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ABSTRACT

Satellite retrievals strive to exploit the information contained in thousands of channels provided by

hyperspectral sensors and show promise in providing a gain in computational efficiency over current radiance

assimilation methods by transferring computationally expensive radiative transfer calculations to retrieval

providers. This paper describes the implementation of a new approach based on the transformation proposed

in 2008 byMigliorini et al., which reduces the impact of the a priori information in the retrievals and generates

transformed retrievals (TRs) whose assimilation does not require knowledge of the hyperspectral instruments

characteristics. Significantly, the results confirm both the viability of Migliorini’s approach and the possibility

of assimilating data from different hyperspectral satellite sensors regardless of the instrument characteristics.

The Weather Research and Forecasting (WRF) Model’s Data Assimilation (WRFDA) 3-h cycling system

was tested over the central North PacificOcean, and the results show that the assimilation of TRs has a greater

impact in the characterization of the water vapor distribution than on the temperature field. These results are

consistent with the knowledge that temperature field is well constrained by the initial and boundary condi-

tions of theGlobal Forecast System (GFS), whereas the water vapor distribution is less well constrained in the

GFS.While some preliminary results on the comparison between the assimilation with andwithout TRs in the

forecasting system are presented in this paper, additional work remains to explore the impact of the new

assimilation approach on forecasts and will be provided in a follow-up publication.

1. Introduction

The aim of a data assimilation system is to create an

analysis, that is, the best estimate of the atmospheric

state, by blending all the available observations with a

numerical model short-range forecast, accounting for

the uncertainties of both the observations and the

background forecast. In this regard, satellite observa-

tions of the infrared and microwave energy emitted by

Earth represent a crucial source of information for the

numerical weather prediction (NWP) models. In the

early stage of satellite meteorology (1980s), retrievals

produced operationally from broadband radiometers

were used as part of the assimilation process in most

NWP centers, and positive or moderate impact was
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found. Impact was more significant in the Southern

Hemisphere than in the Northern Hemisphere because

of the scarcity of conventional observations in the

SouthernHemisphere (Kelly et al. 1978). However, with

the improvements of the NWP systems, difficulties were

encountered in using satellite soundings mainly because

of the 1) limited vertical resolution of the retrieved

profiles, 2) presence of a priori information in the re-

trievals not necessarily consistent with the background

fields used in the assimilation, and 3) difficulties in

properly defining the observation error covariance for

the retrieved profiles. Therefore, during the late 1980s

and 1990s, attention was focused on radiance assimila-

tion in which the information in the observations is as-

similated directly into the NWP systems (Andersson

et al. 1994; Derber and Wu 1998) rather than retrieval

assimilation.

A comprehensive overview of the theoretical as-

pects of infrared satellite data assimilation from re-

trieval to radiance assimilation can be found in Eyre

(2007) and Eyre et al. (2019). Direct radiance assim-

ilation is based on the availability of a forward model

that uses the forecast background as a priori infor-

mation to simulate the NWPmodel equivalents of the

observed radiances, thus avoiding potential incon-

sistencies between the retrieval a priori and the as-

similation background. But this comes at the cost of

numerical efficiency and requires a high level of

competence in dealing with different instruments. A

renewed interest in assimilating satellite retrievals, es-

pecially for limited-areamodels, arose with themore recent

launches of hyperspectral infrared sensors like the grating-

basedAtmospheric Infrared Sounder (AIRS;Chahine et al.

2006), the Infrared Atmospheric Sounder Interferometer

(IASI; Lerner et al. 2002; Karagulian et al. 2010), the Cross-

track Infrared Sounder (CrIS; Bloom 2001; Strow et al.

2013), theHyperspectral InfraredAtmospheric Sounder

(HIRAS; Zhang et al. 2019), and the Geostationary

Interferometric Infrared Sounder (GIIRS) ongeostationary

satellite Fengyun-4 (FY-4) of China (Yang et al. 2017).

