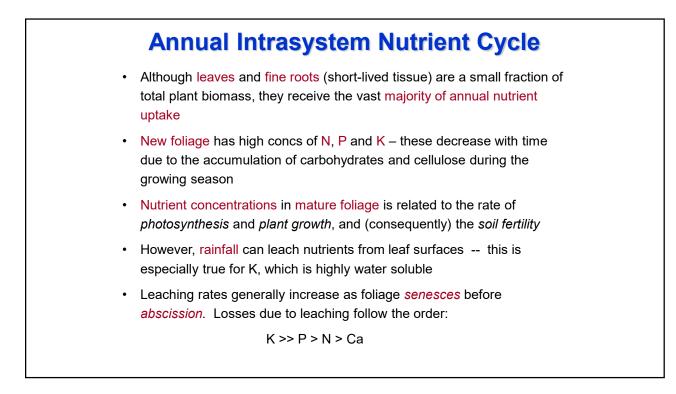
Nutrient Cycling in Land Vegetation and Soils


OCN 401 - Biogeochemical Systems 14 September 2017

Reading: Schlesinger & Bernhardt, Chapter 6

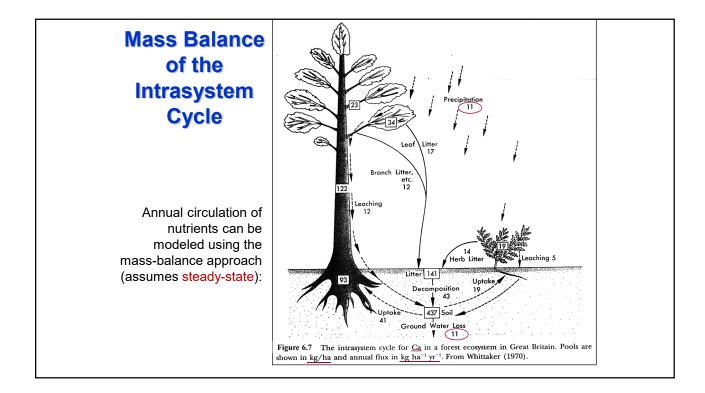
© 2017 Frank Sansone

Outline

- 1. The annual Intrasystem Nutrient Cycle
- 2. Mass balance of the Intrasystem Nutrient Cycle
- 3. Nutrient-use efficiency
- 4. Microbial cycling in soils
- 5. Organic matter in soils

•	<i>Throughfall</i> - Rainfall that passes through a vegetation canopy Stemflow - Water that travels down the surface of stems and the trunk
	 Stemflow, although generally smaller than throughfall, is significant because it returns highly concentrated nutrient solutions to the soil at the base of the plant
	At the end of the growing season, nutrients are withdrawn (<i>reabsorbed</i>) from the leaves for reuse during the next year this is typically around 50% of the leaf N and P content
	<i>Litterfall</i> - Dead plant material (<i>e.g.</i> , leaves, bark, needles, twigs) that has fallen to the ground • Dominant pathway for nutrient return to the soil, especially for N and P

C/N ratio of plant litterfall:


- Varies by a factor of ~4 across environments
- · Inversely related to the nutrient availability of the site

Low-nutrient environments:

- · Plants tend to have low nutrient concs in mature leaves
- Generally reabsorb a larger *proportion* of nutrients in senescent leaves (compared to nutrient-rich environments)
- High nutrient-use efficiency

Nutrient-rich environments:

- Associated with high productivity and abundant nutrient circulation (next slide)
- Low nutrient-use efficiency

A plant's annual nutrient *requirement* is equal to the peak nutrient content in *newly* produced tissue during the growing season:

by Various Sources	of Available	e Nutren	.5			
Process	N	Р	K	Ca	Mg	
Growth requirement (Kg ha ⁻¹ yr ⁻¹)	115.4	12.3	66.9	62.2	9.5	
Percentage of the requirement that could						
be supplied by:						
Intersystem inputs						
Atmospheric	18	0	1	4	6	These add to
Rock weathering	0	13	11	34	37	>100% becaus
Intrasystem transfers					×	
Reabsorptions	31	28	4	0	2	they are poten
Detritus turnover (includes return in	69	67	87	85	87	rates
throughfall and stemflow)						

What about Annual Budgets if you can't make the Steady-State Assumption?

