 (note that the temperature
ranges shown in the figure are somewhat arbitrary and de-
pend on the system considered). The bottom line is that for
a specific low- and high-temperature range (which depends
on the isotopic exchange reaction), 103 � lna is linear in 1/
T, and 1/T2. However, in general it should not be expected
that these relationships are the correct ones to fit experi-
mental data. Caution is therefore advised when extrapolat-
ing 1/Tn-relationships to temperatures beyond those
covered by the data.
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