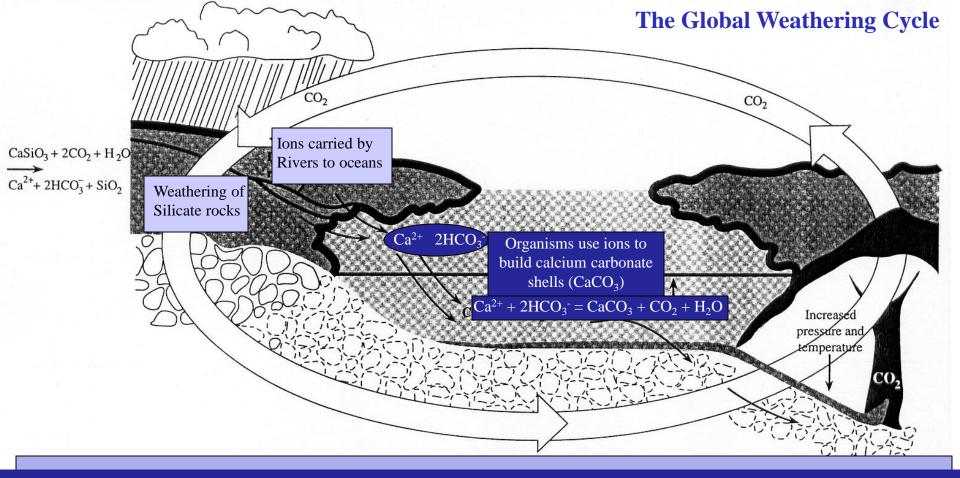
OCN 401-16 Aug. 30, 2016 KCR

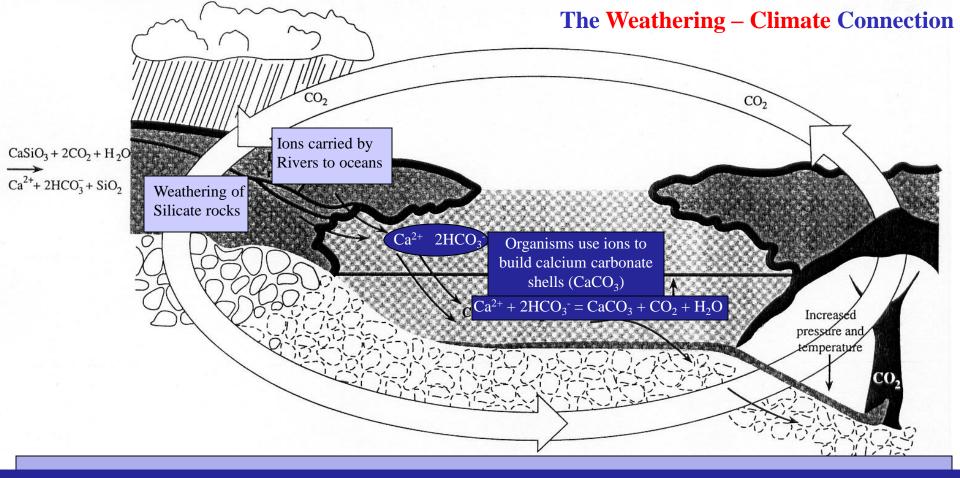
Weathering and Soils

Biogeochemistry Chapter 4: The Lithosphere

- Introduction: the context
- Rock Weathering
- Soil Chemical Reactions
- Soil Development (see text)
- Weathering Rates & Denudation

Introduction: The Context


• Throughout Earth's history, the atmosphere has interacted with Earth's crust:


• Basic Summary Equation (Siever 1974):

Igneous rocks + acid volatiles = salty oceans + sedimentary rocks

- Weathering through Geologic Time:
 - Early Earth: acidic volcanic gases
 - Later: atmospheric O_2 , oxidation of reduced minerals
 - Advent of land plants: metabolic CO_2 , H_2CO_3
 - Modern era: anthropogenic NO_x , SO_x , acid rain

- 1° minerals at Earth surface exposed to acid forms of C, N, S derived from the atmosphere
- Products of weathering reactions are carried to the ocean via rivers
- Weathering products accumulate as dissolved salts or sediments
- Subduction carries sediments back into the deep earth
 - CO₂ released
 - 1° minerals re-formed at high T and P
 - once uplifted, these are subject to a renewed cycle of weathering
 - 75% of rocks on Earth's surface today are sedimentary

• The Global CO₂ Balance Links Weathering and Climate:

- CO₂ is released in volcanism
- CO₂ is consumed in weathering
- HCO₃⁻ produced in weathering reactions is carried to the oceans via rivers
- Biogenic carbonate $[2HCO_3^- + Ca^{2+} = CaCO_3 + CO_2 + H_2O]$ is buried in sediments
- The balance between weathering rate and seafloor spreading (subduction) exerts control on atmospheric P_{CO^2}
- Climate is impacted because CO₂ is an important greenhouse gas

Why is weathering important?

