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Air Pollution — Elevated levels of aerosols and harmful gases
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US Pollution Episodes

The Horse Problem

_ _  In the U.S., air quality degraded quickly shortly after the
Prior to the car, the horse was the dominant mode of industrial revolution
transPorSil . « Problem was coal burning in the central and midwestern U.S.
Horse waste was a serious problem. « 1948 - Donora, PA in the Monongahela River Valley five-day
In NYC 2.5 million tons of solid waste and 60,000 episode - 1000's became ill, 20 were killed
gallons of liquid waste had to be cleaned from the - 1960s - NYC experience several dangerous episodes
streets annually at the turn of the last century. » 1960s-70s - Los Angeles - increase in industry and automobile
15,000 dead horses had to be removed from the city usage led to many pollution episodes
annually « The above events led to passing the Clean Air Act of 1970
Odorous germ-laden street dust from dried waste (updated in 1977 and again in 1990) empowered the federal
caused disease. government to set emission standards that each state would

The car was considered the antiseptic solution,quieter, have to meet.

more comfortable, and cleaner.

Hazardous Pollutants National Ambient Air Quality Standards

The Clean Air Act requires Environmental Protection
Agency (EPA) to set National Ambient Air Quality
Standards for six common air pollutants.

A particularly nasty bunch of pollutants

— Carbon Monoxide (CO) enters the bloodstream and causes
cardiovascular damage and can lead to suffocation

— Ozone and Nitrogen Oxides (NO2 and NO) damage the lungs, < Ozone
leading to asthma and other respiratory illnesses (especially in — Particulate Matter
children) — Carbon Monoxide
— Particulate matter (PM1o and PM25), especially from diesel — Nitrogen Oxides
trucks, is carcinogenic L
o . — Sulfur Dioxide
— Sulfur Dioxide (SO2) and NO2 cause acid rain Lead

— Lead (Pb) poisoning destroys the body’s organs




National Ambient Air Quality Standards
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The Clean Air Act requires Environmental Protection
Agency (EPA) to set National Ambient Air Quality
Standards for seven common air pollutants.

Volatile Organic Compounds

Ozone

Air Quality: NO2, SO2, CO, Lead
1980 to 2008
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Sources of Pollution
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Lead Air Quality, 1980 - 2009

(Based on Annual Maximum 3-Month Average)
National Trend based on 20 Sites
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1980 to 2009 : 93% decrease in National Average
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Planetary Boundary Layer (PBL)
aka Atmospheric Boundary Layer

J
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The planetary boundary layer (PBL), also known as the atmospheric
boundary layer (ABL), is the lowest part of the atmosphere and
its behavior is directly influenced by its contact with a planetary surface.

The Free Atmosphere

Above the PBL is the "free atmosphere" where the wind is
approximately geostrophic (parallel to the isobars) while within the PBL
the wind is affected by surface drag and turns across the isobars. The
free atmosphere is usually nonturbulent, or only intermittently turbulent.

Diurnal Evolution of the PBL
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The PBL usually responds to changes in surface forcing in an hour or
less. In this layer physical quantities such as flow velocity, temperature,
moisture etc., display rapid fluctuations (turbulence) and vertical mixing
is strong.
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The atmospheric boundary
e layer is the lowest layer of

«« the troposphere where
@ friction is active. Most
me e e o boundary layers are capped
: Su.. by a stable layer above.

_____

¥ ey o ' N E = ¥ We live in and breathe
: the air of the boundary
layer.

—

Clean Boundary Layer Pollution in the Boundary Layer

:

It is more than a blessing to
have clean air. Itis
essential for good health.

We live in and breathe
the air of the boundary
layer.

Most pollution enters the atmosphere near the surface.
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Conditions that Promote Pollution Recent US Pollution Episode
Episodes S e

High pressure with light . L P
winds and limited mixing
lead to elevated levels
of air pollution, visible
along the East Coast in
this satellite image.

Atmospheric conditions
that limit horizontal and
vertical mixing of the air
result in high pollution
concentrations.

These conditions are
found within areas of
high surface pressure,
especially in winter,
when radiational cooling
causes cold, stable air to
collect near the surface.
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Pollution Episodes

—
LA and Denver “brown clouds”
primarily caused by automobile
exhaust plus sunlight. Altitude
and thin air exacerbates the
problem in Denver.

