

Why do we care about biomass?

- Information on biologically stored energy
- Quantify the amount of carbon held in marine biota (carbon budgeting purposes)
- Identify how much "material" is available to at each step of the food chain.

In a "typical" liter of seawater... • Fish None Zooplankton • Diatoms 1,000 • Dinoflagellates 10,000 Nanoflagellates 1,000,000 Cyanobacteria 100,000,000 **Prokaryotes** 1,000,000,000 Viruses 10,000,000,000

- "Typical" concentrations of inorganic nutrients in the open sea:
 - Subtropical North Pacific:
 - Nitrate+nitrite 1-10 nM (0.001-0.01 μ M)
 - Phosphate 10-40 nM (0.01-0.04 μM)
- "Typical" concentrations of inorganic nutrients in soils:
 - Nitrate+Nitrite 5-100 μM
 - Phosphate 5-30 μM

How do we measure plankton biomass?

- Count and measure individuals and calculate carbon
- Weigh (either dry or wet) cells and calculate biomass
- Estimate living carbon using some biomolecule proxy (DNA, ATP, chlorophyll)

Particulate carbon

- Technique: combust (oxidize) organic material and measure resulting CO₂.
- Need to concentrate cells: typically glass filters (usually ~0.7 μm pore size) or tangential flow (Fukuda et al. 1998)
- Measurements include living cells and detritus.

Zooplankton

- Small zooplankton are usually enumerated by microscopy and converted to cell carbon
- Larger zooplankton can be weighed for approximation of carbon.

Primary consumers (herbivores)

Secondary consumers (carnivores)

Light harvesting photosynthetic pigments

- Chlorophylls
- Carotenoids
- Biliproteins
- Recently discovered photoreceptor proteins (Proteorhodopsin and Bacteriorhodopsin) serve as proton pumps, but do not appear to harvest energy for oxygenic photosynthesis.

Chlorophyta (green algae)

- Chlorophytes
 - Contain Chl b
 - Uncommon in open ocean; mostly freshwater.
 - Very diverse (more than 7000 species described)
 - Can be single cells or colonies, coccoid or flagellated
 - Chlorella, Chlamydomonas, Dunaliella
- Prasinophytes
 - Contain Chl b
 - Predominately unicellular
 - Relatively common, but not abundant in
 - Can be single cells or colonies, coccoid, biflagellated, or quadri-flagellated

Chromophyta (brown algae)

- Pelagophytes
- Contain Chl c
- Very common in open ocean.
- . Coccoid or monoflagellated

- Chrysophytes Contain Chl c
 - Relatively rare in open ocean
- Mostly bi-flagellated (flagella of unequal length)

- Cryptophytes Contain Chl c
 - Contain carotenoid alloxanthin
 - Contain phycoerythrin or
 - phycocyanin Flagellated unicells

Images from: http://planktonnet.sb-roscoff.fr/index.php#search

Chromophyta (brown algae)-Cont.

Prymnesiophytes

- Mainly biflagellates Very common in open ocean
- 2-5 μm
- Some species form CaCO₃ plates (coccoliths)

Bacillariophytes - Ubiquitous

- All contain Chl c and carotenoid fucoxanthin
 - Rigid silica-impregnated cell wall Many form colonies
- 2 prominent cell morphologies: centric and pennate

Dinophytes

- Possess the carotenoid peridinin
- Widely distributed (estuaries, open ocean)
- Mostly unicellular and autotrophic, but colorless heterotrophs can also be abundant
- 2 flagella
- Many are bioluminescent and some case toxic red tides blooms

In the ocean gyres, chlorophyll concentrations are low in the surface water, greater at depth (80-150 m). In contrast, most of the production (=synthesis of biomass) occurs in the well-lit upper ocean.