- Climate regulation through CO₂ balance
- Weathering *Bioactivity Feedback* (Biogeochemistry):
 - Land plants and soil microbes affect rock weathering and soil development Biological processes are affected by weathering
 - - Controls bioavailability of elements that have no gaseous form
 - Impacts soil fertility, biological diversity, agricultural productivity
- Weathering plays a critical role in global element cycles:
 - Global rate of rock weathering impacts atmospheric chemistry
 - Global rate of delivery of weathering products to the sea
 - Global cycles of bioactive elements biogeochemical cycles

Table 4.1 Approximate Mean Composition of the Earth'sContinental Crust^a

^{*a*} Data from Wedepohl (1995).

Constituent	Percentage composition		
Si	28.8		
Al	7.96		
🛧 Fe	4.32		
Ca	3.85		
Na	2.36		
☆Mg	2.20		
K	2.14		
Ti	0.40		
фР	0.076		
Mn	0.072		
S	0.070		

Weathering particularly important for nutrient elements *that have no gaseous form*.

Two Categories of Rock Weathering

- Exposure at Earth surface, by *uplift* or *extrusion*
- Mechanical weathering
 - Fragmentation without chemical reaction: physical change
 - Erosion (water, wind)
 - Frost heaving
 - Plant root fragmentation
 - Catastrophic events (e.g. landslides)
 - Important in extreme climate regimes
 - Transport-limited systems develop thick soil layers
 - Important factor in large yield of small, mountainous regions
 - Creation of surface area
- Chemical weathering

Chemical weathering

- Reaction of minerals in soils and rocks with acidic or oxidizing solutions
- Production of soluble elements, making them available for plant uptake
- Chemical weathering rates:
 - often depend upon rate of mechanical weathering
 - depend upon *mineral composition of rocks*
 - More labile minerals are attacked first, sometimes leaving more refractory minerals behind, intact
 - depend upon *climate*

Order of Formation of 1° Silicate Minerals from Molten Rock

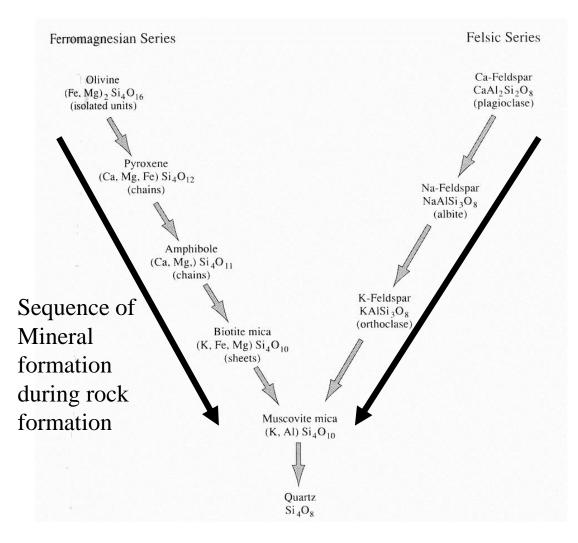


Fig. 4.1. Bowen Reaction Series

• Two classes of 1° silicate minerals:

