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ABSTRACT

Due to the chaotic nature of the solar system, the question of its long-term stability can only be answered in a
statistical sense, for instance, based on numerical ensemble integrations of nearby orbits. Destabilization of the
inner planets, leading to close encounters and/or collisions can be initiated through a large increase in Mercury’s
eccentricity, with a currently assumed likelihood of ∼1%. However, little is known at present about the robustness
of this number. Here I report ensemble integrations of the full equations of motion of the eight planets and Pluto over
5 Gyr, including contributions from general relativity. The results show that different numerical algorithms lead to
statistically different results for the evolution of Mercury’s eccentricity (eM). For instance, starting at present initial
conditions (eM � 0.21), Mercury’s maximum eccentricity achieved over 5 Gyr is, on average, significantly higher
in symplectic ensemble integrations using heliocentric rather than Jacobi coordinates and stricter error control. In
contrast, starting at a possible future configuration (eM � 0.53), Mercury’s maximum eccentricity achieved over
the subsequent 500 Myr is, on average, significantly lower using heliocentric rather than Jacobi coordinates. For
example, the probability for eM to increase beyond 0.53 over 500 Myr is >90% (Jacobi) versus only 40%–55%
(heliocentric). This poses a dilemma because the physical evolution of the real system—and its probabilistic
behavior—cannot depend on the coordinate system or the numerical algorithm chosen to describe it. Some tests of
the numerical algorithms suggest that symplectic integrators using heliocentric coordinates underestimate the odds
for destabilization of Mercury’s orbit at high initial eM.

Key words: celestial mechanics – methods: numerical – methods: statistical – planets and satellites: dynamical
evolution and stability

1. INTRODUCTION

The question of whether the solar system is dynamically
stable over long periods of time has received considerable
attention for centuries, including contributions from Newton,
Lagrange, Laplace, Poincaré, Kolmogorov, Arnold, Moser etc.
(e.g., Laskar 2013). Research in this field has recently experi-
enced a renaissance due to advances in computational power
and numerical algorithms, permitting integration of the full
equations of motion approaching the solar system’s lifetime
(± ∼5 Gyr; Wisdom & Holman 1991; Quinn et al. 1991;
Sussman & Wisdom 1992; Saha & Tremaine 1992; Murray
& Holman 1999; Ito & Tanikawa 2002; Varadi et al. 2003;
Batygin & Laughlin 2008; Laskar & Gastineau 2009). More-
over, parallel computing now allows us to tackle the problem of
stability with statistical means through the simultaneous inte-
gration of multiple nearby orbits (Laskar & Gastineau 2009). A
statistical approach is necessary because of the chaotic behavior
of the system, i.e., the sensitivity of orbital solutions to initial
conditions (Laskar 1989; Sussman & Wisdom 1992; Murray
& Holman 1999; Richter 2001; Varadi et al. 2003; Batygin &
Laughlin 2008). Small differences in initial conditions grow
exponentially, with a time constant (Lyapunov time) for the in-
ner planets of only ∼5 Myr (Laskar 1989; Varadi et al. 2003;
Batygin & Laughlin 2008). For example, a difference in initial
coordinates of 1 mm grows to ∼1 AU (= 1.496 ×1011 m) after
163 Myr. Thus, the chaotic nature of the planetary orbits makes
it fundamentally impossible to predict their evolution accurately
beyond ∼100 Myr (Laskar 1989). Hence the stability problem
can only be answered in probabilistic terms, e.g., by studying the
behavior of a large number of physically possible solutions. The
quest for a single deterministic solution, which conclusively de-

scribes the solar system’s evolution for all times (in the spirit of
Laplace’s demon, Laplace 1951), must be regarded as quixotic.

An ensemble integration of 2,501 nearby orbits over 5 Gyr
has recently been reported based on the full equations of motion
and including contributions from general relativity (GR) and
the Moon (Laskar & Gastineau 2009). In those simulations, two
adjacent orbits differed initially by only 0.38 mm in Mercury’s
semi-major axis (aM). The largest overall offset in initial aM was
hence 2, 500 × 0.38 mm = 0.95 m, well within the uncertainty
of our current knowledge of the solar system. In about 1%
of the simulations, a large increase in Mercury’s eccentricity
was reported, which can lead to destabilization of the inner
planets, including close encounters and/or collisions. Note that
the obtained probability distribution of Mercury’s eccentricity
was similar to results obtained earlier with averaged equations
(Laskar 2008). Most surprisingly, further simulations included
the possibility of a collision between Earth and Venus via the
transfer of angular momentum from the giant planets to the
terrestrial planets (Laskar & Gastineau 2009). Given the chaotic
behavior of the system, such an outcome might be within
the range of possibilities. However, little is currently known
about the potential dependence of the simulated trajectories
and statistical results on the numerical integrator, step size,
integration coordinates, etc.

Here I report ensemble integrations of solar system orbits
over 5 Gyr, including contributions from GR. The simulations
reveal a strong influence of integration coordinates on statis-
tical results, i.e., on the predicted odds for destabilization of
Mercury’s orbit. Furthermore, I discuss resonances and Lya-
punov times, and perform several tests aiming at resolving the
dilemma of the dependency of statistical results on integration
coordinates.
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Table 1
Threshold eM Values and Timesteps for the 5 Gyr Simulations with mercury6

eM > 0.34 0.38 0.44 0.49 0.57 0.62

Δt (days) 5 4 3 2 1.5 1

2. METHODS

The full equations of motion of the eight planets and Pluto
were integrated over 5 Gyr into the future using the numerical
integrator packages mercury6 and HNBody and various integra-
tion options (Chambers 1999; Rauch & Hamilton 2002). Unless
stated otherwise, symplectic integrators were used. Symplectic
integrators exactly describe the time evolution of a (modified)
Hamiltonian system that is very close to the true Hamiltonian
(e.g., Wisdom & Holman 1991; Yoshida 1993; Chambers 1999)
and hence do not suffer from long-term buildup in energy error.
The maximum energy variation along a given orbit in sym-
plectic integrations (see below) provides a measure of the dif-
ference between the modified and the true Hamiltonian. Rela-
tivistic corrections are critical (Laskar & Gastineau 2009) and
were available in HNBody but not in mercury6. Post-Newtonian
(PN) corrections for symplectic integration (Mikkola 1998;
Soffel 1989) were therefore implemented before using
mercury6 (see the Appendix). Thus, all simulations presented
here include contributions from GR, unless explicitly stated. To
allow comparison with previous studies, several higher-order
effects were not included here. This means ignoring potential
effects from asteroids (Ito & Tanikawa 2002; Batygin & Laugh-
lin 2008), perturbations from passing stars, and solar mass loss
(Ito & Tanikawa 2002; Batygin & Laughlin 2008; Laskar &
Gastineau 2009). Furthermore, the Earth–Moon system was
considered a single mass point, located at the Earth–Moon
barycenter.