• Nutrient uptake from soil cannot be measured directly

• But uptake must equal the <u>increase</u> in nutrients in perennial tissue (*e.g.*, stem wood) plus the <u>loss</u> of nutrient due to <u>litterfall</u> and <u>leaching</u>:

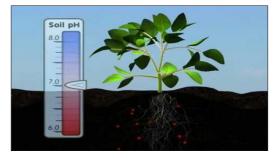
Uptake = Retained by plant + Returned to soil

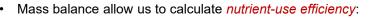
• A plant's annual nutrient *requirement* is equal to uptake plus the amount reabsorbed during the previous autumn:

Requirement = Uptake + Reabsorption

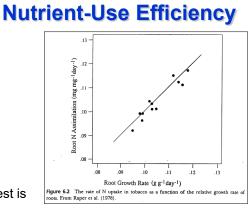
Example: California shrubland system -

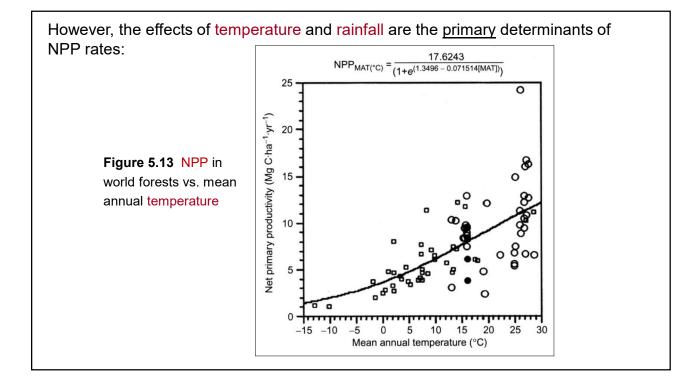
Example: California	Table 6.4 Nutrient Cycling in a 22-yr megacarpus near Sa				al Shrul	o Ceanol	thus
-		Biomass	Ν	Р	к	Ca	Mg
shrubland system:	Atmospheric input (g m ⁻² yr ⁻¹) Deposition		0.15		0.06	0.19	0.10
	N-fixation Total input		0.11 0.26		0.06	0.19	0.10
	Compartment pools (g/m ²)						
	Foliage Live wood	553	8.20	0.38	2.07	4.50	0.98
	Reproductive tissues	5929 81	32.60 0.92	2.43 0.08	13.93 0.47	28.99 0.32	3.20 0.06
	Total live	6563	41.72	2.89	16.47	33.81	4.24
	Dead wood	1142	6.28	0.46	2.68	5.58	0.61
	Surface litter	2027	20.5	0.6	4.7	26.1	6.7
	Annual flux (g m ⁻² yr ⁻¹)						
	Requirement for production						
	Foliage	553	9.35	0.48	2.81	4.89	1.04
	New twigs Wood increment	120 302	$1.18 \\ 1.66$	0.06	0.62 0.71	$0.71 \\ 1.47$	0.11 0.16
	Reproductive tissues	81	0.92	0.12	0.47	0.32	0.16
		1056	13.11	0.74	4.61	7.39	1.38
	Reabsorption before abscission		4.15	0.29	0	0	0
	Return to soil						
	Litter fall	727	6.65	0.32	2.10	8.01	1.41
Uptake = Retained + Returned	Branch mortality Throughfall	74	0.22	0.01	0.15	0.44	0.02
	Stemflow		0.19 0.24	0 0	0.94 0.87	0.31 0.78	0.09 0.25
	Total return	801	7.30	0.33	4.06	0.78 9.54	0.25
	Uptake (=increment + return)		8.96	0.45		11.01	1.93
	Streamwater loss (g m ⁻² yr ⁻¹)		0.03	0.01	0.06	0.09	0.06
	Comparisons of turnover and flux						
	Foliage requirement/total requirement (%)		71.3	64.9	61.0	66.2	75.4
	Litter fall/total return (%)		91.1	97.0	51.7	84.0	79.7
Requirement = Uptake + Reabsorption	Uptake/total live pool (%)			15.6	29.0	32.6	45.5
	Return/uptake (%) Reabsorption/requirement (%)			73.3			91.7
	Surface litter/litter fall (yr)	2.8	31.7 3.1	39.0	0	0	0
	Surface Inter/Inter Ian (yr)	2.6	3.1	1.9	1.2	3.3	4.8

