OCN 401

The Global Phosphorus & Nitrogen Cycles, and Linked C-N-P Cycles

- The Phosphorus Cycle
 - Forms and Reactions
 - Reservoirs, Fluxes and Budgets
- The Nitrogen Cycle
 - Forms and Reactions
 - Reservoirs, Fluxes and Budgets
- Linkages between the Global C-N-P cycles

Basic Phosphorus Facts - 1

Basic Phosphorus Facts - 2

• Apatite:

Ca₁₀(PO₄)₆(OH, F, CI)₂

- Main primary P-bearing crustal mineral

- Hydroxy form makes up bones, teeth

• Weathering by naturally occurring acids derived from microbial activity:

- ✤ acid hydrolysis and/or chelation of Ca²⁺
- congruent dissolution
- Crustal average P concentration: 0.076% (11th most abundant element)
- Biological cycling: Dissolved inorganic P in its simplest form, orthophosphate (PO₄³⁻), is directly taken up by plants, returned to soil as organic P

Basic Phosphorus Facts - 3

- Four components to the Global P cycle:
 - 1. Tectonic uplift and exposure of P-bearing rocks
 - 2. Physical erosion and chemical weathering of rocks
 - 3. Rivers transport dissolved and particulate P to the ocean
 - 4. Burial of mineral and organic P in sediments

Particle Reactive P!

 Low PO₄³⁻ concentration in soil waters:

Small $K_D = ([P]_{solution} / [P]_{solid})$

- P is sorbed efficiently by soil constituents:
 - AI(OH)₃
 - $Fe(OH)_3$
 - other AI- and Fe-oxyhydroxides
- Sorptive P removal impacts bioavailability to plants
- P solubility is controlled by Al at low pH and by Ca at high pH

Figure 4.4 The solubility of phosphorus in the soil solution as a function of pH. Precipitation with Al sets the upper limit on dissolved phosphate at low pH (bold line); precipitation with Ca sets a limit at high pH. Phosphorus is most available at a pH of about 7.0. Modified from Lindsay and Vlek (1977).

The Phosphate - Iron Connection

- Colloidal Fe(III)-oxyhydroxides scavenge P
- Reductive dissolution of Fe(OH)₃ releases P
- Coupled Fe-P cycling oscillates with fluctuating redox state

Figure 4.9 The specific adsorption of phosphate by iron sesquioxides may release OH^- or H_2O to the soil solution. From Binkley (1986).

- Al-oxyhydroxides strongly sorb P, but Al has no redox chemistry
- Clays (aluminosilicates) also sorb P

Plant Strategies to obtain P

- Increase root surface area/volume ratio
- Roots produce chelating compounds to solubilize complexed P; symbiotic fungi produce chelators
- Fungi, microbes produce enzymes / acids in the vicinity of roots that solubilize mineral-P (accelerates weathering)
- Plants reabsorb P before litterfall (recission)
 - P resides exclusively in biomass in infertile soils (laterites, bauxites, e.g., Amazon rain forest)

Systematic Evolution of Soil P Distribution

Hawaiian Islands: A Case Study of the Evolution of Soil Nutrients with Age

- "Experimental Conditions": Same starting material (basalt) Island age range : 0.3 to 4100 kyr
- Youngest islands: N+P limited (no soils), lots of Ca, Mg, K
- Middle-aged soils: lots of N+P, depleted cations due to weathering
- Oldest soils: minimal nutrients from soil: cations and anions from sea salt (Ca²⁺, Mg²⁺, K⁺, NO₃⁻), PO₄³⁻ from windblown dust

Chadwick et al. 1999

Atmospheric P Cycle

- Atmospheric phosphorus reservoir and fluxes are small:
 - No stable gaseous P compounds
 - Exception: Phosphine (PH₃), rare

- Main atmospheric vector:
 - P containing dust
 - Important for P-poor regions:
 - o Amazon
 - o Weathered Hawaiian islands
 - Oceanic gyres

- Oceans play a critical role in the global P cycle: terminal sink
- Sediments provide a paleo-record of continental and oceanic processes.