- ferromagnesian series (Mg)
- felsic series (Al)
- Series reflects the order of precipitation from a cooling magma.
- Mineral crystal structure changes as T & P decrease as magma cools & ascends:
 - Olivine: isolated units
 - Feldspar: chains
 - Micas: sheets
 - Highest O:Si ratio in Olivine
 - O:Si ratio decreases as

sequence progresses

Weathering Reactivity Sequence: the Inverse of Crystallization Sequence

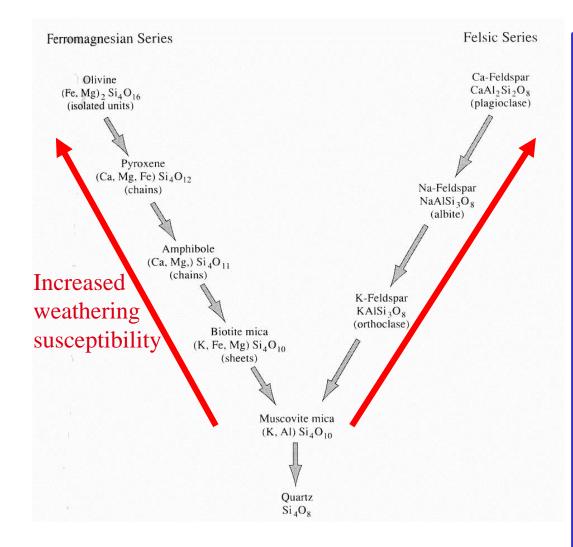


Fig. 4.1. Bowen Reaction Series

Susceptibility to weathering is affected by crystal structure:
isolated units more reactive than chains or sheets

- Susceptibility to weathering is affected by crystal chemistry:
 minerals with lower O:Si ratio are more resistant)
- Minerals formed at high T are more susceptible to weathering because:
 - they have fewer bonds that link their crystal structure
 - frequent cation (Ca, Na, K) substitutions distort crystal shape

End Products of Chemical Weathering: Soils

- Two 'end-member' soils produced:
 - Saprolites: reduction of density due to weathering loss of *some* constituents, without collapse of initial rock volume (isovolumetric weathering): *"rotten rock"* (SE-US). *Transport-limited conditions required*.
 - Bauxites, Laterites: more extensive removal of constituents accompanied by collapse of soil profile, with *apparent* increase in concentration of remaining elements (e.g., Zr, Ti, Fe, Al, etc.)

Impact of Climate on Chemical Weathering

Chemical weathering reactions are most rapid at high T and high rainfall

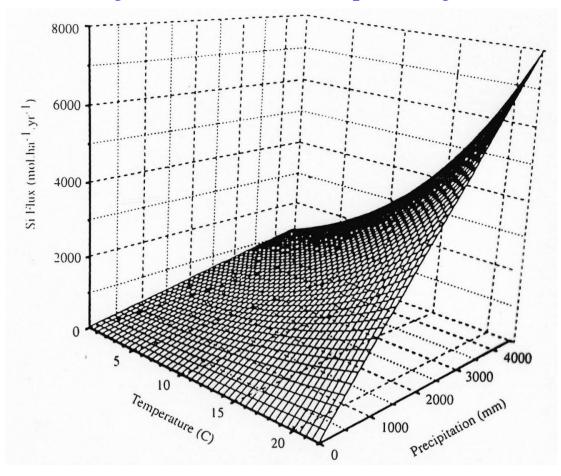
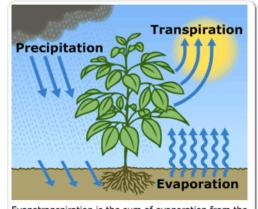


Figure 4.2 Loss of silicon (SiO₂) in runoff is directly related to mean annual temperature and precipitation in various areas of the world. Modified from White and Blum (1995). Silica is a good indicator of chemical weathering. $CaSiO_3 + 2CO_2 + H_2O = Ca^{2+} + 2HCO_3^{-} + SiO_2$

Carbonic Acid Weathering

- The dominant form of chemical weathering
 - Carbonic acid forms in soil solution


 $H_2O + CO_2 = H^+ + HCO_3^- = H_2CO_3$ (4.2)

- Soil [H₂CO₃] often exceeds equilibrium with atmospheric CO₂ (400 ppm, or 0.04%)
 - Plant roots and microbes release [CO₂] to soil
 - High CO₂ can extend to considerable depth in soil (1% @ 36 m), leading to weathering of underlying rock
 - High [CO₂] under snow pack implies significant weathering during winter

Biogeochemical Feedback

- Plant growth is greatest in warm and wet climates
- Warm humid climates maintain the highest soil [CO₂], and greatest weathering rates
- By maintaining high soil [CO₂] plants and associated organisms exert biotic control over the geochemical process of rock weathering on land