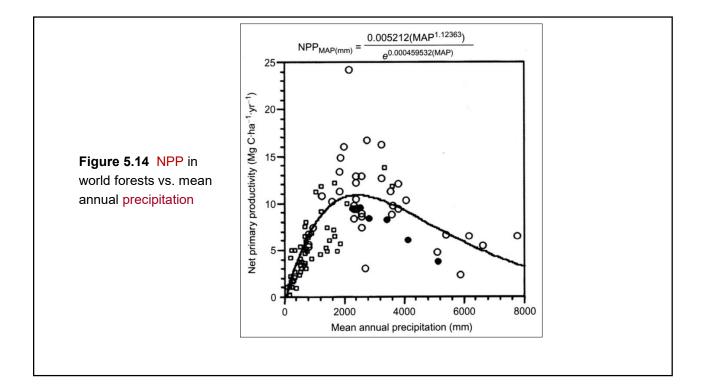

	Table 6.4 Nutrient Cycling in a 22 megacarpus near				ral Shru	b Ceano	thus
		Biomass	N	Р	К	Ca	Mg
71% of annual N requirement is	Atmospheric input (g m ⁻² yr ⁻¹) Deposition N-fixation		0.15		0.06	0.19	0.10
	Total input		0.26		0.06	0.19	0.10
allocated to foliage, whereas	Compartment pools (g/m ²)		0.00	0.00	0.05		
much less is allocated to stem	Foliage Live wood	553 5929	8.20 32.60	0.38 2.43	2.07 13.93	4.50 28.99	0.98 3.20
wood (the remainder).	Reproductive tissues	81	0.92	0.08	0.47	0.32	0.06
	Total live	6563	41.72	2.89	16.47	33.81	4.24
Nevertheless, total nutrient	Bead wood	1142	6.28	0.46	2.68	5.58	0.61
storage in short-lived tissue is	Annual flux (g m ⁻² yr ⁻¹)	2027	20.5	0.6	4.7	26.1	6.7
°	Requirement for production						
small compared to storage in	Foliage	553	9.35	0.48	2.81	4.89	1.04
wood (the latter reflects 22 years	New twigs	120	1.18	0.06	0.62	0.71	0.11
	Wood increment Reproductive vissues	302 81	1.66 0.92	0.12 0.08	$0.71 \\ 0.47$	$1.47 \\ 0.32$	0.16
of accumulation).	Total in production	1056	13.11	0.08	4.61	7.39	0.07 1.38
	Reabsorption before abscission		4.15	0.29	0	0	0
For most nutrients, the storage in	Return to soil						
	Litter fall	727	6.65	0.32	2.10	8.01	1.41
wood increases ~5% / year	Branch mortality Throughfall	74	0.22 0.19	0.01	0.15 0.94	0.44 0.31	0.02 0.09
	Stemflow		0.19	0	0.94	0.51	0.09
 Despite substantial reabsorption 	Total return	801	7.30	0.33	4.06		1.77
	Uptake (=increment + return)	<u> </u>	8.96	0.45		11.01	1.93
of N and P, litterfall is the	Streamwater loss (g m ⁻² yr ⁻¹)		0.03	0.01	0.06	0.09	0.06
dominant pathway of reusing	Comparisons of turnover and flux Foliage requirement/total requirement (%)	t	71.3	64.9	61.0	66.2	75.4
nutrients	(%) Litter fall/total return (%)		91.1	97.0	51.7	84.0	79.7
	Uptake/total live pool (%)		91.1 21.4	97.0 15.6	29.0	84.0 32.6	79.7 45.5
	Return/uptake (%)		81.4	73.3	85.1	86.6	45.5 91.7
 Note: Table does not accurately 	Reabsorption/requirement (%)		31.7	39.0	0	0	0
reflect belowground transfers!	Surface litter/litter fall (yr)	2.8	3.1	1.9	1.2	3.3	4.8
	^a Modified from Gray (1983) and Schle	esinger et al.	. (1982).				

