

The oceans carbon cycle

- The main components:
 - DIC, DOC, PC (includes POC and PIC)
- Primary processes driving the ocean carbon cycle:
 - abiotic: solubility, ventilation, transport;
 - biotic: photosynthesis, respiration, calcification

Pools of Carbon in the Sea

- DIC in the oceans \sim 37500 x 10^{15} g C
 - H₂CO₃-carbonic acid
 - HCO3-bicarbonate
 - CO₃²-carbonate
- DOC ~700 x 10¹⁵ gC
- POC (living and detrital organic particles)-22 x 10^{15} g C
- PIC (CaCO₃)- <1 x 10¹⁵ g C
- ullet Because of its solubility and chemical reactivity, CO $_2$ is taken up by the oceans more readily than other atmospheric gases.
- $^{\bullet}$ Over the long term (1000s of years) the oceans will consume ~90% of anthropogenic CO $_2$ emissions.

Increasing oceanic DIC has two important implications

- H₂O + CO_{2(g)}
 H₂CO₃
 HCO₃⁻ H₂CO₃ H⁺ + HCO₃-H⁺ + CO₃²⁻ \Leftrightarrow

 - Increased H₂CO₃ (lowers pH)
 Decreased CO₃²⁻ (increases solubility of CaCO₃)