Average soil [CO₂] varies as a function of evapotranspiration

Evapotranspiration is the sum of evaporation from the land surface plus transpiration from plants. Precipitation is the source of all water. Credit: Salinity Management Guide http://water.usgs.gov/edu/watercycleevapotranspiration.html

- Evapotranspiration is the sum of evaporation from the land surface plus transpiration from plants.
- Evapotranspiration scales with temperature and biological activity

After a plastic bag is wrapped around part of a plant, the inside of the bag becomes misty with transpired water vapor. Credit: <u>Ming Kei College, Hong Kong</u>

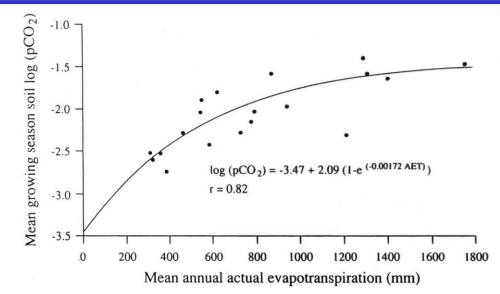


Figure 4.3 Relationship between mean CO_2 concentration in soil pore space and actual evapotranspiration at the site for various ecosystems of the world (Brook et al. 1983).

Incongruent Mineral Dissolution

- Definition: Only some constituents of the 1° mineral are solubilized.
- Example: plagioclase -> kaolinite:

 $2NaAlSi_{3}O_{8} + 2H_{2}CO_{3} + 9H_{2}O \rightarrow 2Na^{+} + 2HCO_{3}^{-} + 4H_{4}SiO_{4} + Al_{2}Si_{2}O_{5}(OH)_{4}$

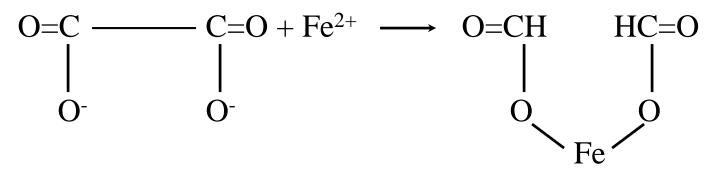
- Results in formation of 2° minerals
 - Solubilization of Na and Si
 - Production of HCO₃⁻ indicates this is carbonic acid weathering
 - 2° mineral has lower Si:Al ratio
- Kaolinite can weather incongruently to form Gibbsite $Al_2Si_2O_5(OH)_4 + H_2O \rightarrow 2H_4SiO_4 + Al_2O_3 \cdot 3H_2O$

Congruent Mineral Dissolution

- Complete dissolution: solubilization of all mineral constituents.
 - Example: calcium carbonate -> constituent ions:

 $CaCO_3 + H_2CO_3 \rightarrow Ca^{2+} + 2HCO_3^{-}$

- Other examples: olivine (FeMgSiO₄), pyrite (FeS₂)
 - Mg^{2+} , H_4SiO_4 , SO_4 lost from soil to runoff waters
 - Fe is retained in oxidized forms, e.g. Fe₂O₃; often a microbially mediated reaction (Thiobacillus ferrooxidans)
- Acid mine drainage produced from weathering of pyrite:


 $\text{FeS}_2 + 8\text{H}_2\text{O} + 15\text{O}_2 \rightarrow 2\text{Fe}_2\text{O}_3 + 16\text{H}^+ + 8\text{SO}_4^{2-}$

Organic Acids

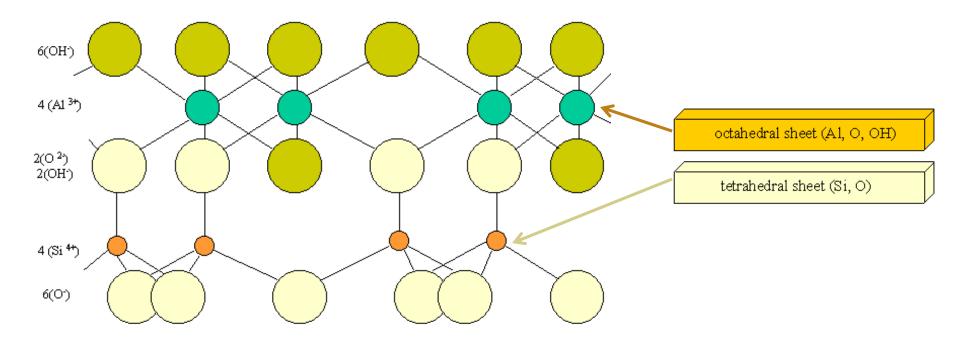
- Released by soil organisms to soil solution
 - Plant roots: acetic acid, citric acid
 - Soil microbes: fulvic and humic acids, phenolic acids (tannins)
 - Fungi: oxalic acid
- Affect weathering in two ways:
 - Contribute to total acidity of soil
 - These are *chelators*: any of a class of coordination or complexing compounds that can bind to metal atoms
 - Metals are complexed to the *ligand* in a cyclic or ring structure.

