The oceans carbon cycle - The main components: - DIC, DOC, PC (includes POC and PIC) - Primary processes driving the ocean carbon cycle: - abiotic: solubility, ventilation, transport; - biotic: photosynthesis, respiration, calcification ## Pools of Carbon in the Sea - DIC in the oceans \sim 37500 x 10^{15} g C - H₂CO₃-carbonic acid - HCO3-bicarbonate - CO₃²-carbonate - DOC ~700 x 10¹⁵ gC - POC (living and detrital organic particles)-22 x 10^{15} g C - PIC (CaCO₃)- <1 x 10¹⁵ g C - ullet Because of its solubility and chemical reactivity, CO $_2$ is taken up by the oceans more readily than other atmospheric gases. - $^{\bullet}$ Over the long term (1000s of years) the oceans will consume ~90% of anthropogenic CO $_2$ emissions. ## Increasing oceanic DIC has two important implications - H₂O + CO_{2(g)} H₂CO₃ HCO₃⁻ H₂CO₃ H⁺ + HCO₃-H⁺ + CO₃²⁻ \Leftrightarrow - Increased H₂CO₃ (lowers pH) Decreased CO₃²⁻ (increases solubility of CaCO₃)