BAROCLINIC ROSSBY WAVES IN THE CENTRAL AND
EASTERN NORTH PACIFIC

A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE
UNIVERSITY OF HAWAII IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
IN OCEANOGRAPHY
MAY 1981

By
James Michael Price

Dissertation Committee:
Lorenz Magaard, Chairman
Wan-Cheng Chiu
Brent Gallagher
Harold G. Loomis
Klaus Wyrtki
ABSTRACT

A cross spectral wave model fitted to 20-year time sequences of baroclinic potential energy in the central North Pacific demonstrates that first mode baroclinic Rossby waves fit the best among all possible wave types at the 10- and 6.7-year periods in the 20-30°N zone and produce about 50% of the observed covariance. The model fitted to sub-surface temperature fluctuations along the Honolulu-San Francisco great circle section reveals best-fit wavenumbers that could be long-section projections of wavenumber vectors of first mode baroclinic Rossby waves of 42.5- to 9.4-month periods. The waves could be producing 50-60% of the covariance observed in the section. A mean shear current of only 2 cm/sec magnitude at the surface, diminishing to zero at a depth of 700 m can substantially alter the dispersion of baroclinic Rossby waves. A climatological mean current profile representing the California current is used to generate a numerical dispersion relation, which is then used to interpret some of the long-section wavenumbers.