Per ensemble integration, 40 orbital solutions were computed
with each package, starting from the same set of initial con-
ditions, where Mercury’s initial radial distance was offset by
7 cm between every two adjacent orbits (largest overall off-
set: 39 × 7 cm = 2.73 m). Initial conditions for all bodies in
the 5 Gyr runs (before offsetting Mercury) were generated from
DE431 (naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/planets)
at JD2451544.5 (2000 January 1) using the SPICE toolkit for
Matlab (naif.jpl.nasa.gov/naif/toolkit.html; Table 2).

For the 5 Gyr simulations with mercury6, the hybrid inte-
grator with democratic–heliocentric (DH) coordinates (Cham-
bers 1999; Duncan et al. 1998) following Batygin & Laughlin
(2008) and a six-day initial timestep (Δt) for the second order
symplectic algorithm was used. In case Mercury’s eccentricity
(eM) increased above certain threshold values during the 5 Gyr
simulations with mercury6, Δt was reduced, but held constant
after that until the next threshold was crossed (if applicable).
For example, starting at Δt = 6 days and eM = 0.21, Δt
was reduced to 5 days when eM exceeded 0.34. mercury6’s
source code is available (Chambers 1999) and was manipulated
accordingly. The threshold values and corresponding timesteps
(Table 1) were chosen to maintain a roughly similar maximum
relative energy error (max|ΔE/E| = max|(E(t) − E0)/E0|)
throughout the simulation. HNBody’s source code is not avail-
able (Rauch & Hamilton 2002) and a constant four-day timestep
was used throughout the 5 Gyr simulations, employing a second
order symplectic integrator with corrector and Jacobi coordi-
nates (see below and Wisdom & Holman 1991).

The 40 orbital solutions were simultaneously integrated on a
64 bit Linux cluster (one 5 Gyr job per core on 10 Intel i7-3770
3.40 GHz nodes with four cores each). Typical integration times
for the 5 Gyr runs with mercury6 were 12–23 days wall-clock
time depending on step-size reduction (Δt � 6 days, see above)
and 12 days wall-clock time with HNBody (Δt = 4 days). Inte-
grations with HNBody were performed using the pre-compiled
binary version for Linux 64 bit Intel/AMD64. Executables of
mercury6 were compiled from source code on 64 bit Linux
platforms using gfortran 4.6.3. When compared to test runs
with mercury6 on a true 32 bit machine, a small long-term de-
crease in angular momentum was noticeable in the output of
the 64 bit mercury6 executable at small step size. The issue
disappeared when using one of the following options on 64 bit
platforms. (1) Compile with flag -m32 (generates code for a
32 bit environment, but is slower). (2) In the mercury6 subrou-
tine, drift_kepmd() replace the original approximations for
sin(x) and cos(x) by actual sin(x) and cos(x) functions.

2.1. Democratic–Heliocentric and Jacobi Coordinates

The effect of different integration coordinates on the results
of the symplectic integrations will be discussed at length below.
Hence the definition of the coordinates is given here. DH co-
ordinates simply consist of heliocentric (bodycentric) positions
and barycentric momenta (Duncan et al. 1998; Chambers 1999),
see Section 6.1.

Jacobi coordinates have a slightly more complex structure
but are useful in symplectic integrations of the n-body problem
because they allow the kinetic energy to be written as a
diagonal sum of squares of the momenta (Wisdom & Holman
1991). In Jacobi coordinates, the first coordinate, Q0, may
be taken as the position of the center of mass. The first
relative coordinate is the position of the first planet relative
to the central body. The second relative coordinate is the
position of the second planet relative to the center of mass
of the central body and the first planet, and so forth. Thus, the
ith relative coordinate is the position of the ith planet relative
to the center of mass of the central body and the planets with
lower indices:

Qi = xi − X i−1, (1)

where 0 < i < n and

X i = M−1
i

i∑
j=0

mj xj ; Mi =
i∑

j=0

mj (2)

is the center of mass of bodies with indices up to i. The
momenta are

P i = m′
i V i , (3)

where V i is the time derivative of Qi and m′
i = Mi−1mi/Mi

for 0 < i < n and m′
0 = Mn−1 = M , is the sum of all masses.

Interestingly, because of the Sun’s dominant mass, the difference
in the actual values of heliocentric and Jacobi coordinates is
small in the solar system (e.g., zero for Mercury and of the
orders of 10−7 and 10−6 AU for Venus and Earth). However,
the difference in the results of symplectic integrations due to
these different sets of coordinates is significant (see below).
Note that the comment above is meant for illustrative purposes
only. All initial input coordinates for mercury6 and HNBody
were specified in heliocentric positions and velocities (e.g.,
Table 2). Transformation to the desired set of integration
coordinates is performed internally. In the following, ”same
initial conditions” refers to truly identical initial conditions,
regardless of the integration coordinates used.

2

http://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/planets
http://naif.jpl.nasa.gov/naif/toolkit.html


The Astrophysical Journal, 798:8 (13pp), 2015 January 1 Zeebe

Table 2
Initial Conditions of the Eight Planets and Plutoa for 5 Gyr Runs from DE431

x y z

Mercury
r −1.40712354144735680E−01 −4.43906230277241465E−01 −2.33474338281349329E−02
v +2.11691765462179472E−02 −7.09701275933066148E−03 −2.52278032052283448E−03

Venus
r −7.18629835259113170E−01 −2.25188858612526514E−02 +4.11716131772919824E−02
v +5.13955712094533914E−04 −2.03061283748202266E−02 −3.07198741951420558E−04

Earth+Moon
r −1.68563248623229384E−01 +9.68761420122898564E−01 −1.15183154209270563E−06
v −1.72299715055074729E−02 −3.01349780674632205E−03 +2.41254068070491868E−08

Mars
r +1.39036162161402177E+00 −2.09984400533893799E−02 −3.46177919349353047E−02
v +7.47813544105227729E−04 +1.51863004086334515E−02 +2.99756038504512547E−04

Jupiter
r +4.00345668418424960E+00 +2.93535844833712467E+00 −1.01823217020834328E−01
v −4.56348056882991196E−03 +6.44675255807273997E−03 +7.54565159392195741E−05

Saturn
r +6.40855153734800886E+00 +6.56804703677062207E+00 −3.69127809402511886E−01
v −4.29112154163879215E−03 +3.89157880254167561E−03 +1.02876894772680478E−04

Uranus
r +1.44305195077618524E+01 −1.37356563056406209E+01 −2.38128487167790809E−01
v +2.67837949019966498E−03 +2.67244291355153403E−03 −2.47764637737944378E−05

Neptune
r +1.68107582839480649E+01 −2.49926499733276124E+01 +1.27271208982211476E−01
v +2.57936917068014599E−03 +1.77676956230748452E−03 −9.59089132565213410E−05

Pluto
r −9.87686582399026491E+00 −2.79580297772433077E+01 +5.85080284687055574E+00
v +3.02870206449818878E−03 −1.53793257901232473E−03 −7.12171623386267461E−04

Notes. Heliocentric positions r (AU) and velocities v (AU d−1).
a Masses (Mercury to Pluto in solar masses): 1.66013679527193035E−07, 2.44783833966454472E−06,
3.04043264626852573E−06, 3.22715144505387430E−07, 9.54791938424322164E−04, 2.8588598066610
2893E−04, 4.36625166899970042E−05, 5.15138902053549668E−05, 7.40740740740740710E−09.

