MET 200 Lecture 3 Radiation & Earth's Radiation Balance

Outline of Previous Lecture

Lecture 3

Outline

- · Laws of Radiation
- · Earth's Radiation Balance
- Greenhouse Effect

Radiation

- Radiation energy leaving a body in the form of electromagnetic waves.
- Light is a form of electromagnetic radiation.
- The speed of light is 299,792,458 m/s or ~ 3x10⁸ m/s through a vacuum (slightly slower through air).

Radiation Quality and Quantity

- The amplitude corresponds to the energy carried
- The wavelength corresponds to the type

Radiation – Types

Radiation Concepts

Blackbody - is a theoretical object that absorbs all incident radiation and emits the maximum possible radiation for its temperature – according to Planck's Law.

Planck's Law

The amount of radiation emitted by a blackbody is described by Planck's Law

$$E_{\lambda} = \frac{2hc^2}{\lambda^5 \left[\exp(hc/k\lambda T) - 1 \right]}$$

- k is the Boltzmann constant, and is 1.38x10-23 J/K
- h is Planck's constant and is 6.626x10-34 Js
- c is the speed of light in a vacuum and is 2.9979x10⁸ m s⁻¹.
- Blackbody radiation is isotropic, homogeneous, unpolarized and incoherent.
- · Planck's Law means that the sun isn't special, all objects radiate

Planck's Law

Wavelength

Planck's Law describes the radiant energy at all wavelengths emitted from a black body.

Planck's Law and Black Body Radiation

Planck's Law describes the radiant energy at all wavelengths emitted from a black body.

9

Planck's Law

Planck's Law describes the radiant energy at all wavelengths emitted from a black body.

STEFAN - BOLTZMAN LAW

Stefan-Boltzman law is obtained by integrating Planck's Law across all wavelengths. As the temperature of a black body increases, the *irradiance* (E) emitted by that object per unit time and unit area increases by a power of 4.

$$E = \sigma T^4$$

where σ is a constant = 5.67×10⁻⁸ W m⁻² K⁻⁴

If T doubles, E increases by 16 times!
E is in Watts/m²

Wein's Law*

The wavelength (λ_{max}) of peak radiation emitted by an object is inversely related to temperature (T).

 $\lambda_{max} \sim b/T = 2897/T$, b = Wien's displacement constant

 λ_{max} is in μm and T is in Kelvin

*Wein's Law is obtained by taking the derivative of Planck's Law

Kirchhoff's law of thermal radiation

For an arbitrary body emitting and absorbing thermal radiation in thermodynamic equilibrium, the absorptivity is equal to the emissivity for each wavelength.

$$a_{\lambda} = \varepsilon_{\lambda}$$

A good absorber is a good emitter, and a poor absorber is a poor emitter. Naturally, a good reflector must be a poor absorber. This is why, for example, lightweight emergency thermal blankets are based on reflective metallic coatings: they lose little heat by radiation.

Summary of Laws of Radiation

- 1. All objects emit radiation (except at 0°K).
- 2. Hotter objects emit more energy per unit area than colder objects.
- 3. The hotter the object the shorter the wavelength of maximum radiation.
- 4. Objects that are good absorbers of radiation are good emitters of radiation.

Radiation Concepts

Solar constant - Amount of solar radiation passing through a unit area at the top of the earth's atmosphere perpendicular to the direction of the radiation at the mean Earth-sun distance.

Solar Constant = $S = E_s*(R_s/R_{sE})^2$

At the sun's surface:

 $E_s = \sigma T^4 = 5.67^*10^{-8} \text{ W/(m}^{2*}\text{K}^4)^*(5800\text{K})^4 = 6.416\text{X}10^7 \text{ W/m}^2$

The radius of the sun R_s = 6.955x10⁸ m Distance of sun to Earth R_{sE} = 1.5x10¹¹ m S = $E_s(R_s/R_{sE})^2$ = 1379 W/m²

14

Radiation Concepts What happens to sunlight once it reaches the Earth? Transmission 45%+5%=50% reaches surface Scattering (reflection) 19%+6%+5%=30%=Albedo Absorption 45% by surface and 25% by atm. Reflection by clouds 19% Absorption 25% Absorption by surface 45%

Reflection and Scattering of Incoming Sunlight

- Albedo: the ratio of reflected radiation to incident radiation
- Surface albedo varies geographically and in time.

Earth Radiation Balance

Without an atmosphere: radiative equilibrium temperature = -18°C

Incoming Energy (visible) = Outgoing Energy (IR)

 $S(1-a) \pi r^2 = \sigma T_E^4 (4 \pi r^2)$

 $T_E = [S (1-a)/4\sigma]^{1/4} = 255K = -18^{\circ}C$

Where S = solar constant, a = albedo, and $\sigma = constant$.

Without an Atmosphere

Radiative Equilibrium Temperature = -18°C and we would have an frozen planet

19

Atmospheric Windows

Transmission vs Absorption

The Atmosphere is nearly transparent for shortwave or visible radiation, but strongly absorbs longwave radiation.

A Simple Greenhouse Model

- Incoming solar radiation = (0.7*1379)/4 W m⁻² = 241 W m⁻²
- IR flux from surface = σT_0^4
- Assume atmospheric layer has an absorption efficiency = $f \sim 0.77$
- Kirchhoff's law: absorptivity = emissivity
- IR flux from atmospheric layer = $f \sigma T_1^4$ (up and down)

23

.

