CLIMATE-CARBON CYCLE INTERACTIONS ON MILLENNIAL TO GLACIAL TIMESCALES AS SIMULATED BY A MODEL OF INTERMEDIATE COMPLEXITY

A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAII IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

OCEANOGRAPHY

DECEMBER 2008

By

Laurie Menviel

Thesis Committee:

Axel Timmermann, Chairperson
Yuanhui Li
Niklas Schneider
Richard Zeebe
Greg Ravizza
ABSTRACT

During glacial-interglacial cycles, the atmospheric CO₂ content varied by about 100 ppmv. Although atmospheric CO₂ variations played a central role in shaping glacial-interglacial cycles, their origin still remains elusive. A recently proposed hypothesis argues for a southern hemispheric wind control of orbital-scale CO₂ variability. This hypothesis is tested here using an earth system model of intermediate complexity, LOVECLIM. A series of sensitivity experiments demonstrates that a weakening of the southern hemispheric westerlies leads to reduced upwelling of DIC-rich waters in the Southern Ocean and a reduction of surface ocean pCO₂. However, at the same time less nutrients are upwelled in the Southern Ocean and transported to the eastern basin upwelling zones. This leads to a drop of marine export production and an increase in surface ocean pCO₂. The net result of these counteracting effects is a small drop of atmospheric CO₂ that is insufficient to explain the magnitude of glacial-interglacial CO₂ variability.

Another key feature of glacial periods is the occurrence of northern hemispheric meltwater pulses such as Heinrich event 1 (18 ka ago) and the Younger Dryas (11 ka ago). Originating from instabilities of the major ice-sheets, these freshwater pulses led to disruptions of the Atlantic Meridional Overturning Circulation (AMOC) and impacted climate worldwide. As demonstrated by numerous palco-proxy records, such events were accompanied by a northern hemispheric cooling that lasted hundreds of years and by associated shifts of the Intertropical Convergence Zones. Using LOVECLIM, it is documented that these climate anomalies led to shifts of the major vegetation zones. Under pre-industrial background conditions, the simulated reduced terrestrial primary productivity leads to a carbon release of 120 GtC. A part of this carbon is taken up by the oceans through increased solubility and deep ocean storage. The resulting atmospheric CO₂ rise of 20 ppmv leads to a net warming of the Southern Ocean and Antarctica. Comparing paleo-climate model simulations with palco-proxy data, it is found that at least 25% of the Antarctic warming during Heinrich events can be attributed to the vegetation response to an AMOC shutdown.