Assimilation of satellite retrievals, as opposed to

radiance assimilation, provides regional NWP centers

running mesoscale models the opportunity to transfer

complicated and computationally expensive radiative

transfer calculations to the retrieval provider. In ad-

dition, with the retrievals being the highest form of

compression of hyperspectral infrared observations,

retrieval assimilation would allow, in clear-sky condi-

tions, for the exploitation of the information content

embedded in thousands of channels with minimal re-

quirements for data transfer, data storage, and data

manipulation. In contrast, operational direct radiance

assimilation systems, even in major NWP centers, can

currently handle only a subset on the order of hundreds

of channels out of the thousands of channels provided

by hyperspectral sensors at least until future opera-

tional use of linear combination of channels (principal

components or reconstructed radiances) might over-

come this limitation.

Migliorini et al. (2008) and Migliorini (2012) provide a

framework to perform retrieval assimilation in an equiv-

alent way (same information content) to direct radi-

ance assimilation. The basic idea, which was previously

introduced by Joiner and Da Silva (1998) and Rodgers

(2000), is to apply a transformation to properly remove

the a priori information from the retrievals before

the assimilation is performed. The main goals of the

transformation proposed by Migliorini are (i) to make

the retrieval-forecast error cross-covariance terms neg-

ligible even when the retrieval is severely constrained

by a priori information, (ii) to allow for offline radi-

ative transfer calculations, and (iii) to reduce the

number of assimilated quantities per observation to

the number of effective degrees of freedom in the

observation.

Inspired by the work of Migliorini, the authors of

this paper generated transformed retrievals (TRs)

using ‘‘Mirto’’ 1DVAR (Antonelli et al. 2017) and

adapted a modified version of the Weather Research

andForecasting (WRF)Model 3DVARDataAssimilation

System (WRFDA; Barker et al. 2004, 2012) to ingest the

TRs in an effort to exploit the information content of

hyperspectral satellite data. The retrieval processor has

been implemented at the Mauna Kea Weather Center

(MKWC) of the University of Hawai‘i and has been

running in quasi-operational mode since August 2013.

The MKWC is a weather research and forecast facility

funded by the astronomical observatories on Mauna

Kea (Businger et al. 2002) and (Cherubini et al. 2011).

This paper describes the implementation and vali-

dation of the TR assimilation system within the

WRFDA and provides additional insights regarding

the retrieval process and its validation. More pre-

cisely, the paper describes how the retrievals are

ingested by the WRFDA by means of a transforma-

tion that indeed reduces the influence of the a priori

information used in the retrieval process, minimizes

the number of variables that carry the information

embedded in the original high dimensional observa-

tions, and decorrelates the errors associated with

these variables. The main demonstrated advantages of

such a system are (i) the computational costs of assimi-

lating TRs are very low, which makes this methodology

affordable by many; and (ii) the observation operator,

unlike for direct radiance assimilation, comes with the

TRs. Therefore, the assimilation module is not sensor
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dependent, and data from different hyperspectral sen-

sors can be ingested by the same module.

This paper also anticipates how the designed system

will become an integral part of a Rapid Update Cycle

(RUC) system able to run every three hours and ingest,

in near–real time, the TRs from IASI and CrIS data over

the central Pacific, an area that is nearly devoid of

conventional in situ observations. Thus, a local data

assimilation system, which has to greatly rely on satellite

radiance data, will be limited by computational costs

and by the timeliness of radiance data availability in a

format suitable for ingestion. Tests to replace the cur-

rent MKWC modeling system with an operational im-

plementation of this system are under way.

This paper is structured as follows: section 2 pro-

vides the working framework for the implementation

of the designed system in terms of model descriptions

and experimental cases under consideration; section 3

provides a description of the theoretical background,

briefly reviewing the retrieval process and Migliorini’s

approach, while focusing on the mathematical frame-

work behind the assimilation module implemented

within theWRFDA; validation strategies and results are

presented in section 4; and conclusions and future work

are outlined in section 5. Assessment of the impact of

transformed retrieval assimilation on forecasting accu-

racy of the RUC system is left to a subsequent paper.

2. The underlying working framework

A coincidence of advantageous factors has made

possible the implementation of the assimilation system

presented in this paper: (i) the paucity of in situ con-

ventional atmospheric observations in the north-central

Pacific area; (ii) the availability of a direct broadcast system

operated by the Space Science Engineering Center (SSEC)

in collaboration with the National Weather Service and

the University of Hawai‘i at M�anoa, which provides

nearly real-time (about 15min from satellite overpass

time) high-resolution infrared data from the CrIS sen-

sors on Suomi NPP/NOAA-20 and the IASI sensors on

MetOp-A/B; (iii) the availability of operational WRF

forecasts at the MKWC, which provides the a priori

knowledge of the atmospheric state needed by the re-

trieval system; and (iv) the availability of near-real-time

TRs, generated by theMirto inversion package/regional

processor (Antonelli et al. 2017).

