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Abstract On 29 July 2013, Tropical Storm Flossie passed the Hawaiian Islands. This is the first interaction
between an active, vigorously degassing volcano and a tropical cyclone captured by a vog (volcanic smog)
dispersion model run over the Hawaiian Islands since operational simulations began in 2010, providing a
unique opportunity to analyze the influence of robust volcanic emissions entrained into a tropical cyclone.
Results from the vog dispersion model are compared with Geostationary Operational Environmental Satellite
observations, lightning data from Vaisala’s Global Lightning Dataset (GLD360), and the National Weather
Service Weather Surveillance Radar, 1988 Dual-Polarmetric Doppler radar to investigate the effect of volcanic
emissions on the storm. Observations and model results suggest that aerosol loading resulted in deep
convection and glaciation which in turn enhanced charge separation and promoted active lightning.

1. Introduction

The Kilauea volcano has been continuously erupting from the Pu’u ‘O’o vent since 1983, emitting large
amounts of sulfur dioxide (SO2) (Figure 1). The rate of emissions has ranged from less than 50 t/d to more than
10,000 t/d [Elias and Sutton, 2007]. In 2008, a second vent opened up in the Halema’uma’u Crater with a
typical emission rate of ~700 to 1000 t/d based on in situ observations [Elias and Sutton, 2012]. Emission
rates estimated from Global Ozone Monitoring Experiment-2 satellite observations of slant column
densities are nearly 3 times larger than in situ estimates [Beirle et al., 2013]. Photochemical reactions
convert SO2 to sulfates (SO4

2�) with an observed half-life near the vents of 6 ± 4h for SO2 [Porter et al., 2002].
Longer residence times for SO2 (1–2 days) are estimated remotely by Beirle et al. [2013].

Given the persistent northeast trade winds in Hawai‘i, the emissions cause frequent episodes of poor air
quality for downwind and leeward communities on the island of Hawai‘i. A recent study found the
magnitude of health effects increasing relative to exposure levels [Longo, 2013]. An automated numerical
model approach has been implemented at the University of Hawai‘i at Mānoa to forecast the dispersion of
emissions (vog) from Kilauea volcano across the island of Hawai‘i and the other main Hawaiian Islands
[Hollingshead et al., 2003]. The goal of the modeling effort is to give useful forecast guidance regarding the
location of the vog plume and the concentrations of SO2 and sulfate aerosol in Hawaiian Island
communities in a timely manner. For this purpose, we have employed a custom application of the Hybrid
Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) and dispersion model version 4 [Draxler and
Hess, 1997, 1998], hereafter referred to as the vog model. Validation of the vog model forecasts is accomplished
with reference to data from Hawai‘i State Department of Health ground-based Air Quality monitors
(see Figure 1).

Flossie reached tropical depression strength at 0300 UTC 25 July 2013 in the Eastern Pacific and tracked
WNW into the Central Pacific, skirting northeast of the Hawaiian Islands. Flossie reached peak intensity
(60 knots (=0.5 m/s = 1.85 km/h)) on 27 July. The last advisory for Flossie was issued at 0900 UTC 30 July in the
vicinity of Oahu. On 28 July, the vog model forecasts showed that volcanic aerosols would wrap into Flossie.

Sulfate aerosols have been identified as a principal component of cloud condensation nuclei (CCN) in a
variety of maritime air masses [Cantrell et al., 2000]. It is thought that sulfate aerosols originating from the
volcano could affect cloud electrification via ice-ice collisions [Saunders, 2008]. Rosenfeld and Lensky [1998]
show that the injection of anomalous aerosols in maritime convection act as cloud condensation nuclei (CCN)
and alter the precipitation process. Rosenfeld et al. [2012] discuss a similar process in the outer rain bands of
tropical cyclones and postulate that it weakens tropical cyclone intensity by invigorating convection in the
outer rain bands at the expense of the eyewall.
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The question we pose is: What was the impact of the vog plume on the microscale structure of Tropical Storm
Flossie’s convective rainbands and resulting lightning activity? Williams et al. [2002] find a correlation
between electrical activity, aerosol concentration, and convective available potential energy over land;
however, the relative contributions could not be determined. Volcanic emissions from Kilauea volcano on
the island of Hawai‘i are shown to produce large concentrations of CCN, which reduces the mean cloud
droplet size and suppresses the warm rainfall process [Yuan et al., 2011a]. This process can lead to invigorated
convection and glaciation processes that enhance cloud electrification due to volcanic emissions, as shown
by Yuan et al. [2011b].

