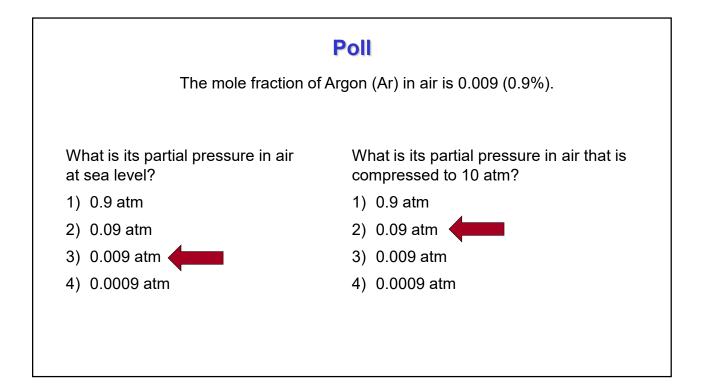


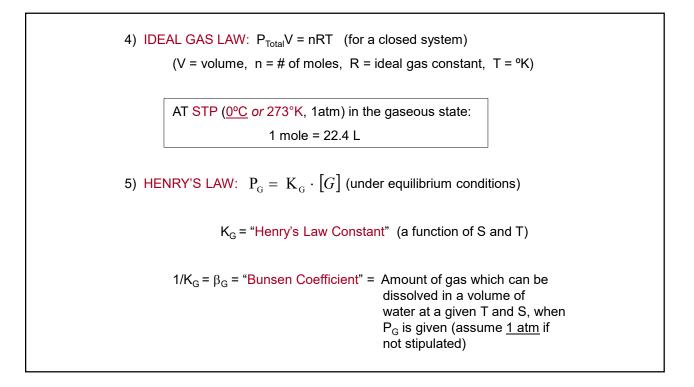
Outline

- 1. Fundamental gas laws
- 2. Gas solubility
- 3. Normal atmospheric equilibrium concentration (NAEC)
- 4. Oceanic applications

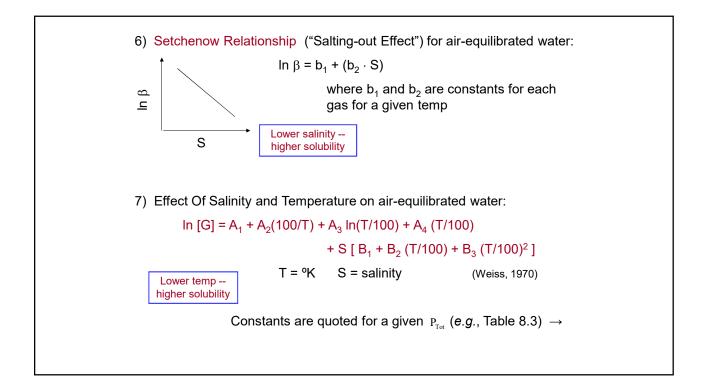
Fundamental Gas Laws

1) In water: [G] = gas concentration of gas "G" in a solution (μ mol/L, mL/L)

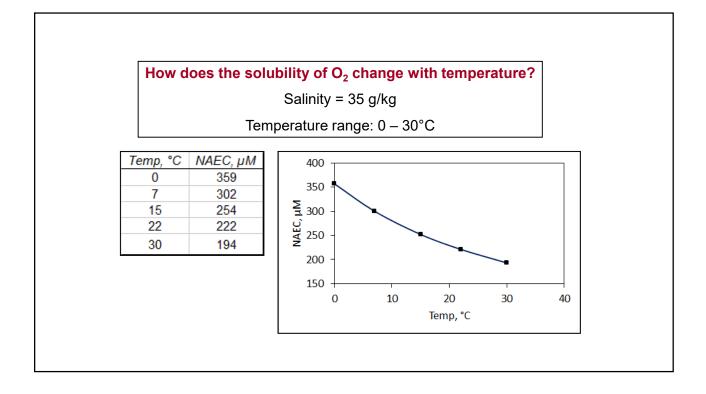

2) In gas mixture: $P_{Total} = P_{N_2} + P_{O_2} + P_{Ar} + P_{H_2O} + \dots$ (Dalton's Law)