Global Oceanic P Budget

Sources of P to the ocean:

- 1. Dust
- 2. Rivers and groundwater discharge

Sinks of P from the ocean;

- 1. Burial with Sediments
- 2. Mid-Ocean Ridges

River-Borne Phosphorus

- Riverine P flux >90% associated with particulates
 - 1° mineral: apatite
 - $Fe(OH)_3$ adsorbed P (small K_D ([P]_{solution} / [P]_{solid}))
 - Suspended clays and AI hydroxides adsorb P
 - 20-40% organic P
- P on colloids equilibrates with dissolved phase, provides a constant low level of bioavailable P (the PO₄³⁻ Buffer Mechanism)
 - important in high turbidity rivers: e.g., Amazon, Zaire, Orinoco
- Anthropogenic activities:
 - Fertilizer mining and use has increased river P flux 50% to 3-fold
 - Deforestation leads to increased particulate transport
 - Dams can mitigate increased sediment flux by intercepting and storing
 - Can lead to eutrophication and hypoxia

P Cycling in Aquatic Systems

- Stratification -> depletion of P in surface water
- Burial of organic matter in sediments removes P from water column
- Microbial respiration of buried organic matter within sediments
 - consumes O_2
 - generates remineralized, dissolved P
- Oxic waters at sediment-water interface produce Fe oxide trap
- Anoxic diagenesis can remobilize P through reduction of Fe(III) to Fe²⁺
- Pyrite formation at depth sequesters Fe
 - decouples Fe and P cycles,
 - allows more P to diffuse back into the water column
- Contrast between marine and freshwater systems:
 - Low SO42- in lakes
 - Less FeS₂ formation than in marine sediments
 More extensive coupled P-Fe cycling

P cycling in Estuaries and Coastal Waters

- Estuarine P-<u>removal</u> mechanisms:
 - flocculation of Fe in low-salinity region of estuaries
 - flocculation of humic compounds with associated P
 - biological P-uptake
- Estuarine P-<u>addition</u> mechanisms:
 - remobilization of sorbed P on particles by displacement reactions in high ionic strength mixing zone of estuary
 - anoxic diagenesis in estuarine sediments \longrightarrow benthic return P flux
- 25-45% of riverine particulate P may be mobilized and returned to the water column
- Groundwater seepage important source of P to coastal zone in some places
- Cultural eutrophication in coastal regions
 —> hypoxic zones;
 can be linked to harmful algal blooms

The Marine P Cycle

- Dominated by biological transport
- Remineralization of organic P at depth
- Accumulation in deep waters along advective flow path
- Burial of organic P in sediments occurs mostly in shallow regions
- Expansion of shelf regions during high sea level stands results in more P burial
- Oceanic P residence time varies as a function of sea level

P-sinks: Authigenic-P and Organic-P

- Labile organics break down quickly, refractory organic compounds are preserved
- Fe(ox)-P and other weathered P minerals deposited and buried
- Carbonate fluorapatite forms in sediments
- In *Phosphorite* deposits P₂O₅ content reaches 5-40%
- Contrast with 0.3% in most sediments

Phosphorites Through Time

• Authigenic apatite formation in marine sediments:

Ca₁₀(PO₄)_{6-x}(CO₃)_xF₂

- Large changes in phosphorite accumulation imply large changes in global P cycle
- Causation linked to:
 - oceanic anoxic events?
 - continent configuration?
 - sea floor spreading rates?
- Satisfactory explanation remains elusive

Cook and McElhinny 1979

Distribution of SOM is similar to that of NPP in surface waters, except that a greater fraction of total burial (83%) occurs on the shelf

Figure 14.3 Global distribution of organic carbon (% dw) in surface sediments in five categories of > 2.00, 1.01-2.00, 0.51-1.00, 0.25-0.50, and < 0.25 (after Premuzic et al., 1982). (Reprinted with permission from *Organic Geochemistry*, 4, 1982, Pergamon Journals Ltd.). www.icsu-scope.org/.../ scope35/chapter14.html

Residence time of Phosphorus in the Oceans

- Until 1993, T_r(P) estimated at 100 kyr (Broecker and Peng, 1980)
- Once higher P burial rates in ocean margin sediments recognized: T_r(P) ≈ 10-17 kyr (Ruttenberg 1993)
- Short enough for changes in P reservoirs to be a factor in glacial-interglacial CO₂ cycles
- Links P cycle to the N cycle in the ocean: have similar T_r

Oceanic P-burial and P-Residence Time Fluctuate with Sea Level

1. Sea Level High Stand

2. Sea Level Low Stand

Summary: Global P-cycle

• Four components to the global P cycle

Uplift -> Weathering -> Transport -> Burial with marine sediments

- P biogeochemistry
 - Essential nutrient
 - Particle-reactive (high K_D)
 - Cycles with Fe (impacted by redox state)
- Oceanic P sources and sinks
 - conversion of unavailable to bioavailable forms
 - modification reactions, e.g., authigenic mineral formation
- Revised Oceanic P residence time: Shorter than previously believed