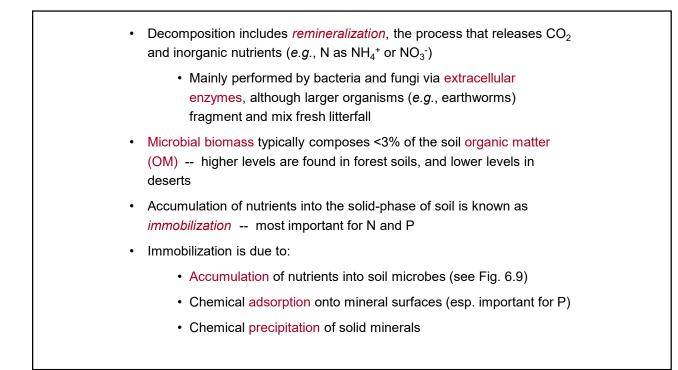

- Nutrients tend to accumulate most rapidly during the early development of a woody plant (due to the greater percentage of leaf biomass), then slow to a steady state value
- Thus C/N and C/P ratios for the whole-plant biomass increase with time as the vegetation becomes increasingly dominated by structural biomass

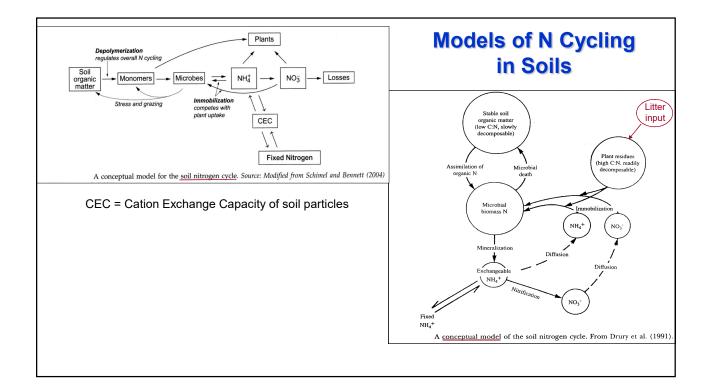
And now for a short commercial announcement....


Plant Nutrition: Mineral Absorption

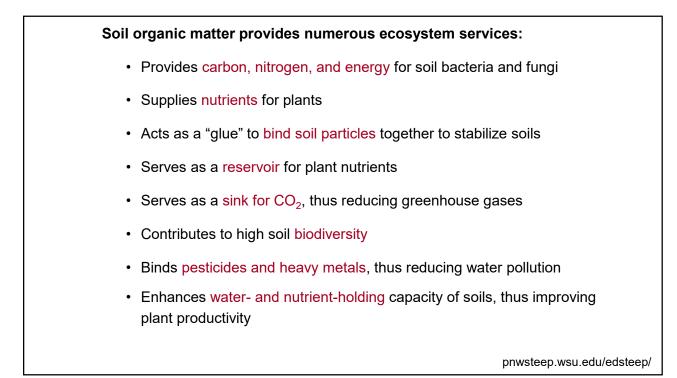

https://www.youtube.com/watch?v=6aC-WTAWgOg




- NUE = NPP / nutrient uptake
- Nutrient-use efficiency reflects factors such as:
 - Rate of photosyn per leaf nutrient supply rate
 - Uptake per root growth rate (Fig. 6.2)
 - · Leaching rate
 - Reabsorption rate
- In temperate systems, nutrient-use efficiency in <u>coniferous</u> forest is greater than in <u>deciduous</u> forests -- due to conifers having:
 - Lower nutrient circulation (mostly due to lower leaf turnover)
 - Lower leaching losses
 - · Greater photosynthesis per unit of leaf N
- May explain the dominance of conifers in low-nutrient environments and in boreal climates (where soil nutrient turnover is low)