 P_{G} = partial pressure (<u>atm</u> or <u>kPa</u>) of gas "G"


3) In gas mixture: $P_{G} = P_{Total}$ (mole fraction of "G" in a gas mixture)

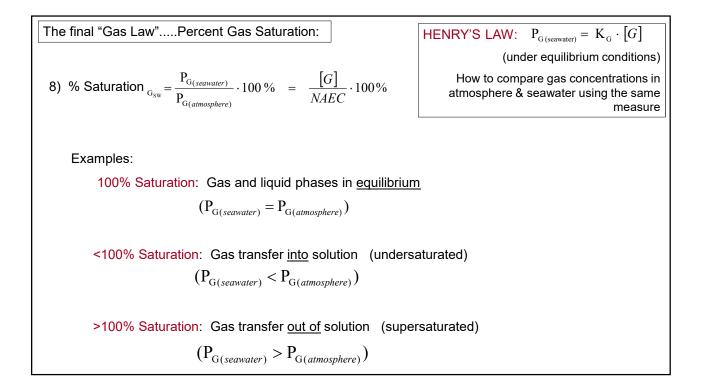

In the atmosphere (at 1atm TOTAL pressure and 100% relative humidity):

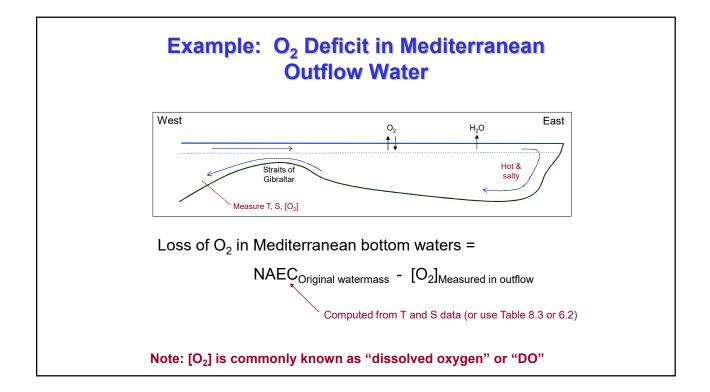
 $\begin{array}{ll} P_{N_2} = 0.78 \mbox{ atm } & P_{CO_2} = 0.00038 \mbox{ atm } \\ P_{O_2} = 0.21 \mbox{ atm } & P_{CH_4} = 0.0000014 \mbox{ atm } \end{array}$



			² ¹ ₃ m(1 / 10	$(1) + A_4(1)$	$100) + S(B_1)$	$+B_2(T/100)$	$+B_{3}(T/10)$)0)"]	
		where: T = A	bsolute tem	perature (°K), S = Salinit	y (g/kg)		. ,	
Solu	TABLE 8.3 Solubility of gases in sea water with the constants for equation (8.11) to yield c_{G}^{*} in µmol kg^{-1} (values in parentheses yield cm ³ l^{-1}) relative to air at 760 mm Hg total pressure at 100% relative humidity.								
Gas	Source of experimental data	A ₁	A ₂	A ₃	A4	B ₁	B ₂	B ₃	
N ₂	Douglas (1964, 1965) Murray et al. (1969)	- 173·2221 (-172·4965)	254·6078 (248·4262)	146·3611 (143·0738)	- 22·0933 (-21·7120)	-0.054052 (-0.049781)	0-027266 (0-025018)	-0.0038430 (-0.0034861	
0,	Carpenter (1966) Murray and Riley (1969)	- 173-9894 (-173-4292)	255·5907 (249·6339)	146·4813 (143·3483)	- 22·2040 (-21·8492)	-0.037362 - (-0.033096)	0·016504 (0·014259)	-0.0020564 (-0.0017000	
Ar	Douglas (1964, 1965) Weiss (1971a)	- 174·3732 (- 173·5146)	251-8139 (245-4510)	145·2337 (141·8222)	- 22·2046 (-21·8020)	-0.038729 (-0.034474)	0·017171 (0·014934)	-0.0021281 (0.0017729	
Ne	Weiss (1971b)	- 166·8040 (- 160·2630)	225·1946 (211·0969)	140-8863 (132-1657)	-22.6290 (-21.3165)	-0.127113 (-0.122883)	0-079277 (0-077055)	-0.0129095 (-0.0125568	
He	Weiss (1971b)	- 163.4207	216-3442	139-2032	- 22.6202	-0.44781	0-023541	-0.0034266	