Organic Acids (cont'd.)

• Oxalic Acid: HOOC-COOH, or $H_2C_2O_4$

- When insoluble metals bind with chelators, they become mobile
 - They can move lower in soil profile or be washed out
 - Their presence increases weathering rate by 10-100x
- Organic acids often dominate the upper soil, carbonic acid becomes more important at depth in soil profiles

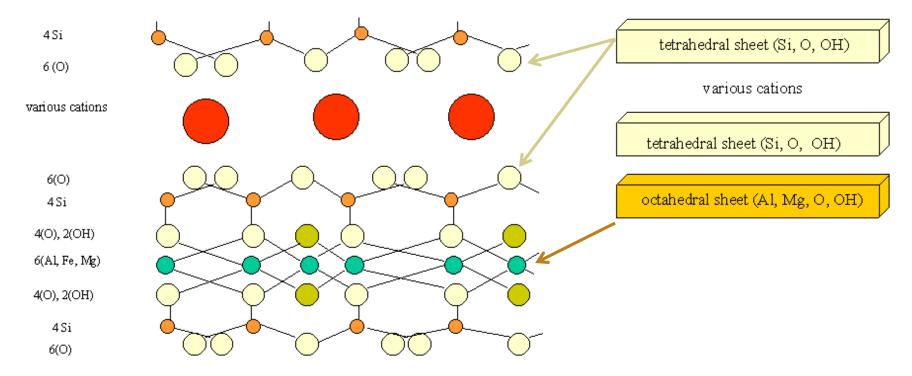
Secondary Minerals


- Produced by weathering of 1° minerals
- May initiate as coatings on surfaces of 1° minerals
- Clays dominate 2° minerals in temperate forest soils
 - control structural and chemical properties of the soil
- Crystalline oxides and hydrous oxides of Fe and Al dominate tropical soils

Clay Minerals

- Layered aluminosilicates, $< 2 \ \mu m$ in size
- Two types of layers
 - Si layers
 - Al layers (with other cations, e.g., Fe, Mg)
 - Layers are held together by shared O atoms
 - Different clays are classified on the basis of the #, order, ratio of these layers
 - Moderately weathered clays (montmorillonite, illite)
 - 2:1 ratio of Si:Al
 - More weathered clays (kaolinite)
 - 1:1 ratio of Si:Al, reflecting a greater Si-loss.

1:1 Clay Mineral Structure: Kaolinite Al₂Si₂O₅(OH)₄


Diagrammatic Representation of Kaolinite

2:1 Clay Mineral Structure: Montmorillonite

$Na_{0.2}Ca_{0.1}Al_2Si_4O_{10}(OH)_2(H_2O)_{10}$

Diagrammatic Representation of Montmorillonite

2° Mineral Formation Impacts Bioavailability

- Ions released from 1° minerals may not stay in solution if they are taken up into 2° minerals
 - Mg²⁺ often fixed in *montmorillonite* (temperate)
 - K⁺ often fixed in *illite* (temperate)
 - NH₄⁺ often fixed in 2:1 clay minerals (can be >10% of total N in soils)
 - Implications for N-limitation of soils
 - Fe- and Al-oxides and hydroxides are insoluble unless chelated
 - Can sequester PO_4^{3-}
 - Implications for P-limitation of soils

Tropical soils

- Crystalline oxides and hydrous oxides of Fe and Al
 - Fe: goethite (FeOOH), hematite (Fe_2O_3)
 - Al: gibbsite $[Al(OH)_3]$, boehmite
- High T and ppt cause rapid decomposition of plant debris in soils, few chelators available, Fe and Al immobilized as 2° minerals
 - -2° clays loose all Si⁴⁺, Ca²⁺, K⁺ to runoff
 - Leave behind Fe and Al oxides and hydrous oxides (laterites, bauxites)