3. RESULTS: 5 GYR AND 500 MYR SIMULATIONS

At first glance, the 5 Gyr simulations with mercury6 and
HNBody appeared to yield similar results, except for different
energy and momentum errors (Figure 1). In none of the 80
simulations did a large increase in eM or a destabilization of
the inner solar system occur, which is also not expected if the
corresponding odds are ∼1% (Laskar & Gastineau 2009). How-
ever, at second glance, differences between the mercury6 and
HNBody runs became apparent. For runs with identical initial
conditions, the maximum difference in Mercury’s eccentricity
(ΔeM) between the mercury6 and HNBody simulations typically
grew from ∼10−7 to 0.01 over only ∼10 Myr. For comparison,
when HNBody was run with bodycentric coordinates (all else
equal), ΔeM grew to 0.01 over ∼60 Myr (see below). Further-
more, ΔeM between two simulations with the same package
and options, but different initial conditions grew to 0.01 over
∼75 Myr and ∼130 Myr, respectively, for the above mercury6
and HNBody setup (Figure 5). While the divergence of trajecto-
ries after ∼60 Myr may be attributed to the chaotic behavior of
the physical system (Laskar 1989; Varadi et al. 2003; Batygin
& Laughlin 2008), the rapid rise in ΔeM over only ∼10 Myr
between the 5 Gyr runs with DH (mercury6) and Jacobi
coordinates (HNBody) hints to a potential numerical origin.
A rapid ΔeM rise over ∼10 Myr was also observed between
two HNBody runs with identical initial conditions and timestep
but bodycentric versus Jacobi coordinates. In addition, or-
bital solutions obtained with bodycentric and Jacobi coor-

dinates yield different Lyapunov times for the inner planets
(see below).

The maximum in the relative energy error in the 5 Gyr
mercury6 runs was typically 104 times larger than in HNBody;
the corresponding maximum angular momentum error about 102

times larger (Figure 1). One might hence be tempted to argue
that any differences between the present 5 Gyr simulations are
due to larger errors in the mercury6 simulations (less reliable),
rather than heliocentric versus Jacobi coordinates. However, this
argument is not supported by the results of additional ensemble
simulations (see below). The small offsets in Mercury’s initial
radial distance randomized the initial conditions and led to
complete divergence of eccentricities after ∼100 Myr (Figure 1).
No patterns in the evolution of Mercury’s eccentricity were
observed between adjacent orbits (or sets of orbits); neither
appeared pairs of mercury6 and HNBody runs starting from
identical initial conditions lead to correlations in the behavior
of eM over 5 Gyr.

However, statistically the 5 Gyr ensemble simulations with
mercury6 (heliocentric coordinates) and HNBody (Jacobi co-
ordinates) led to significantly different distributions for the
maximum eccentricities of Mercury (emax

M ) achieved over 5 Gyr
(N = 40 each, Figure 2). More precisely, the null hypothe-
sis that the two emax

M samples from the 5 Gyr mercury6 and
HNBody ensemble simulations are random samples from normal
distributions with equal means can be rejected (p < 0.017,
two-tailed Student’s t-test). Furthermore, the probability for eM
to grow, say, beyond 0.4 is more than double for the 5 Gyr
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Figure 1. Results from 5 Gyr runs with mercury6 and HNBody. Blue
curves (a)–(d): mercury6, run no. 2 (solution Sm6

2 ), Δt � 6 days,
democratic–heliocentric coordinates. Green curves (a)–(d): HNBody run no.
5 (SHNB

5 ), Δt = 4 days, Jacobi coordinates. (a) Relative energy error,
|ΔE/E| = |(E(t) − E0)/E0|. (b) Relative angular momentum error, |ΔL/L| =
|(L(t) − L0)/L0|. (c) Change in Mercury’s semi-major axis, Δa = a(t) −
a0. (d) Mercury’s eccentricity (eM). (e) Mercury’s maximum eccentricity
(per 1 Myr bin) from all 5 Gyr runs (N = 80) with mercury6 and HNBody
(N = 40 each). Note time step reduction from 6 to 5 days at ∼2.24 Gyr in Sm6

2
(see (a) and (c)).

mercury6 setup (11/40 = 28%) than for the HNBody setup
(5/40 = 13%; Figure 2).

This statistical discrepancy (obtained at relatively low initial
eM � 0.21) raises questions about algorithm performance at
high eM. For instance, one might expect that eM also grows
larger on average at initially high eM when using heliocentric
versus Jacobi coordinates. The issue is critical for the poten-
tial destabilization of the inner planets as a result of a large
increase in Mercury’s eccentricity. Thus, I conducted addi-
tional ensemble integrations over 500 Myr starting at the time/
conditions of the run with the highest eM � 0.53 (solution
Sm6

12 ) achieved during the 5 Gyr simulations (Figures 2 and 3).
The timestep was reduced to 2 days in both the mercury6 and
HNBody setup. Surprisingly, in this case, the mercury6 simu-
lations (heliocentric coordinates) gave a significantly smaller
mean emax

M value than the HNBody simulations (Jacobi coordi-
nates; p < 2.2 × 10−6). Also, the probability for eM to increase
above the start value of 0.53 is less than half for the mercury6
setup (17/40 = 43%) than for the HNBody setup (37/40 = 93%;
Figure 2).

This result appears unrelated to the integrator package, but
related to the choice of the integration coordinates. Using
HNBody with bodycentric coordinates for the 500 Myr runs
gives a mean emax

M value similar to the heliocentric mercury6

setup and significantly lower than the HNBody setup with Jacobi
coordinates (p < 0.0003, Figure 2). I also tested whether the
statistically different emax

M at Mercury’s higher initial eccentricity
is related to typically larger errors associated with bodycentric
versus Jacobi coordinates at the same step size. I repeated the
500 Myr runs with the bodycentric HNBody setup but an eight-
fold smaller timestep (0.25 days, ∼100-fold smaller |ΔE/E|).
However, the basic result remained the same. At high initial eM,
the setup using bodycentric coordinates leads to a significantly
smaller mean emax

M than the setup using Jacobi coordinates
(p < 1.3 × 10−6, Figure 2). This suggests that the statistical
discrepancies are due to integration coordinates, not errors in
energy or angular momentum (see above).