Seawater Gas Concentrations in Equilibrium With the Atmosphere


T('C)	0	5	10	15	20	25	30
		Saturatio	n Water V	apor Press	wre $\left(\frac{P_{H_2O}}{P_1}\right)$	×100)	
	0.6%	0.8%	1.2%	1.6%	2.3%	3.1%	4.1%
			Concentra	ations in m	mol/m ^a		
N ₂	635.7	565.6	508.3	460.7	420.4	385.7	355.1
02	355.6	313.2	278.7	250.0	225.9	205.1	186.9
COg	23.37	19.26	16.09	13.6	11.61	10.00	8.66
Ar	17.01	14.98	13.33	11.96	10.81	9.81	8.93
			Concentra	ations in μ	mol/m ³		
N-O	14.84	12.16	10.09	8.46	7.16	6.10	5.23
Ne	8.45	8.03	7.66	7.33	7.04	6.79	6.56
Kr	4.31	3.68	3.18	2.78	2.44	2.16	1.93
CH.	3.44	3.00	2.64	2.35	2.12	1.92	1.76
He	1.81	1.76	1.73	1.68	1.67	1,62	1.62



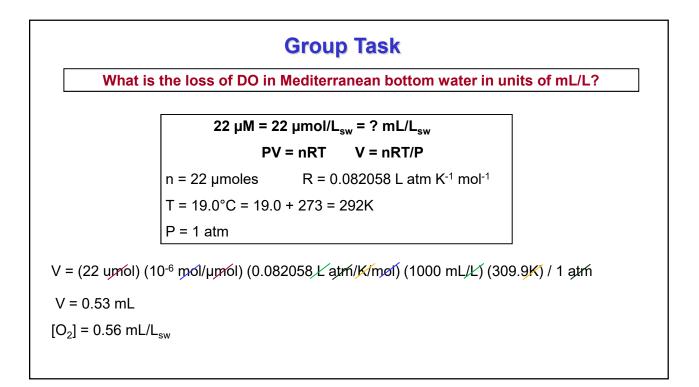
1	$n[G] = A_1$	$+A_2(100/T)+A_3\ln(100/T)$	(T/100) + 2	$4_{4}(T/100)$	$+S(B_1+B_2)$	T/10	$(D) + B_2(T/10)$	$(00)^2$
L		2 7 3	· /	• • • •	(1 2)		/ 51	, ,
xygen o	lata (Weiss	, 1970):						
A1 =	-173.4292	B1 =	-0.033096		Temp (C) =	15.0	Temp (K) =	288.15
	249.6339		0.014259		Sal (g/kg) =			
A3 =	143.3483	B3 =	-0.001700		10 07			
A4 =	-21.8492							
In [O ₂] =	1.7384							
[O ₂] =	5.6882	mL O ₂ / L H ₂ O	← "Bunsen	coefficient"				
	253.94	µM (solution conc.	in equil. w/	moist air @	1 atm and giv	ven te	mp)	

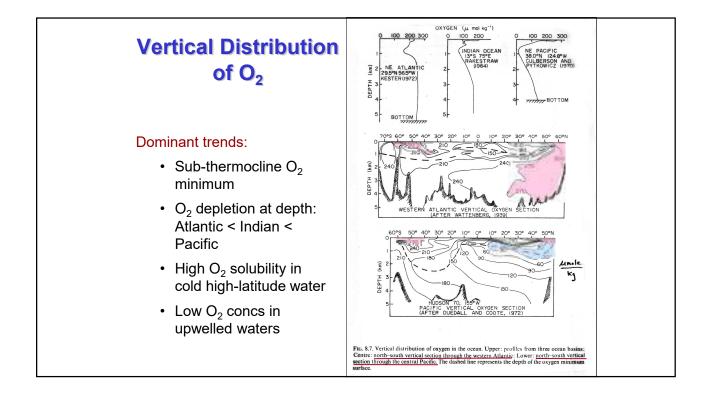
and converts the result to μ mol/L (μ M)