Phosphorus (P) Minerals

- P is often a limiting nutrient
- Apatite is the dominant 1° mineral, weathers congruently:

 $Ca_{5}(PO_{4})_{3}(F,OH) + 4H_{2}CO_{3} \rightarrow 5Ca^{2+} + 3HPO_{4}^{2-} + 4HCO_{3}^{-} + H_{2}O$

- Solubilized P is either taken up by biota or reprecipitated into 2° minerals
 - Occluded in Fe and Al oxides / oxyhydroxides
 - Biologically unavailable when occluded
 - Bioavailability of P can be tied to abundance of organic acid chelators (fungi \rightarrow oxalate)

pH Controls which 2° P Minerals Form

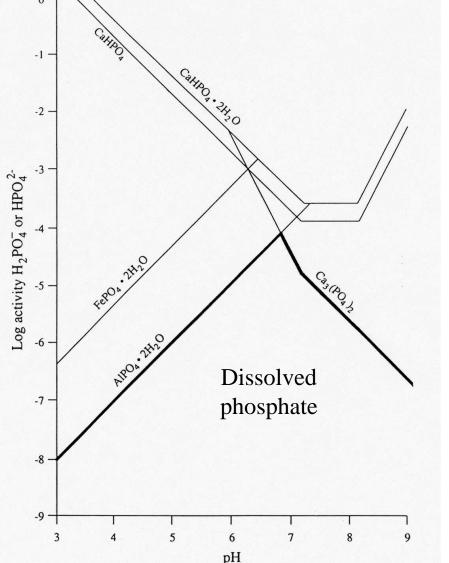


Figure 4.10 The solubility of P in soil solution as a function of pH. Precipitation with Al sets the upper limit on dissolved phosphate at low pH (bold line); precipitation with Ca sets a limit at high pH. Phosphorus is most available at a pH of approximately 7.0. Modified from Lindsay and Vlek (1977).

Evolution of Soil P Impacts Bioavailability

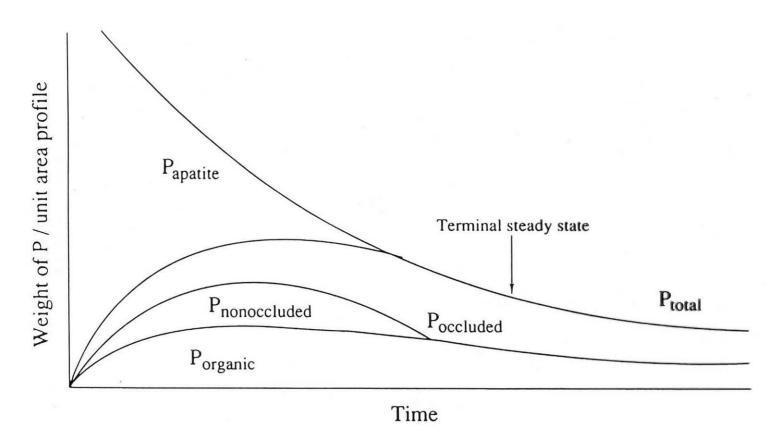


Figure 4.11 Changes in the forms of phosphorus found during soil development on sand dunes in New Zealand. Modified from Walker and Syers (1976).

Soil Chemical Reactions

• Release essential biochemical elements

• Bioavailability is controlled by K_{eq} between soluble and insoluble forms

• Soil exchange reactions occur more rapidly than weathering reactions

Cation Exchange Reactions

- Clays have net negative charge, attract cations
 - Internal/Structural (*permanent*): e.g., if Mg²⁺ subs for Al³⁺
 - Edges (*reversible*): Un-protonated OH⁻ groups exposed on edges of clays (pH dependent) attract cations
 - Soil organic matter (-OH, -OOH) has net negative charge, attracts cations (Ca²⁺, K⁺, NH₄⁺) (pH-dependent)
- Cation Exchange Capacity (CEC) = total negative charge in a soil: = (mEq/100g of soil)
 - Cations are held on exchange sites and displace one another in sequence:

$$Al^{3+} > H^+ > Ca^{2+} > Mg^{2+} > K^+ > NH_4^+ > Na^+$$

Progression of Cation Exchange Capacity During Soil Formation

- CEC increases during initial soil formation on newly exposed parent rock, then subsequently declines as soil ages
- CEC of temperate soils (2:1 clays dominate) >> CEC of tropical (1:1 clays dominate) soils
- Highly weathered tropical soils (laterites, bauxites) have no CEC