This poses a quandary because the evolution of the phys-
ical solar system, including its probabilistic behavior, cannot
depend on our choice of coordinate system or numerical algo-
rithm. Fundamentally, there is no reason to prefer one set of
coordinates over the other. However, symplectic schemes dif-
fer in their implementation of different integration coordinates
(Section 6.1). While in symplectic algorithms the size of the per-
turbation term (planet interactions) may be numerically larger
in heliocentric than in Jacobi coordinates, little performance
difference has been reported over 100,000 steps (Farrés et al.
2013). Furthermore, heliocentric and Jacobi coordinates appear
to have opposing effects on emax

M at low and high initial eM,
pointing to a more complex origin. Importantly, differences per
timestep due to integration coordinates, which may ultimately
cause differences in eccentricity, are minuscule. For example,
in HNBody (Δt = 6 days, body versus Jacobi) it takes ∼200 kyr,
or 12 million steps for ΔeM to grow from 10−5 to 10−4 (∼1
billion steps for Jupiter). Statistical differences between emax

M
in the 500 Myr runs only become significant (p < 0.05) af-
ter ∼140 Myr, or 25 billion steps (HNBody, Δt = 2 days, body
versus Jacobi).

4. FOURIER ANALYSIS: g1−g5 RESONANCE

Fourier analysis of Mercury’s longitude of perihelion showed
that Mercury’s eccentricity increase was generally associated
with a shift in eigenfrequency (g1) toward Jupiter’s forcing
frequency (g5). For most 500 Myr runs, a correlation between
emax
M and g1 was observed (Figure 4). This is consistent with the

pattern of a secular resonance involving Mercury and Jupiter
(plus Venus’ participation; Batygin & Laughlin 2008; Laskar
2008; Lithwick & Wu 2011; Boué et al. 2012) and appears to
be the common cause for eM increases in nearly all 500 Myr
runs, regardless of integrator package or coordinates. Note
that contributions from GR (Einstein 1916) as included here
(Mikkola 1998; Soffel 1989) are important as they universally
move g1 up (by ∼0.′′43 yr−1 at present) and away from the
(g1−g5) resonance, substantially reducing the probability for
large eM increases across all simulations Laskar (2008), Laskar
& Gastineau (2009), see also our Figure 4.

More importantly, in the 500 Myr runs, bodycentric coordi-
nates showed, on average, a higher tendency toward resonance
damping and hence larger g1 and smaller emax

M , compared to Ja-
cobi coordinates. This tendency is significant and roughly halves
the probability for eM to increase beyond 0.53 in the 500 Myr
runs (Figure 2). The cause for the statistical differences originat-
ing from different integration coordinates as found here is not
obvious, nor is it clear which (if any) of the methods provides
accurate probability predictions over 108–109 yr timescale (see
below).
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Figure 2. Mercury’s maximum eccentricity (emax
M ) achieved during 5 Gyr and 500 Myr runs with mercury6 (blue bars) and HNBody (green bars). Bod: bodycentric,

Jac: Jacobi coordinates. (a) Mean emax
M = 0.377. eM grows beyond 0.4 in 11 out of 40 solutions (R0.4 = 11/40 = 28%). (b) Mean emax

M = 0.349; R0.4 = 5/40 = 13%.
(c) Mean emax

M = 0.535; eM grows beyond a start value of 0.53 in 17 out of 40 solutions (R↑ = 17/40 = 43%). (d) Mean emax
M = 0.557; R↑ = 37/40 = 93%. (e)

Mean emax
M = 0.538; R↑ = 21/40 = 53%. (f) Mean emax

M = 0.536; R↑ = 22/40 = 55%. The null hypothesis that two pairwise emax
M samples as shown in panels

α = a, c, e, f and β = b, d (N = 40 each) are random samples from normal distributions with equal means can be rejected at the following significance levels pαβ

(two-tailed Student’s t-test): pab < 0.017, pcd < 2.2 × 10−6, ped < 0.0003, pf d < 1.3 × 10−6.
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associated with the (g1−g5) resonance (see the text).
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Figure 4. Mercury’s maximum eccentricity (emax
M ) vs. eigenfrequency g1 in

arcsec yr−1 (symbols; g1 from Fourier analysis of Mercury’s longitude of
perihelion, �1). m6: mercury6, HNB: HNBody, Bod: bodycentric, Jac: Jacobi
coordinates. Dashed line: Jupiter’s forcing frequency. For the 5 Gyr runs, emax

M
and g1 values shown were determined using output for eM and �1 over the
full 5 Gyr time interval. For the 500 Myr runs, emax

M and g1 values shown were
determined only over the final 250 Myr interval of the runs. This improves
the representation of solutions with long-term decline in eM below the 0.53
start value. Otherwise, these solutions would all plot at constant emax

M = 0.53
despite large variations in g1. Contributions from general relativity (included in
all simulations) universally move g1 up (by ∼0.′′43 yr−1 at present, arrow) and
away from the (g1−g5) resonance.

5. MERCURY’S ECCENTRICITY AND LYAPUNOV
TIMES FROM DIFFERENT SIMULATIONS

Starting from slightly different initial conditions (2.73 m off-
set in Mercury’s initial radial distance), the computed difference
in Mercury’s eccentricity (ΔeM) between two solutions grows
slowly over the first 50 Myr or more when using the same pro-
gram and the same integration coordinates (only bodycentric
or only Jacobi coordinates, Figures 5(a)–(e)). This is also true
for the same initial conditions, different programs (mercury6
versus HNBody) and same integration coordinates (both body-
centric, Figure 5(f)). However, using the same initial conditions
but different integration coordinates (bodycentric versus Jacobi
coordinates), ΔeM between two solutions grows quickly over
the first 10 Myr (Figures 5(g)–(j)). This feature was observed ir-
respective of whether the same or different programs were used,
whether GR contributions were included or not, and whether
the initial eccentricity was low or high (initial eM = 0.21/0.53,
see above).

During the slow initial rise (Figures 5(a)–(f)), ΔeM is usually
dominated by polynomial growth and may increase linearly
with time in a log–log plot (Laskar 1989; Varadi et al. 2003).
The subsequent rapid rise after �50 Myr until ΔeM � eM
has been attributed to the chaotic nature of the physical system
(Laskar 1989; Varadi et al. 2003; Batygin & Laughlin 2008).
However, it is not clear why the system’s chaotic behavior starts
dominating eM’s evolution after, e.g., ∼60 Myr in mercury6
with bodycentric coordinates (Figure 5(a)), but only after
∼120 Myr in HNBody with Jacobi coordinates (Figure 5(c)).
The initial ΔeM(t = 0) in both the mercury6 and HNBody
simulations was ∼3×10−11. The time evolution of the absolute
ΔeM maxima of the two curves (Figures 5(a) and (c)) may be fit
to simple functions assuming linear and exponential growth of
the initial ΔeM (Figure 6). The exponential function fits the rapid
growth phase well in the mercury6 simulations (Body–Body)
with an estimated Lyapunov time of τ � 3.2 Myr. However,
the exponential function is a poor fit to the HNBody simulations
(Jacobi–Jacobi) with an estimated Lyapunov time of τ � 6 Myr
(Figure 6).