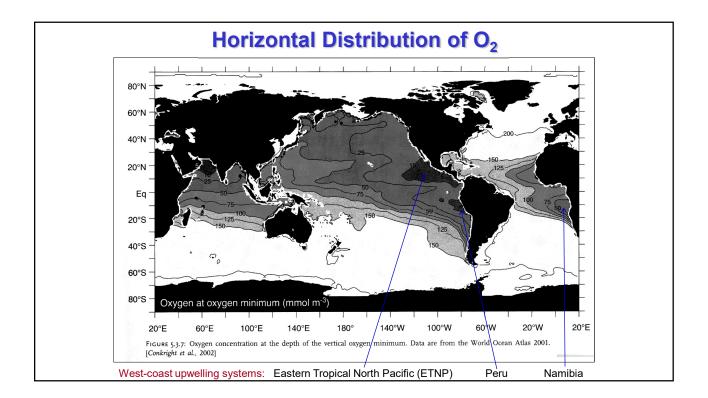
You should create a similar spreadsheet for the homework assignment

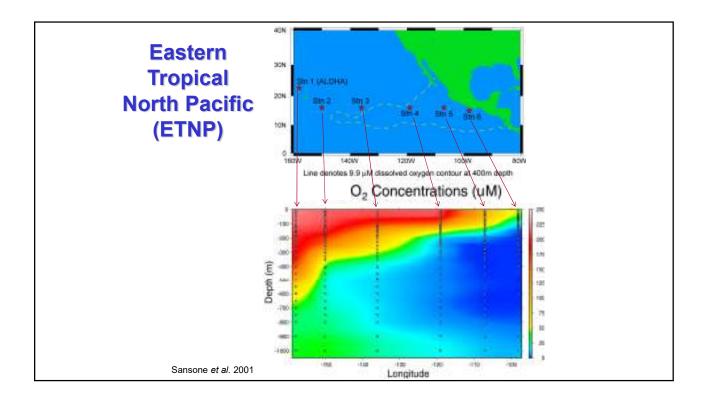
Group Task

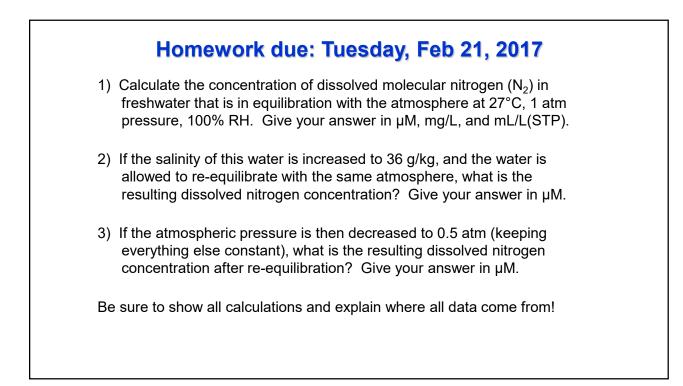
What is the loss of DO in Mediterranean bottom water if the outflow water has the following characteristics?


Salinity = 36.9 g/kg


Temperature = 19.0°C


[O₂] = 210 µM


NAEC = 232 µM


Thus, loss of DO = $232 - 210 = 22 \ \mu M$

Carbon Dioxide, Alkalinity and pH

OCN 623 – Chemical Oceanography

21 February 2017

Reading: Libes, Chapter 15, pp. 383 – 389 (top of page)

(Remainder of chapter will be used with the classes "Global Carbon Dioxide" and "Biogenic production, carbonate saturation and sediment distributions")

© 2017 Frank Sansone