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Salinity is a conservative
constituent in estuaries and is a
good indicator of mixing

Constituent plotted against salinity
to determine if distribution is
attributable to mixing processes
(as opposed to non-conservative
processes; nutrient uptake,
flocculation, biodegradation, etc.)

If concentration vs. salinity is
LINEAR, then the chemical/particle
exhibits conservative behavior

If plot of concentration vs. salinity
is NOT LINEAR, then the
chemical/particle exhibits NO/N-
conservative behavior
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Elegantly laid out by Morris (1985):

“estuaries are classical examples of complex thermodynamically open
systems, subject to constantly changing input and output fluxes and to
continuous internal chemical reactions...” which do not usually reach a
steady-state equilibrium

Many important reactions & processes are identified
BUT, still difficult to predict process rates & fluxes because of a lack of
iInformation on speciation of trace metals, kinetics of reactions, microbial

activity, and heterogeneous nature of dissolved and solid phases

This leads to a heavy reliance on salinity as a conservative index for
mixing & comparison

Pitfalls can include defining end-members, role of tributaries, and mixing
of different water masses along the estuary
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https://www.youtube.com/watch?v=Gfch_b45zoQ#action=share




Wetlands Are the Interface Between
Terrestrial and Aquatic Systems

Terrestrial
(dry) systems
tend to have

medium NPP,

high + NEP

Wetlands
have high
NPP,

+ or - NEP
Aquatic
systems have
low NPP,

- NEP

NPP = net primary production
NEP = net ecosystem production (P-R)
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Drained wetlands or aquatic systems are
maijor sites of “old C” oxidation




Masses of Materials Entering/Leaving the Ocean

Atmosphere Extraterrestrial material
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= material by uplift
From Garrels & Mackenzie (1971)

Transport rates are 104 g/year

Dissolved solids in global ocean =470 x 10%° g




Drained Soil vs. Flooded Soll
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Example: Changing Composition in
Flooded Soils

Temporal pattern reflects decreasing energy yield:
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Salinity Effects on Salt Marsh
Biogeochemistry

Salt marshes can exist over a wide range of salinities (and,
thus, sulfate content), so there will be large variations in the
biogeochemistry of different marshes:
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. Figure 8.11  Annual methane lost from salt marsh soils as a function of salinity. From Bartlett
Methanogenesis CO, CH, et al. (1987).




What about pCO2 along a salinity gradient then?

Is this a mixing line or something different?
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Highest pCO2 is found in the lowest salinity waters (<10),
with Corresponding CO2 fluxes 20->250mol m-2 y-1.

(in Bianchi 2007)
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Table 5.4 Average pCO, ranges for various U.S. and European estuaries.

Estuary Number of transects Average pCO, range (ppmv)
Altamaha (USA)? 1 3807800
Scheld (Belgium/ The Netherlands)? 10 496-6653
Sada (Portugal)® 1 575-5700
Satilla (USA)2 2 420-5475
Thames (UK)P 2 485-4900
Ems (Germany/ The Netherlands)P 1 560-3755
Gironde (France)® 5 499-3536
Douro (Portugal)b 1 1330-2200
York (USA)® 12 352-1896
Tamar (UK)P 2 390-1825
Hudson (NY, USA)4 6 517-1795
Rhine (The Netherlands)® 3 563-1763
Rappahannock (USA)° 9 474-1613
James (USA)® 10 284-1361
Elbe (Germany)? 1 580-1100
Columbia (USA)® 1 590-950
Potomac (USA)° 12 646-878

Average 531-3129




An Example of Seasonal Effects
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FiG. 41.8. Phosphate (molybdate-reactive) as a function of salinity ia the Hudson Estuary (after

Simpson et al., 1975). Results for high-flow and low-flow conditions are illustrated.




Lable 1.3. Factors which impose temporal variability on the composition of water at a fixed geographical position in an estuary

—

Form of variability

Frequency

Process

Cyclic fluctuations about average conditions
1. Small scale random fluctuations about
mean level or trend

2. Variability around mean level or
trend

3. Regular interruptions to mean level
or trend

4. Regularly cyclic

5. Regularly cyclic

Intermittent fluctuations
1. Irregular interruptions to mean level
or trend

2. Intermittent significant change in
water characteristics

3. Permanent discontinuity in water
characteristics

Trend
1. Persistent year to year trend

< Seconds to minutes

Minutes to hours

Often tidal

Usually 124 hours, with spring/neap
variations in amplitude

Annual

Often annual, i.e. more probable at certain
times of year

Turbulent eddy structure of water in
mixing regime

Eddying; incompletely mixed inputs;
temporary isolation of water, e.g. in bays
or over mud flats

Intermittent discharge
Tidal advection

Biological and/or climatic cycles

Irregular discharge

Climatic effects, e.g. exceptionally high or
low fresh water run-off; storm surges;
biological instability (plankton blooms)

Change in exploitation, e.g. new discharge.
Natural phenomenon, e.g. morphological
adjustment to estuarine bed form,
rechannelling

Change in exploitation, e.g. continuous
increase or decrease in discharge. Natural
estuarine evolution, e.g. continuing
siltation




The Mid-estuary Turbidity Maximum
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Fig. 115. Example of the non-conservative behaviour of suspended matter in estuaries and the forma-
tion of a turbidity maximum at the fresh-sea water interface (Meade, 1972)




A Mid-estuary Trap for
Riverborne Material
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Particle Distribution vs. Estuary Type
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Fig. 113. Schematic presenta-
tion of types of estuaries. The
dots indicate sediment con-
centration and the arrows the
net water movements over ebb
and flood. (Postma, 1980).
0-35 are %o Salinity (S) iso-
lines. For explanation see the
text
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Effects Of The Mid-estuary Particle
Maximum

Scavenging of surface-active materials

« 70-100% of riverine Fe is removed (most at low salinity)
* 60-80% of humic acids are removed

* 5% of total DOM is removed

Increased turbidity
 Lower primary production

 Reduction of photochemical reaction rates

Enhanced transport rates downstream / offshore

e Enhanced sedimentation rates downstream / offshore



Estuarine Plumes on the Continental Shelf

cacique.uprm.edu/gers/anasco_plume.jpg



Estuarine Plumes on the Continental Shelf

gulfsci.usgs.gov/.../ofrshelf/images/seawifs.jpg




Estuarine Plumes on the Continental Shelf
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Surface Runoff

MANY POINTS OF ENTRY

Pollutants that are harmiul o Hawai'i's reefs can enter the ocean in
many ways, Including through storm drains and streams. Sediment
runoff is a particular problem in some coastal areas, such as along
East Honolulu's Maunalua Bay. The poliutants flush into Maunalua
via nine major streams that have been altered to speed storm
runoff and through dozens of neighborhood drainage systems
that eventually empty into the streams or the bay. Other areas
with similar sedimentation problems face the same challenge as
East Honolulu: How to reduce the amount of dirt and other
poliutants washing into the ocean.
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An Estuarine Summary
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Figure 8.13 Conceptual model of the chemical and biological structure in estuaries. As the
suspended load setdes from the entering river waters and nutrients are made available,
phvtoplankton production increases, fueling an increase in zooplankton production _and

higher trophic levels. From Fisher et al. (1988).