Basic Nitrogen Facts - 1

Global Nitrogen Reservoirs

Reservoir	Speciation	Quantity (g N)
Atmosphere	N ₂ , N ₂ O	3.9 x 10 ²¹
Terrestrial Biosphere	NH ₃	3.8 x 10 ¹⁵
Marine Biosphere	NH ₃	0.5 to 3 x 10 ⁷
Seawater	N ₂ , N ₂ O, NO ₃ ⁻ , DON, PON	1.6 x 10 ¹⁴
Oceanic Sediments	PON, NH ₄	2 x 10 ⁷
Terrestrial Soils	PON, NH ₄	$95 - 140 \ge 10^{15}$
Crustal Rocks	PON, NH ₄	1.9 x 10 ¹⁴
	After Scl	nlesinger and Bernhardt 20 and Ward 20

Basic Nitrogen Facts - 2

Basic Nitrogen Facts - 3

Microbial reactions drive the N cycle

- Nitrogen fixation:

N₂ + 8H⁺ + 8e⁻ + 16 ATP -> 2NH₃ + H₂ + 16 ADP + 16 P_i

- Nitrification:

 $2NH_4^+ + 3O_2^- + 2H_2O + 4H^+$

- Denitrification:

 $5CH_2O + 4H^+ + 4NO_3^- \rightarrow 2N_2 + 5CO_2 + 7H_2O$

- Anammox:

 $NH_4^+ + NO_2^- -> 2N_2 + 2H_2O$

Microbial Transformations in the N Cycle

Role of N in Biogeochemistry

- Bioavailability of N (and/or P) can limit NPP on land/oceans; controls size of biomass
- N has multiple oxidation states:

-3 in NH ₃	ammonia	
0 in N ₂	nitrogen	
+1 in N_2O	nitrous oxide	
+2 in NO	nitric oxide	
+3 in NO ₂ -	nitrite ion	
+4 in NO_2^-	nitrogen dioxide	
+5 in NO_{3}^{-}	nitrate ion	

- Microbial processes exploit redox gradients (for energy purposes) and thereby mediate fluxes
- Most abundant form of N is atmospheric N₂
 - N₂ is "fixed" (oxidized) by bacteria and plants in N-poor regions
 - Denitrifying bacteria reverse this process.

N-bioavailability: 'Fixed N'

 Balance of N-fixation and denitrification affects global N bioavailability:

 $N_2 + 8H^+ + 8e^- + 16 \text{ ATP} \longrightarrow 2NH_3 + H_2 + 16 \text{ ADP} + 16 P_i$

 $5CH_2O + 4H^+ + 4NO_3^- \rightarrow 2N_2 + 5CO_2 + 7H_2O$

- Pool of available inorganic N is always small; like P, bioavailable N is rapidly taken up
- All biologically available N originated as atmospheric N₂:
 - lightning
 - meteorite impacts
 - biological fixation

 Current terrestrial N₂-Fixation rates are dominated by biological fixation:

- Lightning <3 5 x 10¹² N yr⁻¹
- Biological fixation 120 x 10¹² yr⁻¹

• N \equiv N triple bond takes massive energy to break

- Total terrestrial biological N fixation \approx 120 x 10¹² g N yr⁻¹
- Total fixed N delivered to Earth's <u>land</u> surface ≈ 300 x 10¹² g N yr¹

28% via natural processes

72 % via human-derived sources

 > 136 x 10¹² g N yr⁻¹ from fertilizer production by the Haber process: natural gas (CH₄) is burned to produce H₂

 $H_2 + N_2$ (under high T and P) = NH₃

• 25 x 10^{12} g N yr⁻¹ from fossil fuel combustion

Terrestrial Nitrogen cycle

Anthropogenic activity

- Planting of N fixing crops and fertilizer production (from N+H at high T)
 >100 x 10¹² g yr⁻¹
- Fossil fuel combustion: ~ 25 x 10¹² g yr⁻¹
 - produces NO_x
 - Some NO_x transported long distances -- seen in Greenland ice
- Total flux of fixed N = $240 \times 10^{12} \text{ g yr}^{-1}$
 - 28% natural
 - 72% anthropogenic
- Groundwater N increasing from fertilizer leaching: 18 x 10¹² g yr⁻¹

(From Holland et al., 2005 EOS 86, 254)

Nitrous oxide (N₂O)

- N_2O is a by-product of nitrogen fixation and denitrification
- N₂O is an important greenhouse gas; has **300x** the impact of CO₂, also destroys O₃
- N₂O sink: stratospheric destruction via photolysis $80\% \rightarrow N_2$ $20\% \rightarrow NO$, which destroys O₃
- MRT N_2O in atmosphere ~ 120 yrs -- uniformly distributed
- Seawater is a source of N_2O to the atmosphere, but some N_2O is denitrified within water column

Anthropogenic Impact on N₂O Cycle

- Soils: main source of N₂O to atmosphere,
- Cultivation increases N₂O production rate as nitrification and denitrification rates increase
- Manure production tracks N₂O increases

Figure 2. The simultaneous increase in atmospheric N₂O concentrations, and increased manure production as a result of reactive N generation in Figure 1.