Most of the land plant nutrients come from	n decompo	osition of	dead ma	iterial in t	he so
Table 6.1Percentage of the Annual RNorthern Hardwoods Forest at Hubbard Brby Various Sources	ook, New H	lampshire	e, That Co		
Process	N	Р	К	Ca	Mg
Growth requirement (Kg ha ⁻¹ yr ⁻¹)	115.4	12.3	66.9	62.2	9.
Percentage of the requirement that could be supplied by: Intersystem inputs					
Atmospheric	18	0	1	4	6
Rock weathering	0	13	11	34	37
Intrasystem transfers					
Reabsorptions	31	28	4	0	2
Detritus turnover (includes return in throughfall and stemflow)	69	67	87	85	87



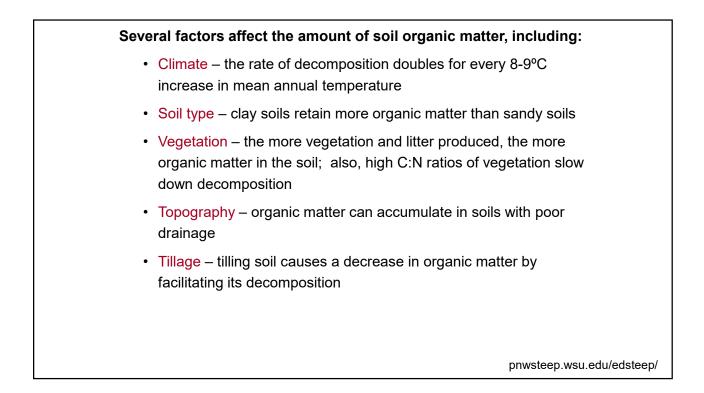

Ratio	s of Nutries sylvestris) a					Scots Pine	(Pinus
	C/N	C/P	C/K	C/S	C/Ca	C/Mg	C/Mn
		N	eedle litte	r			
Initial	134	2630	705	1210	79	1350	330
After incubation of:							
1 yr	85	1330	735	864	101	1870	576
2 yr	66	912	867	ND	107	2360	800
3 yr	53	948	1970	ND	132	1710	1110
4 yr	46	869	1360	496	104	704	988
5 yr	41	656	591	497	231	1600	1120
		Fun	gal bioma	ISS			
Scots pine forest	12	64	41	ND	ND	ND	ND
" Some values for which indicates retent which indicates that Berg (1982).	tion of thes	e nutrient	s as C is los	st, whereas	s C/Ca and	C/K ratios	increase,

Table 6.8 Mean H	Residence Time (yr) Litter of Forest a				nts in the S	Surface	
		Mean r	esidence ti	me (yr)			
Region	Organic matter	N	Р	K	Ca	Mg	Turnove
Boreal forest	353	230	324	94	149	455	Slow
Temperate forest							
Coniferous	17	17.9	15.3	2.2	5.9	12.9	
Deciduous _	4	5.5	5.8	1.3	3.0	3.4	
Mediterranean	3.8	4.2	3.6	1.4	5.0	2.8	_*.
Tropical rainforest	0.4	2.0	1.6	0.7	1.5	1.1	Fast
^e Values are <u>calcul</u> and temperate values Grubb (1982) and F Schlesinger (1981).		Rapp (1981), and Me), tropical	values are	from Edw	ards and	

Organic Matter in Soils In most ecosystems, the pool of soil organic matter greatly exceeds the mass of live biomass Typically, less than 5% of soils is composed of organic matter -- the organic matter content of some agricultural soil is <1% *Humus*: Soil organic matter which has reached a point of stability Because of its high nutrient content, the humus fraction dominates the storage of biogeochemically elements in most systems