Pollution episodes occur in areas of high surface pressure
resulting in stable air (temperature inversions) and light winds.
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CO concentration from Satellite

Polluted Boundary Layer

Mt. Rainier, WA

China from space.
= ! Carbon Monoxide (CO) at 15,000 ft traced from China to USA.
Pollution in the atmosphere can travel great distances. CO in the lungs prevents the uptake of oxygen!
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Fires are Promoted by Droughts

Texas wildfires fanned by high winds in April 2011.

Intentionally set fires are a large source of pollution and CO»
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Texas Wildfires Fanned by High
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Acid Rain

Acid rain is caused by sulfur
dioxide (SO2) and nitrogen
oxides (NOx) being released
into the atmosphere and
producing sulfuric acid and
nitric acid.

Sources of SO2 and NOx
include factories, power
plants, automobiles,
trucks.
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Wildfires

Big Meadow
controlled burn
--> Wild fire

Yosemite NP,
August 2009
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Acid Rain

The pH scale measures how acidic or basic a substance is.

ACID The pH Scale ALKALINE

REREREREEE AR

PURE
WATER

+~— SUPERACIDS

SUPERBASES —

Acidic and basic are two extremes that describe chemicals, just like hot and
cold are two extremes that describe temperature. Mixing acids and bases
can cancel out their extreme effects, much like mixing hot and cold water
can even out the water temperature. A substance that is neither acidic nor
basic is neutral (e.g., pure water with a pH of 7).
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Acid Rain

Sources of SO2 and NOx include factories, power plants,

automobiles, trucks and even pine forests.

Acid Rain

Impacts of Acid Rain

* Lakes and Streams

* Forests

¢ Human health: asthma,
bronchitis, heart failure...

* Materials: Car coatings,
roofing,...
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Air Pollutants

Acid Rain
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Sources of SO2 and NOx include factories, power plants,
automobiles and trucks.

pH of US Rain

EPA 2010
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Sites not pictured:

Alaska 01 5.2

Alaska 03 5.2 \

Alaska 06 53 R
7

Puerto Rico 20 5.0
Virgin Islands 01 5.1

Acid rain leeches heavy metals into lakes and streams.

Lab pH
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Acid Rain Acid Rain

PHE.5 ([PHE8O | PH 5.5 PH S50
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Animals are very sensitive to pH. Acid rain also leeches oI A
heavy metals, like mercury, into lakes, streams, and S e L - = : : :
drinking water. Needles collect cloud water, which is more acid than rainwater.
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Acid Rain Acid Rain
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.°. Europe: Acid Rain
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Spruce Forest in North Carolina impacted by Acid Rain Spruce Forest in Europe impacted by Acid Rain
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Erythemal Dose Rat@ (mW/m )
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« Consequences of ozone loss

Costs of Acid Rain Global Ozone Depletion

- Buildings: Marble and Limestone are dissolved by
acid rain.

- Road way life is shortened.

- Metals on cars, bridges, tools, etc. are affected.

* Agricultural productivity reduced. The ozone hole reached its maximum extent in 20086.

Oct 24, 2006
Jul 01 Dec 31
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Hazards of Ozone Loss

Diurnal Variation of Ultraviolet Radiation

Ozone Measurement

Area Covered by
Column

2 4 & 8§ W 12 M 1% 18 W n M
Local Standard Time

All the Ozone over a certain
area is compressed down to

radiation reaching the ground 0°C and 1 atm pressure.

increase in skin cancer cases

increase in eye cataracts and sun burns

suppression of the human immune system

adverse impact on crops and animals due to increased UV
reduction in the growth of ocean phytoplankton Atmospheric ozone is measured by satellite instrument

cooling of the stratosphere that could alter stratospheric wind in Dobson Units.
patterns, possibly affecting the production (and destruction) of ozone.

It forms aslab 3mm thick,
corresponding to 300 DU.
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Natural Ozone Cycle

Natural ozone production
d+ D—Y
) Ulraviolet ~ © = o

lighe Oy [+} [s]

Natural ozone destruction
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Ozone Hole .