Soil Buffering

- CEC can buffer acidity of temperate soils
 - Added H⁺ are exchanged for cations on clays and organic matter, especially Ca, which when solubilized forms a base, e.g., Ca(OH)₂
 - Buffering effect can be described by the following eqn:

$$pH - \frac{1}{2}(pCa) = k$$
 (4.8)

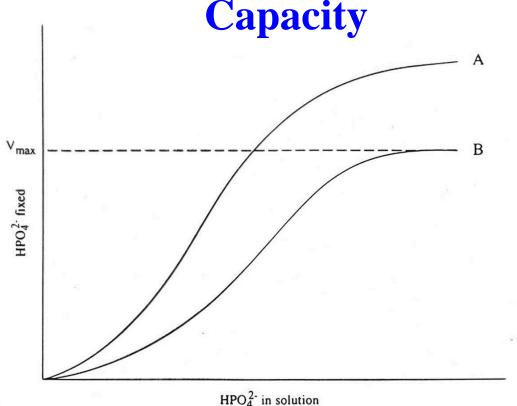
- Explains why pH of many temperate soils is unaltered by acid rain
- Strongly acid tropical soils have little CEC reactions involving Al buffer acidity:
 - Reactions involving Al buffer acidity
 - Release of Al³⁺ to soil solution increases soil acidity:

1) $Al^{3+} + H_2O = Al(OH)^{2+} + H^+$

2) $Al(OH)^{2+} + H_2O = Al(OH)_2^{+} + H^{+}$

3) $Al(OH)_2^+ + H_2O = Al(OH)_3 + H^+$

- Because these reactions are reversible, they buffer against H⁺ additions


Anion Adsorption Capacity

- Tropical soils show variable charge depending on soil pH
 - Under acid conditions (low pH) they have a "+" charge, adsorb anions
 - At high pH they develop CEC
 - As pH increases from acid to alkaline, the soils pass through a zero point of charge (ZPC), where # of cation exchange sites = # anion exchange sites
 - The pH of the ZPC is different for different soil compositions

Anion Adsorption Capacity: Some Details

- Anion Adsorption Capacity (AAC) is greatest when Fe and Al oxyhydroxides are present and amorphous (greater surface area)
- Anion adsorption follows the sequence: $PO_4^{3-} > SO_4^{2-} > Cl^- > NO_3^{--}$
- Strong PO₄³⁻ adsorption explains why P frequently is limiting in tropical soils
- AAC is often modeled using Langmuir isotherms

Experimental Determination of Sorption

The Langmuir adsorption isotherm is used to compare the affinity of soils for anions as a function of the concentration of the anion in solution. If soil B has a lower affinity for phosphate than soil A, at equal concentrations of phosphate in solution more P will be available in soil B. Conversely, if these soils are exposed to long-term additions of solutions with a given phosphate concentration, it will take longer for soil A to equilibrate with that solution (see Johnson and Cole 1980,

Reuss and Johnson 1986). (From Fig 4.8 of Schlesinger, 2nd ed.)

Weathering Rates

- Estimates of weathering rates allow us to relate the biogeochemistry of watersheds to global element cycling (*primary source of many nutrients*)
- These rates are difficult to evaluate because processes occur slowly and are difficult to isolate
- Classical Approach: Infer rates from residuum in soil profile and/or losses in stream water
- Global weathering rates inferred from dissolved and suspended load of rivers

The Hubbard Brook Forest

- Several comparable watersheds
- Underlain by impermeable bedrock (no flow to groundwater)
- (Stream water loss) (atm input) = (release from rocks)

Weathering rate = $(Ca_{stream}) - (Ca_{ppt}) / (Ca_{rx}) - (Ca_{soil})$

- Solution to this equation differs for different ions as a result of different propensities for:
 - Biological uptake
 - Formation of 2° minerals

Table 4.4 Calculation of the Rate of Primary MineralWeathering, Using the Streamwater Losses andMineral Concentrations of Cationic Elements^a

Element	Annual net loss (kg ha ⁻¹ yr ⁻¹)	Concentration in rock (kg/kg of rock)	Concentration in soil (kg/kg of soil)	Calculated rock weathering (kg ha ⁻¹ yr ⁻¹)
Ca	8.0	0.014	0.004	800
Na	4.6	0.016	0.010	770
K	0.1	0.029	0.024	20
Mg	1.8	0.011	0.001	180

^{*a*} Data from Johnson et al. (1968).