Nevertheless, these estimated Lyapunov times are in good
agreement with estimates of Lyapunov exponents from phase
space separation of two nearby orbits over time (Figure 7).
Note that, strictly, Lyapunov exponents are derived from the
solution of the variational equations, rather than from the
evolution of two system trajectories (e.g., Holman & Murray
1996; Tancredi et al. 2001; Morbidelli 2002). However, the
emphasis here is on the relative difference between simulations
with, say, different integration coordinates, while applying the
same method for estimating Lyapunov exponents. Importantly,
absolute estimates obtained here are consistent with results from
previous studies (Laskar 1989; Varadi et al. 2003; Batygin &
Laughlin 2008).

The Lyapunov exponents were determined from two runs
each with mercury6 and HNBody (one fiducial, one shadow
orbit each) without renormalization and an initial separation of
5 × 10−14 AU in Mercury’s x coordinate. Renormalization was
tested but yielded spurious results as reported before (Tancredi
et al. 2001). If during each time interval δt , the distance in
phase space grows exponentially, then dj = d0

j exp(γ · δt),
where d0

j and dj is the initial and final distance. An average γk

after t = k · δt may then be computed as:

γk = 1

k · δt

k∑
j=1

ln
(
dj/d

0
j

)
, (4)

where δt was set to 20 kyr. A log–log plot of γk versus time
yields a straight line with negative constant slope until an inflec-
tion point is reached after which γk approaches a nonzero value
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Figure 5. Computed difference in Mercury’s eccentricity (ΔeM) between two runs each per panel for different integrations and options. Blue curves: both runs with
mercury6 (m6), green curves: both runs with HNBody (HNB), light red curves: one run with mercury6, the other with HNBody. Body: bodycentric, Jacob: Jacobi
coordinates. md–nd indicates the timestep in both runs (in days). LowEcc/HighEcc: initial eM = 0.21/0.53 (see the text). NoPN: no contributions from general
relativity. Panels (a)–(e) show differences in eM between solutions with slightly different initial conditions (2.73 m offset in Mercury’s initial radial distance); panels
(f)–(j): identical initial conditions. Note rapid ΔeM rise in (g)–(j) (all Body–Jacobi).

(Figure 7). The inflection point corresponds to the time in the
integration where exponential growth starts dominating the evo-
lution of the phase space distance between the two orbits. Note
that the graphs in Figure 7 have been truncated shortly after
the inflection point to emphasize the plateau in γk (γk keeps
decreasing subsequently as d is bounded without renormal-

ization, not shown). The corresponding Lyapunov exponents
for the mercury6 and HNBody standard runs are 10−6.44 yr−1

and 10−6.74 yr−1 (i.e., Lyapunov times of 2.8 Myr and 5.5 Myr),
respectively, in good agreement with the Lyapunov times es-
timated from differences in Mercury’s eccentricity evolution
(Figure 6). Note that based on different approaches it may be

7



The Astrophysical Journal, 798:8 (13pp), 2015 January 1 Zeebe

−10

−8

−6

−4

−2

0

lo
g 

|Δ
e|

 M
er

cu
ry

m6−m6 LowEcc 6d−6d Body−Body

(a)

m6−m6
∝ t
∝ exp(t/τ)

−10

−8

−6

−4

−2

0

lo
g 

|Δ
e|

 M
er

cu
ry

HNB−HNB LowEcc 4d−4d Jacob−Jacob

(b)

HNB−HNB
∝ t
∝ exp(t/τ)

0 20 40 60 80 100 120 140 160 180
−10

−8

−6

−4

−2

0

Time (Myr)

lo
g 

|Δ
e|

 M
er

cu
ry

m6−m6 LowEcc 6d−6d Jacob−Jacob NoPN

(c)

m6−m6  .

Figure 6. Computed difference in Mercury’s eccentricity (ΔeM) between two
runs each per panel with slightly different initial conditions (2.73 m offset in
Mercury’s initial radial distance) for different integrations and options. Blue
curves: both runs with mercury6 (m6), green curve: both runs with HNBody
(HNB), red curves: simple fit functions assuming linear and exponential growth
of initial ΔeM. Body: bodycentric, Jacob: Jacobi coordinates. md–nd indicates
the timestep in both runs (in days). LowEcc: initial eM = 0.21 (see the text).
NoPN: no contributions from general relativity. Note different slopes (estimated
Lyapunov time τ ) of exponential fits in (a) and (b) (red dashed lines; linear on
logarithmic y-scale).

difficult to measure Lyapunov times with an absolute accuracy
much better than a factor of two (Murray & Holman 1999).
However, based on the current approach (simulations with iden-
tical initial conditions, etc.), it is not difficult to measure Lya-
punov times with a relative accuracy better than a factor of two
(Figures 6 and 7).

I also computed ΔeM over time for two simulations with
slightly different initial conditions using Jacobi coordinates in
mercury6 (mixed-variable symplectic algorithm) without con-
tributions from GR (Figure 6). In this case, selecting parame-
ters for an exponential fit is not obvious, but it is clear that it
takes more than 160 Myr for ΔeM to approach the magnitude
of eM. The bottom line is that the estimated Lyapunov times
for Mercury’s orbit from the standard mercury6 and HNBody
integrations (Figures 6 and 7) differ at least by a factor of two,
which is easily measurable given the relative accuracy of the
current approach. Yet, the chaotic behavior of the solar system
is a physical property that cannot depend on the numerical al-
gorithm chosen to describe the system. However, the results
presented here suggest that an exponential divergence of
trajectories starts dominating the numerical solutions after sig-
nificantly different time intervals, depending on integration co-
ordinates (Figures 5–7). In addition, the rapid ΔeM growth over
the first 10 Myr between two solutions using the same initial con-
ditions but different integration coordinates (Figures 5(g)–(j))
suggests a fundamental difference between algorithms using
bodycentric and Jacobi coordinates.
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Figure 7. Lyapunov exponents estimated from phase space separation of two
nearby orbits over time. Blue curve: both runs with mercury6 (m6), green
curve: both runs with HNBody (HNB). Graphs have been truncated shortly after
the inflection point (see the text). Bod: bodycentric, Jac: Jacobi coordinates.
md–nd indicates timestep in both runs (in days). LowEcc: initial eM = 0.21.

6. ALGORITHM TESTS

The results presented above raise questions about numerical
algorithm performance and the use of integration coordinates.
Why do heliocentric and Jacobi coordinates lead to statistically
different results? Which algorithm/integration coordinates pro-
vide more accurate results? This section describes several tests
aiming at resolving the dilemma of the dependency of statistical
results on integration coordinates.

