The "Tree of Life" Metabolic Pathways Calculation Of Energy Yields OCN 401 - Biogeochemical Systems 8/22/17

Reading: Schlesinger & Bernhardt, Chapters 1 & 2

© 2017 Frank Sansone and Brian Glazer

Outline

- 1. Earth's history and the evolution of life
- 2. The "Tree(s) of Life"
- 3. Metabolic strategies by organisms
- 4. Linkages between reductions and oxidations (redox)
- 5. Calculation of energy yields

Other Possibilities

<u>Interplanetary sources of organic matter</u> - interplanetary dust particles, carbonaceous chondrites (meteorites) - a small amount of material, but may have a major catalytic effect, speeding the rate of abiotic organic matter synthesis

<u>Clay minerals</u> - may have aided in concentrating simple organics, making the assembly of complex organic compounds more favorable

<u>Icy comets crashing into earth's atmosphere</u> - can produce complex organics from simple inorganic compounds (water, ammonia, methanol, carbon dioxide) due to elevated temp and pressure

		0	
Phot	oautotrophs		
	Green plants	Most algae	
	Cyanobacteria	Some purple and	d green bacteria
Litho	autotrophs (Autolithotrophs	5)	
	Methane oxidizing bacteria	a: $CH_4 + O_2 \rightarrow$	CO ₂ + 4H ⁺ + 4e ⁻
	Hydrogen oxidizing bacter	ia Iron oxi	dizing bacteria
	Nitrifying bacteria: NO2	+ $\frac{1}{2}O_2 \rightarrow NO_3^-$	
Phot	oheterotrophs		
	Most purple and green no	n-sulfur bacteria	Some algae
	Some cyanobacteria		
Litho	heterotrophs (Heterolithotro	ophs)	
	Sulfide oxidizing bacteria		
Orga	noheterotrophs		
	Animals Most bacteri	a Fundi	Protozoa