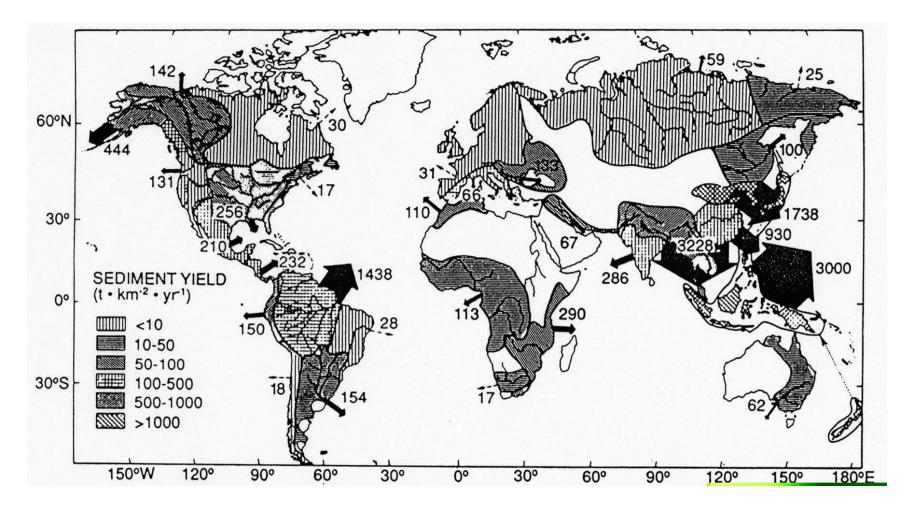
- Different elements show different weathering rates
- Slower rates imply secondary removal processes

Table 4.5 Inputs and Outputs of Elementsfrom the Hubbard Brook^a

	Inputs (%)			
	Atmosphere	Weathering	Output as a percent of input	
Ca	9	91	59	
Mg	15	85	78	
ĸ	11	89	24 📩	
Fe	0	100	25	
Р	1	99	1 📩	
S	96	4	90	
Ν	100	0	19 📩	
Na	22	78	98	
Cl	100	0	74	

^{*a*} Data from Likens et al. (1981).

Chemical Weathering Rates


- Useful to look at Cl and Si
 - Si source is bedrock, atmospheric inputs negligible: a good index of chemical weathering
 - Cl content in rocks low, atmospheric input dominates
 - Because Cl⁻ is unreactive (inert), it is a good metric for evaluating hydrologic budget
- Losses of dissolved constituents during chemical weathering is defined as *chemical denudation* of the landscape
- In most areas with silicate bedrock, loss to stream water relative to concentration in bedrock:

Ca > Na > Mg > K > Si > Fe > Al

Total Denudation

- Total Denudation = Chemical + Mechanical Denudation
- Mechanical Denudation (vs. chemical) has been studied less because products are not bioavailable
 - -3 to 4x > chemical denudation world wide
 - Mean rate $\approx 1000 \text{ kg/ha/yr}$
 - $\approx 75\%$ carried as suspended sediments in rivers
 - Today's rates higher due to land use (Figs. 4A & 4B)
 - Importance increases with elevation
 - Transports insoluble elements to the sea (Fe, Al, Si, P)
 - Toxic metal (Cu, Zn) fluxes have increased due to human activities

Annual sediment flux from major drainage basins to the world's oceans

Data are millions of tons (10^{12} g) per year, and arrows are drawn proportional to the flux. From Milliman and Meade (1983).

Brief Lecture Summary

- Rates of weathering and soil development are strongly affected by biota
 - Carbonic acid weathering
 - Production of organic acids
- Rates of mechanical weathering impact rates of chemical weathering via production of surface area for reaction
- Chemical weathering produces essential nutrients
 - Congruent vs. incongruent weathering
 - Impact of 2° mineral formation on bioavailability
 - Impact of soil mineralogy on bioavailability
- The weathering climate connection is modulated by production and consumption of CO_2
 - Impacts global element cycles