Average area of ozone hole

Total ozone over South Pole from Dobson

to Pre-1978 average, 1961-2012.

Size (million Sq km)
>

s

=Smoothed 15-31 Oct average

+15-31 Oct Average
% [ B T T T T T
-20% .
The decrease in ozone
g over the South Pole was
first observed in the

Tog | Lo 1970’s. ltis linked to an
1960 1970 1980 1990 2000 2010 : .
increase in man made

chemicals entering the
atmosphere.
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Ozone
Declines
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The decrease in ozone also observed at lower latitudes.
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Causes for Stratospheric Ozone Depletion

CFCs release chlorine
atoms, and halons
release bromine
atoms

Chlorine and Bromine
atoms result in ozone
depletion.

2. Sunlight breaks down
CFC’s in the stratosphere.

4. Scientists send up
halloons to see where
all the ozone’s gone

&‘%

il 1. Factories and homes
I spew out CFC’s.
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Causes for Stratospheric Ozone Depletion

4
- Total ozone over South Pole from Dobson

Spectrop
to Pre-1978 average, 1961-2012.

20%
=Smoothed 15-31 Oct average

+15-31 Oct Average

sy L——
1960 1970 1980 1990 2000 2010

Chlorine and Bromine atoms result in global ozone depletion.
CFCs release chlorine and halons release bromine. The most
rapid breakdown of ozone occurs on the surface of polar
stratospheric clouds.
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Ozone Hole and Clouds

» Chlorine and Bromine compounds result in ozone depletion.

« Most rapid breakdown of ozone occurs on the surface of polar
stratospheric clouds.
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Changes in the Area of the Ozone Hole

2010 Southern Hemisphere Ozone Hole Area
NOAA SBUV2

Current Year Compared Against Past 10 Years

Million Sq Kmt Updated through Dec 15, 2010
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Most rapid breakdown of ozone occurs on the surface of polar
stratospheric clouds, which are most prevalent at the end of
winter in the SH (i.e., August and September).
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Formation of the Ozone Hole

« The polar winter leads to the formation of the polar vortex
which isolates the air within it.

« Cold temperatures form inside the vortex; cold enough for the
formation of Polar Stratospheric Clouds. As the vortex air is
isolated, the cold temperatures and the clouds persist.

« Once the Polar Stratospheric Clouds form, chemical reactions
take place and convert the inactive chlorine and bromine to
more active forms of chlorine and bromine.

» No ozone loss occurs until sunlight returns to the air inside the
polar vortex and allows the production of active chlorine and
initiates the catalytic ozone destruction cycles. Ozone loss is
rapid.
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Causes for Stratospheric Ozone Depletion

Chlorine and Bromine
compounds result in
ozone depletion.

Most rapid breakdown
of ozone occurs on
the surface of polar
stratospheric clouds.

Ozone, ppb

Measurements of 0zone and Chlorine Mono&ide

from a Flight into the Antarctic 0zone Hole

15

3000

2500

2000 F

1500 F

1000 -

S00

| e —— NN

Ozone
™y

Reactive

\ Chlorine

410

--------- 405

Antarctic
Polar Air

L]

63

64

0.0

65 66 67 68 69 70 71 72

Latitude { Degrees South)

Reactive Chlorine, ppb

Ozone Policy

The Montreal Protocol of 1987 banned CFC’s and Halons.
Latest projection shows ozone hole recovery by 2068.
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The Inconvenient Truth about Vog Formation of Vog

Vent emissions are composed primarily of water vapor, SO2, CO2
and various trace gases and metals.

SO: rapidly mixes with water vapor to form gaseous sulfuric acid.

A majority of the liquid sulfate also quickly converts to various
sulfate compounds forming aerosols via nucleation or
condensation onto existing aerosol.

These sulfates form a layer of volcanic smog known as vog.

Kamoamoa Fissure
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Geography of the Lava Flow Hazard

rift zone q y
/ - N

10 MILES IR q
Jomes T Halema uma'u Crater vent is Eu u’O’o vent is part of the east
0 10KILOMETERS 0 10 KILOMETERS N part of the Kilauea summit rift zone
crater.