The impact of the volcanic aerosols on cloud electrification within Flossie is investigated through the analysis
of satellite observations, radar, and lightning data. The vog model will be described briefly, and a comparison
of model results and observations will be provided. Finally, a summary and future research are presented.

2. Observations

Vaisala’s GLD360 lightning detection network has been calibrated to detect lightning across the oceans of
the Northern Hemisphere with 70% detection efficiency on average [Cummins and Murphy, 2009; Said et al.,
2010; Stolz et al., 2014]. GLD360 data were overlaid on GOES IR images for this study. No lightning was
detected in Flossie prior to the storm’s passage north of the island of Hawai‘i at 2200 UTC 29 July (Figure 2a).
At 2300 UTC, a stroke density of order 101 strokes (100 km�2 h)�1 was detected over Mauna Kea (not shown).
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Figure 1. Map showing the island of Hawai‘i with the relative locations of the vents, along with Volcano village, and the
towns of Hilo and Kailua-Kona.
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Figure 2. GLD360-detected lightening flashes (red) overlaid on GOES-W infrared imagery for (a) 2100 UTC 29 July, (b) 0000 UTC,
(c) 0100 UTC, and (d) 0200 UTC 30 July 2013.
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Figure 3. GOES-West infrared cloud top temperatures (°C) valid at (a) 2100 UTC 29 July, (b) 0000 UTC, (c) 0100 UTC, and
(d) 0200 UTC 30 July 2013.
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By 0000 UTC 30 July, this flash density had shifted off the northern coast of the island of Hawai‘i and
increased to order 102 strokes (100 km�2 h)�1, while only a few flashes were detected over Mauna Kea
(Figure 2b). This is of interest because the region of the storm producing lightning was not interacting
directly with island terrain. The stroke density continued to increase over the channel between Hawai‘i and
Maui through 0200 UTC, from O[101 strokes (100 km�2 h)�1] to O[102 strokes (100 km�2 h)�1], when Flossie’s
circulation began to pass over the high terrain of Maui and Molokai (Figures 2c and 2d). Color-enhanced IR
imagery reveals that deeper clouds with cooler cloud top temperatures develop in the region of lightning
activity, whereas lower clouds with warmer temperatures are found over the high terrain (Figure 3).

A method of retrieving the mean effective radius of ice particles of thick ice clouds from GOES satellites has
been developed [Lindsey and Grasso, 2008]. Convective clouds with a deep freezing layer are prime
candidates for this algorithm. As part of the GOES-R proving ground, we use these retrievals to investigate
the passage of Flossie in Figure 4. Prior to observations of lightning, retrievals indicate very large ice
particles (40–50+ μm) in clouds to the east of the island of Hawai‘i at 2100 UTC 29 July (Figure 4a). This tends
to indicate clouds with weak vertical motions and long residence times near cloud top. To the north of this,
small liquid cloud droplets of only a few micrometers are found. From radar we know this region is full of
shallow cumulus clouds with heights mostly below 3,000m. Thick ice clouds are found over and to the north of
the island of Hawai‘i at 0000 UTC 30 July (Figure 4b), with estimated ice effective radii between 30 and 40μm in
the region of lightning activity. Radar echoes reveal cloud tops over 9000m, which means that deep liquid
water clouds are found adjacent to these heavily iced clouds with small effective droplet radius values
(10–15μm). The small effective droplet radius in the liquid clouds suggests aerosol loading. Aerosol loading is
conducive to deep, vigorous convection due to latent heat release, which results in well-developed ice clouds
with small effective ice radius values [Lindsey and Fromm, 2008]. Liquid cloudswith large effective droplet radius

(b)(a)

(d)(c)

Figure 4. Effective ice and liquid droplet radius (μm) retrievals from GOES-West valid (a) 2100 UTC and (b) 2200 UTC 29 July
2013 and (c) 0000 UTC, (d) 0100 UTC, (e) 0200 UTC, and (f) 0300 UTC 30 July 2013. Ice particles are shown in the rainbow scale.
Liquid particles are shown in the green scale. Blue coloring near cloud boundaries are an artifact of the algorithm. Mixed phase
clouds are not included in the analysis.
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values are seen in the outer rainbands in Figures 4c and 4d. Note that no lightning is detected in the region of
the largest ice particles over the southern half of the island of Hawai‘i during this period.

