Chemical composition of seawater; Salinity and the major constituents

OCN 623 – Chemical Oceanography

Concentration units for aqueous solutions, gases, and solids

Molar units

1. Molarity = moles per litre of solution = M

Commonly used terms include:

mM = millimolar = millimoles per litre = 10⁻³ moles per litre

- μ M = micromolar = micromoles per litre = 10⁻⁶ moles per litre
- nM = nanomolar = nanomoles per litre = 10⁻⁹ moles per litre
- $pM = picomolar = picomoles per litre = 10^{-12} moles per litre$
- fM = femtomolar = femtomoles per litre = 10⁻¹⁵ moles per litre

 $aM = attomolar = attomoles per litre = 10^{-18}$ moles per litre gM?

2. Molality = moles per kilogram of solvent = m

• No longer in common use except in some computer programs that calculate distribution of chemical species

6. Mole fraction (used for mixtures of gases and for solid solutions) = n1/n1+n2+n3....

Mass concentration units

- 1. wt.% = "weight percent" (actually, mass percent)
 - = g per 100 g
 - · Used for solids

2. ‰ = parts per thousand

- = g/kg for liquids and solids
- = mL/L for gas mixtures

3. Per mil = parts per thousand

- Term is analogous to "per cent"
- Is used extensively for isotopic analyses specifies the deviation from an isotopic standard reference material (SRM)

Chemical composition of seawater Major ions in seawater of salinity 35				
Symbol	Name	% of total	mmoles	gms /kg
Cl ⁻ Na ⁺ Mg ²⁺ SO ₄ ²⁻ Ca ²⁺ K ⁺ Total	Chloride Sodium Magnesium Sulphate Calcium Potassium	55.29 30.74 3.69 7.75 1.18 1.14 99.8	546 469 53 28 10.3 10.2	19.3 10.76 1.292 2.712 0.412 0.399

CONSTANCY OF MAJOR ELEMENT RATIOS				
1776 - Lavoisier - Analyzed English Channel deep seawater - First seawater analysis				
1819 - Marcet - "Specimens of seawater contain the same ingredients all over the worldthese (ingredients) bear nearly the same proportion to each other(the samples) differ only as to the total amount of their saline content."				
1884 - Dittmar - Analysed 77 samples from the HMS <i>Challenger</i> (1872-76) - Confirmed Marcet's finding, except Ca/Cl was lower in surface seawater as compared to deep seawater (i.e., nonconservative)				

Salinity

- · Salinity is the amount of dissolved solids in seawater
- •Used for determining the density of seawater
- •Affects the freezing point of seawater
- •Affects the temperature of maximum density of seawater
- •Changes in salinity drive thermohaline circulation
- •Temperature and salinity characteristics fingerprint origin of water masses
- •Accuracy of determination needed is a function of the problem being addressed, e.g. estuaries vs deep ocean

- · Absolute Salinity would:
 - end the ongoing debate in the oceanographic literature about the use of "psu" or "pss"
 - make research papers more readable to the outside scientific community
 - · be consistent with SI
- A Reference Composition consisting of the major components of Atlantic surface seawater is being determined using existing analytical measurements
- A new Reference-Composition Salinity S_R is defined to provide the best available estimate of the Absolute Salinity
- The value of S_R can be related to Practical Salinity S by

$$S_{R} = (35.165\ 04\ /\ 35)\ g\ kg^{-1} \times S$$

 An algorithm will account for the variation of seawater composition from the standard composition – using either measured parameters (*e.g.*, total alkalinity, silicate and nitrate) or simply the spatial location (longitude, latitude and pressure)