Mauna Loa Kilauea ] Py ;
Volcanic emissions are greatest where the lava first

Volcanic emissions are greatest where the lava first reaches reaches the surface.

the surface.
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The Hazards from VOG

Halemaumau

« Volcanic sulfate aerosol is of a size (0.1-0.5 ym) that can
effectively reach down into the human lung, causing respiratory
distress. Sulfur dioxide also promotes respiratory distress.

« Reduction of visibility in layers of high aerosol concentration near
inversions represents a hazard to aviation.

« Acid rain negatively impacts ecosystems and reduces crop yields.

Proximity of Hazard to Volcano Village

W0 -m;} 2 ‘¥

%, g N4
. 3 2
{©2008 Google - lmﬁery @2008 TerraMetrics, Map data ©@2008 NAVTE erms of Use

61

63

Vog Emissions Increased in 2008

Summit sulfur dioxide (SO2) emissions reaching record high levels in March
2008; a new vent opening in Halema'uma'u Crater; a small explosive
eruption at Kilauea's summit, the first since 1924; and lava flowing into the
sea for the first time in over eight months. A more recent event in March 2011
elevated SO2 emissions to over 11,000 metric tonnes per day.

Proximity of Hazard to Volcano Village

2,231 Residents (2000 census).
4 miles north of Kilauea. 8 miles northeast of Pu'u O’o vent.
Can be exposed to SO2 levels as high as 2000 ppb

EPA's regulation: 24 hour average from man-made sources
should not exceed 140 ppb SO2
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Increased Health Threat Health Impacts from SO»

HVNP Visitors Center JUN 2007- FEB 2011 SO2 in PPB In animal studies, high concentrations of SO2> shows airway
1000 inflammation and hyper-responsiveness.
900 q 0 i .
300 . | Studies on mild asthmatics that were introduced to SO2 levels of
288 I I 500 ppb showed increased airway resistance while exercising.
500
400
300
200 i ! .
eSO N 0 TN A 11 Y AN | DY T
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EPA’s regulation: 24 hour average from man-made sources
should not exceed 140 ppb (red line).
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Health Impacts from Sulfate Aerosols Health Impacts from Sulfate Aerosols

“I'm seeing a 30 to 40 percent increase in vog-related

Volcanic aerosol is of a size (0.1-0.5 ym) that can effectively symptoms,” said allergist and immunologist Dr. Jeffrey Kam on

reach down into the human lung, causing respiratory distress. Oahu, “The main complaints associated with the vog are the
Epidemiological studies show that sulfates increase bronchitis, increasing breathing difficulties. The worst one is obviously the
chronic cough, and chest illness. asthma flare-up. They can have nasal congestion, wheezing,

itchy and watery eyes and irritated throat.”

Kamoamoa Fissure
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Plume Cross Section Visibility Obscured by Vog

Wi

Altitude (Knm)

Source W -= E 300 km

Lidar cross section shows vog
concentrated at 1500 m, just below , _
Aerial photograph of Maui as aerosol obscures the lower slopes of

the boundary Iayer inversion. Haleakala January 25, 2000. Reduction of visibility represents a
hazard for general aviation.
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Summitwind gL / Tradewinds /
monitor site Banks
4
Crater
Rim
Drive
Kiouea Revs Lava
Caldera Tube system
Royal Gardens
Subdivision
% Wind monitor i N 37

The Flyspec, pictured here strapped to an HVO vehicle, 3000 e oL

has replaced the larger, heavier, and more expensive \

optical correlation spectrometer (COSPEC), which was 2000 ?&e'tsfvl‘ +

used to measure SO2 emissions at Kilauea for over two o/

decades. A scienfific comparison of Flyspec and 1000

COSPEC showed no loss in accuracy or precision of

data collected with the mini-spectrometer.

L Area of
// - / . S map
0 Skm poc |
» Correlation Spectrometer (COSPEC) - COSPEC measures the amount of et y

ultraviolet light absorbed by sulfur dioxide molecules within a volcanic plume. The } ]
instrument is calibrated by comparing all measurements to a known SO standard Vehicle-based SO2 measurements are made downwind of the
mounted in the instrument. COSPEC can be mounted on a car or aircraft summit and east rift zone plumes on Crater Rim Drive and Chain

of Craters Road during trade-wind conditions.
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Kilauea SO, Emission Rates

Kilauea SO, Emissions (1984-2008)
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The Variable Threat from Vog

Kamoamoa Fissure

During the first two weeks of March 2011 emissions peaked at 11,000 metric
tons/day associated with a new eruption along the Kamoamoa Fissure.

