Estuaries:

Classification, Mixing, and Coastal Biogeochemistry Part II

OCN 623 – Chemical Oceanography 07 Apr 2016 Salinity is a conservative constituent in estuaries and is a good indicator of mixing

Mixing Curve

Non-conservative mixing (source)

Constituent plotted against salinity to determine if distribution is attributable to mixing processes (as opposed to non-conservative processes; nutrient uptake, flocculation, biodegradation, etc.)

If concentration vs. salinity is LINEAR, then the chemical/particle exhibits *conservative* behavior

If plot of concentration vs. salinity is NOT LINEAR, then the chemical/particle exhibits *NONconservative* behavior

Assumes end-members are constant over the flushing time of the estuary

Elegantly laid out by Morris (1985):

"estuaries are classical examples of complex thermodynamically open systems, subject to constantly changing input and output fluxes and to continuous internal chemical reactions..." which do not usually reach a steady-state equilibrium

Many important reactions & processes are identified

BUT, still difficult to predict process rates & fluxes because of a lack of information on speciation of trace metals, kinetics of reactions, microbial activity, and heterogeneous nature of dissolved and solid phases

This leads to a heavy reliance on salinity as a conservative index for mixing & comparison

Pitfalls can include defining end-members, role of tributaries, and mixing of different water masses along the estuary

Mixing Diagram Examples

Mixing line assumptions:

Concentration & flux are constant

Only 2 significant endmembers

https://www.youtube.com/watch?v=Gfch_b45zoQ#action=share

Wetlands Are the Interface Between Terrestrial and Aquatic Systems

- Terrestrial (dry) systems tend to have medium NPP, high + NEP
- Wetlands
 have high
 NPP,
 + or NEP
- Aquatic systems have low NPP,
 NEP

NPP = net primary production NEP = net ecosystem production (P-R)

Drained wetlands or aquatic systems are major sites of "old C" oxidation

Masses of Materials Entering/Leaving the Ocean

Transport rates are 10¹⁴ g/year

Dissolved solids in global ocean = 470 x 10²⁰ g

Drained Soil vs. Flooded Soil

Example: Changing Composition in Flooded Soils

Temporal pattern reflects decreasing energy yield:

Salinity Effects on Salt Marsh Biogeochemistry

Salt marshes can exist over a wide range of salinities (and, thus, sulfate content), so there will be large variations in the biogeochemistry of different marshes:

Organic matter oxid	Oxidant	Reductant
Aerobic oxidation	O ₂	H ₂ O
Manganese reduction	MnO ₂	Mn ²⁺
Nitrate reduction	HNO ₃	N_2
Iron reduction	Fe ₂ O ₃	Fe ⁺²
Sulfate reduction	SO42-	S2 ⁻
Methanogenesis	CO2	CH₄

What about pCO2 along a salinity gradient then?

Is this a mixing line or something different?

Highest pCO2 is found in the lowest salinity waters (<10), with Corresponding CO2 fluxes 20->250mol m-2 y-1.

(in Bianchi 2007)

Estuary	Number of transects	Average pCO_2 range (ppmv)
Altamaha (USA) ^a	1	380-7800
Scheld (Belgium/The Netherlands) ^b	10	496–6653
Sada (Portugal) ^b	1	575-5700
Satilla (USA) ^a	2	420-5475
Thames (UK) ^b	2	485-4900
Ems (Germany/The Netherlands) ^b	1	560-3755
Gironde (France) ^b	5	499-3536
Douro (Portugal) ^b	1	1330-2200
York (USA) ^c	12	352-1896
Tamar (UK) ^b	2	390-1825
Hudson (NY, USA) ^d	6	517-1795
Rhine (The Netherlands) ^b	3	563-1763
Rappahannock (USA) ^c	9	474–1613
James (USA) ^c	10	284-1361
Elbe (Germany) ^b	1	580-1100
Columbia (USA) ^e	1	590-950
Potomac (USA) ^c	12	646-878
	Average	531-3129

Table 5.4 Average pCO_2 ranges for various U.S. and European estuaries.

An Example of Seasonal Effects

Form of variability	Frequency	Process
Cyclic fluctuations about average conditions 1. Small scale random fluctuations about mean level or trend	< Seconds to minutes	Turbulent eddy structure of water in mixing regime
2. Variability around mean level or trend	Minutes to hours	Eddying; incompletely mixed inputs; temporary isolation of water, e.g. in bays or over mud flats
3. Regular interruptions to mean level or trend	Often tidal	Intermittent discharge
4. Regularly cyclic	Usually 12 ¹ / ₂ hours, with spring/neap variations in amplitude	Tidal advection
5. Regularly cyclic	Annual	Biological and/or climatic cycles
Intermittent fluctuations 1. Irregular interruptions to mean level or trend		Irregular discharge
2. Intermittent significant change in water characteristics	Often annual, i.e. more probable at certain times of year	Climatic effects, e.g. exceptionally high or low fresh water run-off; storm surges; biological instability (plankton blooms)
3. Permanent discontinuity in water characteristics	a da	Change in exploitation, e.g. new discharge. Natural phenomenon, e.g. morphological adjustment to estuarine bed form, rechannelling
<u>Trend</u>		
1. Persistent year to year trend		Change in exploitation, e.g. continuous increase or decrease in discharge. Natural estuarine evolution, e.g. continuing siltation

Table 1.3. Factors which impose temporal variability on the composition of water at a fixed geographical position in an estuary

The Mid-estuary Turbidity Maximum

Fig. 115. Example of the non-conservative behaviour of suspended matter in estuaries and the formation of a turbidity maximum at the fresh-sea water interface (Meade, 1972)

A Mid-estuary Trap for Riverborne Material

Particle Distribution vs. Estuary Type

Effects Of The Mid-estuary Particle Maximum

- 1. Scavenging of surface-active materials
 - 70-100% of riverine Fe is removed (most at low salinity)
 - 60-80% of humic acids are removed
 - 5% of total DOM is removed
- 2. Increased turbidity
 - Lower primary production
 - Reduction of photochemical reaction rates
- 3. Enhanced transport rates downstream / offshore
 - Enhanced sedimentation rates downstream / offshore

Estuarine Plumes on the Continental Shelf

cacique.uprm.edu/gers/anasco_plume.jpg

Estuarine Plumes on the Continental Shelf

gulfsci.usgs.gov/.../ofrshelf/images/seawifs.jpg

Estuarine Plumes on the Continental Shelf

An Estuarine Summary

Figure 8.13 Conceptual model of the chemical and biological structure in estuaries. As the suspended load settles from the entering river waters and nutrients are made available, phytoplankton production increases, fueling an increase in zooplankton production and higher trophic levels. From Fisher et al. (1988).