Data fromNationalWeather ServiceWeather Surveillance Radar, 1988 Dual-Polarmetric Doppler (dual-polarmetric)
radars on Molokai and at Kahala on the northwest end of the island of Hawai‘i were used in a dual-Doppler
analysis [Clark et al., 1980] to investigate the area of deep convection that was not directly orographically forced.
The Hilo sounding at 0000 UTC 30 July (not shown) indicates a melting level of around 5000m, whereas the IR
imagery (not shown) has cloud top temperatures below �50°C. The height of the �50°C isotherm from the
sounding is approximately 12,000m. A constant altitude plane position indicator display at 6,000m reveals a
region of +40dBZ (Figure 5a). Vertical velocities at this level, derived from integration of the mass continuity
equation from the top and bottom of echoes, reveal areas of high upward motion up to 6ms�1 surrounding a
region of downward motion collocated with the region of +40dBZ reflectivity echoes. A similar pattern is also
evident at 7000m and 8000m (not shown). These strong updrafts are suggestive of enhanced CCN
(collision/coalescence suppressed, more particles reach freezing level to release latent heat) and result in
lower residency time above freezing level before reaching cloud top. The layer from 6000 to 8000m
represents the layer in which ice appears (�5°C to �20°C) and where the most charge resides (~�15°C)
[Russell, 1991]. Dual-Doppler winds reveal southeasterly flow below and at 6000m (Figure 5b), which
advected volcanic aerosols into the system, consistent with the vog model forecast. The elevated vertical
motions provide the means for charge separation via ice-ice or ice-graupel collisions.

3. The Vog Modeling System and Modeling Results

The vog model produces 60h forecasts twice daily for SO2 and sulfate aerosol concentrations near the Earth’s
surface. A variable resolution grid is used with 1.0 km grid spacing over the island of Hawai‘i and 3.0 km grid
spacing over the rest of the Hawaiian Island chain. The model resolution is determined by the meteorological
grids from theWeather Research and Forecasting (WRF) model at the Mauna KeaWeather Center that force the
model along with SO2 emission rate data estimated from an array of UV correlation spectrometers (FLYSPEC)
[Horton et al., 2006] near the volcanic vents. Because future emissions data cannot be predicted, a running
average of emission rates (updated daily) is used for each vent to force the model. The oxidation of SO2 to
sulfate aerosol is parameterized in the vog model. There is no formula to handle the conversion of one species,
SO2, to another, sulfate aerosol; instead, this is specified as a constant rate per hour. A conversion rate of 1%/h is
adopted based on the work of Porter et al. [2002]. For this research, the model was rerun over an extended
grid forced with a 15 km WRF grid and pollutant output on multiple height surfaces to view in more detail the
interaction of the vog plume and Flossie’s circulation.
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Figure 5. Molokai radar reflectivity (dBz, shading), (a) vertical velocites (contours every m s�1) and (b) winds (m s�1) at
6000m valid at 0130 UTC on 30 July 2013.
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The variable of interest is SO4
2� because these aerosols will activate in cloudy environments and become

CCN. HYSPLIT single-particle trajectories show volcanic emissions advected to the southwest as Flossie
approached from the east (Figure 6). Winds turned eastward and then northward as Flossie neared and
passed to the north of the island of Hawai‘i. Trajectories indicate modest lofting to 700 hPa. Layer-averaged
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Figure 7. Vog model layer-averaged (from 3000 to 5000m) SO4 concentration. Forecasts valid at (a) 1800 UTC 29 July,
(b) 0000 UTC 30 July, (c) 0300 UTC 30 July, and (d) 0600 UTC 30 July.
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sulfate aerosol concentration plots, from 3000 to 5000m, indicate large swaths of elevated sulfate aerosol
concentrations being wrapped around the storm circulation (Figure 7). Note the strong increase in the
northward flow of the volcanic plume between Figures 6a and 6b. The 3000–5,000m layer average reflects
the higher concentrations expected near the top of the boundary layer at ~ 5000m in the Hilo sounding of
0000 UTC on 30 July 2013 (not shown).