 Sinks exceed identified sources, yet we observe an increase in atmospheric N₂O -- more research needed

Relationship between NO₃⁻ in Ice Cores and NO_x Emissions

Global N cycle on the Early Earth

- Early atmosphere dominated by N_2 and CO_2
- N fixation by lightning and meteor shock waves (6 % of current rate); may have been important for origin of life
- Lack of N may have lead to early evolution of N fixers
- Denitrification important for maintaining atm N₂ level
- Unclear whether denitrification evolved before or after O₂ in atm; since denitrifiers tolerate low O₂, perhaps after
- Nitrification could only evolve after O₂ in atmosphere — the nitrification process requires O₂
- Both processes are at least 1 x 10⁹ years old

N versus P Biogeochemistry

Fig. 12.1 Schlesinger and Bernhardt 2013

 N occurs in valance states ranging from (-3) to (+5), and microbes capitalize on transformations of N from one state to another for energy

 P is almost always at a valance of (+5) as PO₄³⁻

N versus P Biogeochemistry (cont'd.)

Reservoir	Mass N (in grams)	Mass P (in grams)
Atmosphere	3.5 x 10 ²¹	0.00003 x 10 ¹²
Soil Organic Matter	95-140 x 10 ¹⁵	100-200x 10 ¹²
Terrestrial Biomass	3.5 x 10 ¹⁵	3 x 10 ¹²
Total oceans (NO ₃ -, DIP)	570 x 10 ¹⁵	93.5 x 10 ¹²
Ocean dissolved N ₂ gas	1.1 x 10 ¹⁹ g	N/A
Oceanic biota	4.7 x 10 ¹⁴	0.05-0.1 x 10 ¹²

Major Differences in Reservoirs & Fluxes:

- No gaseous forms of P, whereas N₂(g) is largest N-pool
- Ultimate N Bioavailability via microbial transformations; ultimate P bioavailability via weathering
- N more enriched than P in organic matter, relative to C C:N:P ratio in marine primary producer biomass (106:16:1)

Essential, Limiting Nutrients, N & P

- P as ATP important in all biochemical processes, including C-fixation, protein (nitrogenous compound) production
- Primary production requires both N & P, both tend to be present at low - limiting levels
- Redfield C:N:P used to predict biomass production
- N-fixation rates inversely related to N:P in soil, lakes and the oceans

Example:

Photosynthesis and respiration

Redfield-Richards Equation:

 $CO_2 + N + P + H_2O \stackrel{P}{\leftarrow_R} Organic matter + O_2$

Example:

Photosynthesis and respiration ... *Redfield-Richards Equation:*

 $CO_2 + N + P + H_2O \stackrel{P}{\leftarrow} Organic matter + O_2$

106 CO_2 + 16 HNO_3 + 1 H_3PO_4 + 122 H_2O [(CH_2O)₁₀₆ (NH_3)₁₆ (H_3PO_4)] + 138 O_2

Stoichiometric relationship between C, N and P via the Redfield Ratio can be used to understand linked cycles.

 High demand for P by N-fixing organisms links global C-N-P cycles: P is the ultimate limiting nutrient

- Despite this, NPP often shows an immediate response to N additions
- It continues to be a puzzle, and a source of debate

Summary: Nitrogen Cycle & C-N-P Linkages

- Microbial reactions drive the N cycle, taking advantage of the various valences in which N occurs in the environment
- Atmospheric N₂(gas) is the largest N-reservoir, but is inaccessible to organisms unless converted to 'fixed-N'
- Unclear whether the global N budget is balanced: Denitrification is used to balance N-fixation, but global estimates of both are not well constrained
- Anthropogenic impacts on the global N cycle have been substantial
- Nature of N & P reservoirs and processes that impact their bioavailability are fundamentally different, can be linked through stoichiometry
- Can use Redfield stoichiometry of C:N:P to predict changes in linked cycles.