6.1. Two-body Problem: Position Errors

One approach for testing the accuracy of a numerical al-
gorithm is to study the two-body problem, for which an
analytical solution exist (strictly, Kepler’s equation is solved
numerically though). While substantially less complex than the
general n-body problem, in the following the two-body prob-
lem will illustrate one important difference between symplectic
algorithms with heliocentric and Jacobi coordinates.

The Hamiltonian for the two-body problem may be written as:

H = | p0|2
2m0

+
| p1|2
2m1

− Gm0m1

|x0 − x1| , (5)

where G is the gravitational constant and pi , mi, and xi are the
momenta, masses, and positions of the two bodies. The problem
can be simplified via canonical transformations, using, e.g., DH
and Jacobi coordinates, denoted here as:

(x, p) −→ (Q, P) : democratic–heliocentric

(x, p) −→ ( Q, P) : Jacobi.

In DH coordinates, Q0 is the position of the center of mass and
Q1 is the heliocentric position of m1. One may use a generating
function F3(Q, p) of the new positions and the old momenta
(Duncan et al. 1998):

F3 = − p0

(
Q0 − m1

M
Q1

)
− p1

(
Q0 − m1

M
Q1 + Q1

)
, (6)

8



The Astrophysical Journal, 798:8 (13pp), 2015 January 1 Zeebe

where M = m0 + m1. The relationship between old and new
variables then is:

− ∂F3

∂ p0
= x0 =

(
Q0 − m1

M
Q1

)
;

− ∂F3

∂ p1
= x1 =

(
Q0 − m1

M
Q1 + Q1

)

− ∂F3

∂Q0
= P0 = p0 + p1;

− ∂F3

∂Q1
= P1 = p1 − m1

M
( p0 + p1).

Note that P0 is the total momentum and P1 is the barycentric
momentum of m1. After some algebra, the Hamiltonian becomes

H =
( |P1|2

2m1
− Gm0m1

|Q1|
)

+
|P0|2
2M

+
|P1|2
2m0

. (7)

The first two terms in parentheses represent the Kepler–
Hamiltonian. The third term represents the motion of the center
of mass, which moves as a free particle and can be ignored.
The last term needs to be integrated separately in symplectic
algorithms with DH coordinates. This term is often denoted as
HSun because −P1 = p0 − (m0/M)( p0 + p1) is the barycentric
momentum of the Sun.

For Jacobi coordinates, one may use a generating function
F2(x, P) of the old positions and the new momenta:

F2 = P0(m0x0 + m1x1)/M + P1(x1 − x0), (8)

where (m0x0 + m1x1)/M = XS is the center of mass. The
relationship between old and new variables then is

∂F2

∂ P0
= XS = Q0;

∂F2

∂ P1
= (x1 − x0) = Q1

∂F2

∂x0
= − P1+ P0m0/M = p0;

∂F2

∂x1
= P1+ P0m1/M = p1

The Hamiltonian becomes:

H =
( |P1|2

2μ
− Gm0m1

| Q1|
)

+
|P0|2
2M

(9)

where μ = m0m1/M is the reduced mass. Again, the first
two terms represent the Kepler–Hamiltonian and the third term
(center of mass) can be ignored. However, comparing the
Hamiltonian in Jacobi coordinates (Equation (9)) and in DH
coordinates (Equation (7)) shows that in Jacobi coordinates the
relevant Kepler mass is μ (rather than m1) and HSun is absent.

Thus, even for the simple two-body problem, there is a
difference between symplectic algorithms with heliocentric
and Jacobi coordinates. Because the Hamiltonian is purely
Keplerian in Jacobi coordinates (no solar correction), symplectic
integration of the two-body problem in Jacobi coordinates
should be more accurate than in DH coordinates. Indeed, 10 Myr
integrations with HNBody of the Sun and Mercury showed
that |δrM| (difference in Mercury’s numerical and analytical
position vector) was substantially smaller in integrations with
Jacobi than DH coordinates over the first 1 Myr or so (Figure 8).
On a timescale of 10−1 yr, the numerical position error is close to
machine precision for Jacobi coordinates, but ∼105 times larger
for DH coordinates (both four-day timestep). Subsequently,
the position error grows approximately quadratic and linear in
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Figure 8. Difference between the numerically and analytically determined
position vector of Mercury (|δrM| = |rnum

M − ranl
M |) from two-body integrations

with HNBody of the Sun and Mercury. Graphs labeled “Jacobi” and “Body”
show |δrM| between the second order symplectic integrator using Jacobi and
bodycentric coordinates (both four-day timestep) and the analytical solution. BS:
|δrM| between non-symplectic Bulirsch–Stoer algorithm (relative accuracy set
to 10−15) and analytical solution.

time for Jacobi and DH coordinates, respectively. Additional
runs with HNBody using a non-symplectic Bulirsch–Stoer (BS)
algorithm (relative accuracy set to 10−15) yields errors in
|rM| closer to those of the symplectic integrator with Jacobi
coordinates (Figure 8). Note, however, that on timescales of
106–107 yr errors in |rM| grow to similarly large values in all
three integrations.

Given that increases in Mercury’s eccentricity are critical for
the potential destabilization of the solar system, accurate nu-
merical integration of its orbit is key. Because Mercury is the
innermost planet, one might argue that Jacobi coordinates are
better suited than DH coordinates for this task (Duncan et al.
1998) and that integrating solar system orbits (specifically Mer-
cury’s orbit) using DH coordinates simply lacks the necessary
accuracy. In terms of errors in Mercury’s position vector, the
present two-body integrations support this notion, but only on
timescales shorter than ∼106 yr.

6.2. Bulirsch–Stoer Algorithm: Eccentricity Errors

As described above, I also tested whether the statistically
different emax

M in the 500 Myr runs (high initial eM) are related
to typically larger errors associated with bodycentric versus
Jacobi coordinates at the same step size. I repeated the 500 Myr
runs with the bodycentric HNBody setup, but an eight-fold
smaller timestep (0.25 day, ∼100-fold smaller |ΔE/E|). The
basic result remained the same. At high initial eM, the setup
using bodycentric coordinates leads to a significantly smaller
mean emax

M than the setup using Jacobi coordinates (Figure 2).
This result suggests that the effect of different integration
coordinates on the statistics of Mercury’s eccentricity evolution
are not caused by errors arising from a too large timestep in the
bodycentric setup.