Model trajectories and concentrations maps of sulfate aerosol (Figures 6 and 7) indicate inflow into the region of
lightning activity (Figure 2) between 0000 and 0300 UTC 30 July 2013. The 0000 UTC 30 July sounding from
Hilo (not shown) indicates that the high concentrations of sulfate aerosol are entering a moist environment
that promotes CCN activation. The volcanic aerosol loading changes the cloud microphysics, suppressing
precipitation via warm rain processes (collision/coalescence) and promoting cold rain processes through deep
convection (Figure 3) via latent heat release from smaller droplet formation. This results in ice particles with large
effective radius values (Figure 4). Vertical velocities of 2–6ms�1 (Figure 5) transport the cloud droplets above
the freezing layer, where charge separation is favored to occur via ice-ice or ice-graupel collisions. With the
persistent inflow of sulfate aerosol into the region, aerosol loading continues to occur as the storm propagates
across Maui and Molokai and charge separation is maintained, prolonging lightning activity in the storm.

4. Discussion and Conclusions

The interaction between hurricane Flossie and Hawai‘i’s active Kilauea volcano provide a unique
opportunity to observe the influence of the volcanic emission on a tropical storm system. Observations
from satellite, radar, and the lightning detection system demonstrate that convection with vigorous
lightning occurred as Flossie approached the island of Hawai‘i, despite the storm’s decaying trend and lack
of symmetry/organization. Prior to Flossie’s passage north of the island of Hawai‘i at 2200 UTC 29 July, no
lightning was detected in the convective cells associated with the storm. A large convective burst north of
the island of Hawai‘i early on 30 July had at most indirect topographical forcing, yet it became highly
electrified [102 strokes (100 km�2 h)�1] (refer to Figure 1 for terrain elevations).

Observational evidence exists to directly link Kilauea’s SO2 emissions with Flossie’s lightning activity. The
mechanism for this interaction has previously been found through climatological studies [Williams et al., 2002;
Yuan et al., 2011b] but never demonstrated for an individual case. Rosenfeld et al. [2012] speculate that this same
aerosol effect can cause a weakening of tropical cyclones. It is not possible to draw such conclusions in the
case of Flossie since the circulation was also affected by the sharp topography of the Hawaiian Islands at the
same time as the aerosols. However, the vog model forecast appears realistic in its prediction of vog plumes
interacting with Flossie, showing elevated concentrations of sulfate aerosol throughout the boundary layer and
up to 6000m. Taken together, the observations and the vog model predictions suggest an intimate interaction
between Tropical Storm Flossie and Kilauea’s vog plume during the passage of the storm. Simple particle
trajectories from the vog model show that emissions were wrapped into the circulation of Flossie and up into
the middle troposphere. As emissions are wrapped into this moist environment, conversion of sulfur dioxide to
sulfates rapidly occurs. The sulfate aerosol act as CCN and suppress collision coalescence to promote deeper
convection and glaciation of cloud droplets. This allows for the formation of frozen hydrometeors that can
grow large enough to precipitate out. Vertical motions provide lift to subsequent aerosols through a deep
freezing layer in which charge separation is favored with the falling precipitate. This charge separation leads to
electrical discharges or lightning as was observed by the lightning detection system GLD360.

In the future, the authors plan to use the Weather Research and Forecasting model coupled with chemistry
(WRF-Chem) to simulate storm-volcanic plume interaction with and without volcanic emissions to further
investigate the effects of volcanic emissions on convection in Flossie and other storm systems. WRF-Chem is the
Weather Research and Forecasting (WRF) model coupled with chemistry. The model simulates the emission,
transport, mixing, and chemical transformation of trace gases and aerosols simultaneously with the meteorology.
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