78

80



Dispersion of Vog | ewourcorsn Effects Felt far Downstream

Heavily dependent on wind patterns
and stability.

Predominantly tradewinds (from the
northeast) from May to October.

1

More frequent periods of “Kona winds’
from the south from November to April.

/uth Point
KONA WINDS /~
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Effects Felt far Downstream Model Simulation of VOG

Hazardous
Very Unhealthy
Unhealthy

Unhealthy for Sensitive Groups

Moderate
Good

Vog plume impacting Oahu;
compare visibility on clear day , i
(lower left) with vog conditions.

Sea breeze brings vog onto

Kona coast. Thick vog plume over Hilo

during light southerly flow.
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Gaussian Dispersion Model

The concentration C (ug/m3) is given by

B (y—y0)2 _ ()“9‘0)2 _[(z—fz)z)
20 r 20 A 20 R
E y L z
C = (4 (4 e
2Iloo.u

where E is the source emission, u is the average wind speed, f is
the particle fall speed, ox, oy, and o; are the horizontal and vertical
dispersion coefficients as a function of downwind distance.

Dispersion Calculation

— In the HYSPLIT (Lagrangian particle) model, the source
is simulated by releasing many particles over the
duration of the release.

— In addition to the advective motion of each particle, a
random component to the motion is added at each step
according to the atmospheric turbulence at that time.

— A cluster of particles released at the same point will
expand in space and time simulating the dispersive
nature of the atmosphere.

— In a homogeneous environment the size of the puff (in
terms of its standard deviation) at any particular time will
correspond to the second moment of the particle
positions.

85

87

Input for Vog Model

Valid 9:00 UTC

WRF Domain 3
sample winds for
3/7/10

1. Weekly Averaged SO emissions from HVO for the summit and East Rift Zone.

2. Meteorological Fields from the Weather Research and Forecast (WRF) model.

Dispersion Calculation

— Afixed number of particles are released and followed for the
duration of the model run.

— Operational model uses 20,000 particles per time step in the
initial release. Particles are lost due to deposition and passing
the model boundary

— Particles within the domain at the end of the previous run
provide an initial condition for the subsequent run.

— Maximum number of particles allowed in model during the run
is 500,000. This number is a compromise between the CPU
needed to track particles and the accuracy of the model output
at the edges of the domain at the end of the model run.

— The turbulent velocity variance is obtained from WRF’s TKE
(turbulent kinetic energy field).

— Model uses Kanthar/Clayson vertical turbulence computational
method.
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Turbulent Diffusion

— The turbulent velocity variance is obtained from WRF’s TKE
(turbulent kinetic energy field).

Model uses Kanthar/Clayson vertical turbulence computational
method. These equations have the following form:

— W'2=3.0 u(1 - z/Zi)"?
— U'2=4.0 u* (1 - 2/Zi) 32
— V'2=4.5u*2(1 - z/Zi)3?

where the turbulence is a function of the friction velocity, height,
and boundary layer depth. The horizontal and vertical
components are explicitly predicted.

Satellite Validation

200mto 700 m

at multiple locations

Source

Concentration ( PPM) averaged between Omand 100 m
Integrated from 2100 06 Oct to 2200 06 Oct 10 (UTC)
S04 Release started at 1200 05 Oct 10 (UTC)

~5.8E-02 PPM
>3.5E-02 PPM
>1.5E-02 PPM
D >9.4E-03 PPM

>3.6E-03 PPM
>1.0E-08 PPM

Maximum

Minimum

1200 05 Oct 10 AWRF FORECAST INITIALIZATION
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Conversion Rate: SO, to SOq4

— Conversion rate of SOz to SO4 (sulfate aerosol) in the model is

set at a constant rate of 1% per hour.
— Dry deposition velocity for SO2 = 0.48 cm/s
— Dry deposition velocity for SO4 = 0.25 cm/s

— Trajectories follow isobaric surface with full reflection assumed

at the surface.
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Questions?

India vs Tibet
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