Further tests can be performed by comparing the results of
the symplectic integrators to results of non-symplectic integra-
tors, e.g., BS algorithm. Note that such tests are usually run
over shorter time intervals as in most cases non-symplectic in-
tegrations are computationally much more expensive than sym-
plectic integrations. Comparison between HNBody’s BS and the

9
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Figure 9. Computed difference in Mercury’s eccentricity (ΔeM) between two
runs each per panel for different integrations and options. All runs with HNBody
(HNB) including the eight planets and Pluto. Body: bodycentric, Jacob: Jacobi
coordinates, BS: Bulirsch–Stoer. HighEcc: initial eM = 0.53 (see the text).
(a) Second order symplectic algorithm with two-day timestep and Jacobi
coordinates vs. non-symplectic Bulirsch–Stoer algorithm (relative accuracy set
to 10−12). (b) Same as (a), but bodycentric coordinates. (c) Same as (b), but
0.25 day timestep.

second order symplectic integration of the eight planets and
Pluto starting at initial eM = 0.53 showed a moderate rise in
ΔeM over 10 Myr when using Jacobi coordinates and a two-
day timestep (max |ΔeM| � 10−4, Figure 9(a)). This was
not the case for bodycentric coordinates/two-day timestep ver-
sus BS, where max |ΔeM| grew rapidly to ∼10−2 over 10 Myr
(Figure 9(b)). However, a moderate rise was found again in ΔeM
over 10 Myr when using bodycentric coordinates and a 0.25 day
timestep (max |ΔeM| � 10−4, Figure 9(c)). Thus, in seeming
contradiction to the results of the 500 Myr runs (see above),
the comparison to BS suggests that differences in eM may be
rectified provided that the timestep in the bodycentric setup is
“sufficiently small.” If so, then what is sufficiently small?

For the symplectic two-body integrations discussed above, a
timestep smaller than ∼0.05 days would achieve roughly the
same accuracy with bodycentric coordinates as with Jacobi
coordinates and a four-day timestep. If the same timestep
ratio were to apply to full solar system integrations, then the
timestep would have to be reduced by a factor of 80 when
using bodycentric coordinates instead of Jacobi coordinates.
For example, the 500 Myr runs with two-day timesteps ran
over roughly 2.2 days wall-clock time. Thus, repeating those
runs with an 80 times reduced timestep would take about
180 days (2.6 yr for the 5 Gyr runs). Not only are such runs
currently impractical, at small timesteps, one also needs to
consider accumulation of numerical errors, which typically

scale with the number of steps. Finally, could the accuracy of
symplectic integrations be tested by comparison to long-term
integrations using non-symplectic algorithms such as BS? As
mentioned above, the BS algorithm is currently computationally
too expensive for long-term integrations. In addition, non-
symplectic algorithms usually suffer from substantial long-term
drifts in total energy and angular momentum.

6.3. Sun + Five Planets: Statistics at High eM

While long-term integrations of the full equations of motion
of the complete solar system at very small timesteps appear
impractical at this stage, insight into algorithm performance
may be gained from test integrations of planetary systems of
somewhat reduced complexity. It turned out that the (g1−g5)
resonance pattern at high initial eM can be reproduced with
just a six-body setup (Sun + five planets: Mercury, Venus,
Earth, Jupiter, and Saturn). When contributions from GR are
ignored, this setup frequently leads to rapid eM increases
after ∼10 Myr. The estimated Lyapunov time for Mercury’s
orbit in this system is ∼0.6 Myr. Mercury’s orbit is unstable
and intermittently switches between resonant and non-resonant
phases (Figure 10). The resonant phase is associated with
the (g1−g5) resonance and typically high values in Mercury’s
inclination (ca. 10◦–20◦). The non-resonant phase is typically
associated with a drop in Mercury’s inclination and eccentricity.
After about 8–10 Myr, ΔeM between two nearby orbits reaches
the magnitude of eM itself, which subsequently increases
beyond 0.8 between 10 and 12 Myr in some simulation, but not
in others, depending (sensitively) on initial conditions. Hence,
the system may provide some useful algorithm tests and allow
statistical analyses over only a 12 Myr interval—an interval
short enough for integrations with a very small timestep.

I have integrated 40 solutions, each with four different numer-
ical setups over 12 Myr using HNBody (Figure 11): (a) symplec-
tic algorithm with two-day timestep and Jacobi coordinates,
(b) symplectic algorithm with 0.025 day timestep and body-
centric coordinates, (c) symplectic algorithm with 0.025 day
timestep and Jacobi coordinates, (d) BS algorithm (rela-
tive accuracy set to 10−15). All simulations ignore con-
tributions from GR; the symplectic integrators are sec-
ond order schemes. The setups (b) and (c) used an ex-
act timestep of 0.025390625 day (finite binary representa-
tion to minimize round-off errors), which is about 80 times
smaller than the two-day timestep of setup (a) (see dis-
cussion Section 6.2). The four sets of integrations (N = 40
each) started from the same set of initial conditions, where
Mercury’s initial radial distance was offset by 10 m be-
tween every two adjacent orbits (largest overall offset:
39 × 10 m = 390 m).

For all simulations, Mercury’s maximum eccentricity (emax
M )

achieved during the final 2 Myr of the 12 Myr runs was recorded,
providing a metric for either an increase or a decline in
emax
M toward the end of the integration (Figure 10). Of the

four numerical setups, only the symplectic integrator with
Δt = 0.025 day/Jacobi coordinates and the BS algorithm yield
similar statistical results for emax

M (Figure 11). In comparison,
the symplectic integrator with Δt = 2 day/Jacobi coordinates
shows a reduced tendency for large eM increases and has a
lower mean emax

M value. Strikingly, the symplectic integrator
with bodycentric coordinates predicts a decline in emax

M to values
below 0.65 between 10 and 12 Myr in all simulations (0.65 is
roughly equal to the emax

M value from 0 to 10 Myr, see Figure 10).
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Figure 10. Mercury’s eccentricity and inclination from 12 Myr runs (Sun + five planets) at high initial eM without contributions from general relativity (NoPN). Jac:
Jacobi, Bod: bodycentric, coordinates, Δt : step size in days, BS: Bulirsch–Stoer (relative accuracy set to 10−15). (a) One example from each of three setups (see legend,
total no. of runs for each setup = 40). (b) Mercury’s inclination for the BS solution corresponding to (a). Vertical bars highlight several eccentricity maxima and high
inclination values associated with the (g1−g5) resonance (BS solution). Arrows indicate a few examples of eccentricity minima and low inclination values associated
with non-resonant phases.

For this particular system, the statistical results shown in Fig-
ure 10 have important implications. Based on the agreement
between BS and the symplectic integrations with Δt = 0.025
day/Jacobi coordinates, it is likely that these two setups pro-
vide the most accurate results. The first implication then is that
Δt = 2 days is too large for a second order symplectic in-
tegrator with Jacobi coordinates at high eM. For instance, the
calculated odds for emax

M to increase beyond 0.683 (mean of
all 160 runs) are 48% at Δt = 0.025 day but only 35% at
Δt = 2 days. Second, the symplectic integrator with bodycen-
tric coordinates yields incorrect results for this system even at
a very small timestep of 0.025 days = 36 minutes! The ten-
dency to underestimate increases in Mercury’s eccentricity at
high eM, which was also observed in the 500 Myr integrations
of the full solar system (Figure 5), is therefore unlikely related
to errors associated with the size of the timestep. Fundamental
differences in the implementation of different integration coor-
dinates in symplectic schemes are more likely to be the cause
(Section 6.1).

