Stable Isotope Tracers

OCN 623 – Chemical Oceanography

21 March 2017

Reading: Emerson and Hedges, Chapter 5, p.134-153

© 2017 Frank Sansone and David Ho

Outline

- Stable Isotopes Introduction & Notation
- Isotope Fractionation
- Some Oceanographic Applications

Uses of Stable Isotopes in Oceanography

- Most commonly studied:
 - ²H ³He ¹³C ¹⁵N ¹⁸O ³⁴S
- Tracers of biological, chemical, geological ocean processes
- Water-mass characterization and tracing
- Paleoceanography Record past changes in the ocean
- Pulse/chase experiments Determine metabolic rates and pathways (labeled tracers)

The "Delta" Notation

• Absolute isotope ratios are measured for samples and a standard, and the relative measure "delta" is calculated:

$$\delta^{13}C \equiv \frac{\binom{^{13}C/^{12}C}{_{Sample}} - \binom{^{13}C/^{12}C}{_{Standard}} \cdot 1000\%}{\binom{^{13}C/^{12}C}{_{Standard}}} \cdot 1000\%$$

• ‰ = per mil = 10⁻³

Example: 0.005 = 5‰

- Samples with negative delta values are *depleted in ¹³C* (they are *"light"*)
- Samples with positive delta values are *enriched in ¹³C* (they are *"heavy"*)

Element	δ value	Ratio	Standard
Hydrogen	δD	² H/ ¹ H	Standard Mean Ocean Water (SMOW) 🛛 🛶
			Standard Light Antarctic Precipitation (SLAP2)
Helium	δ³He	³ He/ ⁴ He	Atmospheric He 🛛 🛶
Boron	δ ¹¹ Β	¹¹ B/ ¹⁰ B	NIST SRM 951
Carbon	δ ¹³ C	¹³ C/ ¹² C	Pee Dee Belemnite (PDB)
Nitrogen	$\delta^{15}N$	¹⁵ N/ ¹⁴ N	Atmospheric N ₂
Oxygen	δ ¹⁸ Ο	¹⁸ 0/ ¹⁶ 0	Standard Mean Ocean Water (SMOW) 🛛 🛶 🛶
			Standard Light Antarctic Precipitation (SLAP2)
			Pee Dee Belemnite (PDB)
	δ ¹⁷ Ο	170/160	Standard Mean Ocean Water (SMOW) 🛛 🛶 🛶
Sulfur	δ ³⁴ S	³⁴ S/ ³² S	Canyon Diablo Troilite (CDT)

Equilibrium Isotopic Fractionation

Fractionation occurs in <u>reactions that do not go to completion</u>:

- Lighter isotopes react faster, and to a greater extent
- Reactants are enriched in the heavier isotopes
- Reaction products are depleted in the heavier isotopes

Note: There is no equilibrium fractionation if a reaction goes to completion (*i.e.*, all of the reactants are consumed)

Fractionation Factor (α): $\alpha_{A/B} = R_{Prod} / R_{React}$

where R_{Prod} and R_{React} are the isotope ratios of the Product and the Reactant after equilibrium is reached (Reactant \leftrightarrow Product)

Kinetic Isotopic Fractionation

Unidirectional reactions (*e.g.*, those involving organic matter) show kinetic fractionation

Example: ${}^{12}\text{CO}_2 + \text{H}_2\text{O} \rightarrow {}^{12}\text{CH}_2\text{O} + \text{O}_2$ faster ${}^{13}\text{CO}_2 + \text{H}_2\text{O} \rightarrow {}^{13}\text{CH}_2\text{O} + \text{O}_2$ slower

Thus, organic matter gets depleted in ¹³C during photosynthesis (*i.e.*, δ^{13} C becomes more negative)

Similarly, organic matter gets <u>enriched in ¹³C</u> during <u>respiration</u> (*i.e.*, δ^{13} C becomes more positive):

 ${}^{12}\text{CH}_2\text{O} + \text{O}_2 \rightarrow {}^{12}\text{CO}_2 + \text{H}_2\text{O} \quad faster$ ${}^{13}\text{CH}_2\text{O} + \text{O}_2 \rightarrow {}^{13}\text{CO}_2 + \text{H}_2\text{O} \quad slower$

Oceanic δ^{18} O-H₂O (δ^{18} O)

- δ^{18} O follows the water molecules (<u>not</u> O₂!)
 - Thus, excellent stable, conservative (SC) water mass tracer
- In seawater:

 $H_2^{16}O / H_2^{18}O \approx 500 / 1$

• H₂¹⁶O evaporation favored over H₂¹⁸O evaporation

Rayleigh Distillation - Global Hydrological Cycle

- Equilibrium fractionation when water molecules evaporate from sea surface
- Equilibrium fractionation when water molecules condense from vapor to liquid (rain is heavier than vapor)
- Vapor becomes progressively lighter (i.e., δD and $\delta^{18}O$ get lower) with distance from source
- Evaporation from ocean creates
 depleted clouds
- Air mass transported to higher latitude (cooler)
- Water lost due to rain; raindrops enriched in ¹⁸O relative to cloud
 - Cloud gets lighter as it moves
 poleward

FIGURE 29.4. Schematic fractionation in the atmospheric water cycle. Source: Lectures in Isotope Geology, U. Siegenthaler (eds.: E. Jager and J. C. Hunziker), copyright © 1979 by Springer-Verlag, Heidelberg, Germany, p. 266.