The results of the 12 Myr runs also help resolve the appar-
ent contradiction between the 500 Myr statistics and the eM
comparison to BS mentioned in Section 6.2. On the one hand,
the 500 Myr results suggest that the different emax

M statistics are
largely independent of the step size in the bodycentric setup
(Figure 2). On the other hand, the comparison to BS suggests
that differences in eM can be minimized when the step size
in the bodycentric setup is reduced (Figure 9). In fact, for the
12 Myr runs, both statements are correct. At a small timestep of
0.025 day, ΔeM (BS minus Jacobi setup) and ΔeM (BS minus
bodycentric setup) are virtually identical during the first 4 Myr
(not shown). In this interval, ΔeM is dominated by polynomial

growth. During the final 2 Myr, however, all runs of the body-
centric setup show a decline in emax

M (contrary to the BS and
Jacobi setup). In this interval, ΔeM is dominated by exponential
growth. Importantly, the final interval determines the statistics of
Mercury’s ultimate eccentricity evolution. Thus, a smaller step
size does improve the bodycentric setup’s accuracy during poly-
nomial growth of ΔeM but has little effect during exponential
growth of ΔeM.

Note that the implications outlined above strictly only apply
to the system of reduced complexity studied in this section.
That is, a system comprising the Sun and just five planets with
specific initial conditions (including high initial eM), integrated
over only 12 Myr and ignoring PN corrections.

7. CONCLUSIONS

Reliable predictions of the solar system’s dynamic stability
over billions of years not only require integrators that are fast and
accurate but also produce robust statistical results in ensemble
integrations. Ensemble integrations are necessary because of the
chaotic behavior of the system. Currently, symplectic integrators
are probably the best, if not the only, choice in terms of
speed and accuracy. However, the present results show that
tackling statistics is trickier as, for instance, the predicted
probability for a large increase in Mercury’s eccentricity (eM)
depends on the choice of integration coordinates in symplectic
algorithms. Several tests performed here suggest that using
Jacobi coordinates in symplectic integrations of the solar system
is more reliable than using bodycentric coordinates when
Mercury’s orbital eccentricity is high. However, these tests
reveal little about the statistics of long-term integrations when
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Figure 11. Mercury’s maximum eccentricity (emax
M ) achieved during final 2 Myr of 12 Myr runs (Sun + five planets, see the text). Jac: Jacobi, Bod: bodycentric,

coordinates, Δt : step size in days, BS: Bulirsch–Stoer (relative accuracy set to 10−15), NoPN: no contributions from general relativity. R0.683 indicates the number of
solutions in which eM grows beyond 0.683 (mean of all 160 runs, dashed lines).

Mercury’s initial orbital eccentricity is low. In fact, the influence
of Jacobi and bodycentric coordinates on the statistics of
Mercury’s eccentricity evolution appears to be opposite over
5 Gyr at low initial eM than over 500 Myr at high initial eM.
Moreover, even accepting superiority of Jacobi coordinates at
high eM, what is the proper step size to obtain robust statistical
results? If applicable, the results of the system of reduced
complexity (Section 6.3) suggest a timestep that could be as
small as 0.025 day. Even when starting with a larger timestep and
reducing the timestep during the symplectic integration (which
should be avoided), such small timesteps would still pose a
challenge in terms of integration time. Then do symplectic
integrations with Jacobi coordinates and typical timesteps of
several days underestimate the odds for disaster (Figure 11)?
Again, if applicable, such simulations would underestimate the
odds for disaster once eM has already reached values > 0.5 or so.
However, it is not clear whether the odds are predicted correctly
to reach those values in the first place when starting at low eM.

It appears that several centuries of analytical research, modern
state-of-the-art numerical algorithms, and current CPU power
has brought us closer to answering the question of the solar
system’s long-term stability. However, a definite, robust answer
still seems to be lacking, including answers based on statistical
approaches. It is likely that the odds for the catastrophic
destabilization of the inner planets are in the order of a few
percent. But what percentage exactly?

I thank the anonymous reviewer for constructive comments
and David Ho and B.R. Oppenheimer for helpful conversations.
I am grateful to Peter H. Richter who dared to introduce us
to Chaos, Poincaré, and solar system dynamics in a 1989
undergraduate physics course on classical mechanics.

APPENDIX

CONTRIBUTIONS FROM GENERAL RELATIVITY

Relativistic corrections are critical as they substantially re-
duce the probability for Mercury’s orbit to achieve large ec-
centricities (Laskar & Gastineau 2009). General relativity (GR)
corrections are available in HNBody but not in mercury6. Post-
Newtonian (PN) corrections for symplectic integration (Mikkola
1998; Soffel 1989) were therefore implemented before using
mercury6. For more information on symplectic algorithms,
see Wisdom & Holman (1991), Saha & Tremaine (1992),
Chambers (1999). Note that the PN code was fully embedded in
the symplectic hybrid integrator mdt_hy(), and not just added
as an auxiliary force term in mfo_user(). For every planet, one
needs to solve an equation of the form (Mikkola 1998):

a = r̈ = F + f 0(r, t) +
1

c2
f 1(r, v), (A1)

where F is the two-body acceleration, f 0(r, t) is the Hamil-
tonian perturbation, c is the speed of light, and f 1(r, v) is the
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expression for the first PN contribution (Soffel 1989). Combin-
ing the implicit midpoint method and generalized leapfrog, and
denoting the timestep by h, one obtains for the velocity jumps
(Mikkola 1998):

δv = h f 0(r, t) +
h

c2
f 1

(
r, v +

1

2
δv

)
, (A2)

which must be solved for δv. The first PN acceleration term may
be written as (Soffel 1989):

1

c2
f 1(r, v) = GM

c2

[
−v2

r3
r + 4

GM

r4
r + 4

(r · v)

r3
v

]
. (A3)

Inserting into Equation (A2) yields:

δv = h f 0(r, t)

+ h
GM

c2

[
−

(
v + 1

2δv
)2

r3
r + 4

GM

r4
r

+ 4

[
r · (

v + 1
2δv

)]
r3

(
v +

1

2
δv

)]
, (A4)

which was solved iteratively for δv. Because the relativistic
term is small, convergence is rapid (usually two iterations), and
[δv(i = 2) − δv0]/δv0 < 5 × 10−16 for Mercury. The computa-
tional overhead for including GR contributions in mercury6
as described above was about 15%–20% (wall-clock time).
Over the 21st century, Mercury’s average perihelion precession
(only due to GR) was 0.′′42976 yr−1 computed with HNBody and
0.′′42978 yr−1 computed with mercury6 and the above GR im-
plementation. In terms of Mercury’s long-term eccentricity (eM)
evolution, the difference in eM between mercury6 and HNBody

runs (both with GR correction, Δt = 6 days, and bodycentric
coordinates) was ∼10−4 over the first 40 Myr.
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