The MKWC routinely runs the WRF Model system

(Klemp et al. (2007), http://www.wrf-model.org). Since

Antonelli et al. (2017), the operational WRF modeling

system has been updated in terms of both software and

configuration, and the latest model configuration en-

compasses 2 two-way nested domains, with horizontal

grids spacing of 4500 and 900m, centered over the north-

central Pacific area and the island of Hawaii, respec-

tively. A one-way 300m nested domain centered over

the summit of Mauna Kea is also part of the modeling

configuration and it is dedicated to provide high-spatial-

resolution predictions of weather and observing condi-

tions for the community of astronomers that operate

there (Fig. 1).

Fifty-one levels in the vertical direction, pwrf(i 5 1,

. . . , 51), are used for the 4500- and 900-m domains.

The vertical spacing is on the order of tens of meters

for the levels nearest the ground and gradually in-

creases with height. The vertical resolution is doubled

for the 300-m domain. The model top is fixed at

40 hPa, which corresponds to a height of ;22 km

above the ground level. Although a higher model top

would be desirable for satellite data assimilation, the

MKWC chosen model top is retained because it

minimizes the number of vertical levels used (and

therefore computational costs) while maintaining a

vertical resolution of at most;600m for domain 1 and

2 and ;300m for domain 3; a constraint required by

the broader MKWC applications, geared to improve op-

tical turbulence forecasting. The WRF modeling system

can run in cold-startmode,which uses as initial andboundary

conditions the National Centers for Environmental

Prediction (NCEP) Global Forecast System (GFS) an-

alyses and forecast, or in cycling/hot-start mode, where

each forecast cycle is initialized using the forecast from

a previous cycle as background, creating a custom

analysis with all the observations available within the

FIG. 1. WRF Model domains. The inset shows terrain contours at

100-m intervals.
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operational MKWC data flow (meteorological sur-

face, maritime radiosondes, aircraft observations, and

satellite-derived winds), which is hereafter referred to

as MK-OBS. An important limit of the current system

is the lack of microwave observations in the assimila-

tion process. Inclusion of this kind of data into Mirto or

as direct radiance assimilation is envisioned for the

near future. In practice, the forecast cycle can work

with different cycling frequencies. The MKWC routine

operation uses a 6-h updating frequency and refreshes

the cycle with a cold-start run every 3 days. Whether

in cold or cycling mode, each forecast cycle produces a

60-h-long forecast.

To assess the performance of the assimilation system

presented in this work, a variation of theMKWC routine

configuration is used: only the coarse 4.5-km domain is

retained and the WRFmodeling system is run in cycling

mode with a 3-h cycling frequency (Fig. 2), which allows

timely assimilation of both sensors given the overpasses

times of Suomi NPP and NOAA-20 and MetOp-A and

MetOp-B. The polar orbiter Suomi NPP andNOAA-20,

carrying CrIS, overpass the central Pacific area between

1030 and 1230 UTC and 2230 and 0030 UTC, whereas

the two polar orbiters,MetOp-A andMetOp-B, carrying

IASI, overpass the area between 0730 and 0930 UTC

and 1930 and 2130 UTC, respectively. Because of this

overpass schedule, hyperspectral data can be assimilated

at 0000, 0900, 1200, and 2100 UTC. Choosing a 61.5-h

assimilation window and depending on the overpass

times of MetOp-A and MetOp-B, data could also be

available at times for the 0600 and 1800 UTC cycles.

Level-1 data from CrIS and IASI are fed to the Mirto

processor, which produces 1DVAR physical retrievals

of temperature and relative humidity, instability indices,

and TRs, along with their observation operator, all in

near–real time. TRs and their corresponding observa-

tion operators are the quantities used in the assimilation

process within the modified WRFDA system, as ex-

plained in next section. Figure 3 provides examples of

the distribution of clear-sky fields of view (FOVs)

associated with successful Mirto retrievals. These dis-

tributions were obtained by patching together the ad-

jacent overpasses that overlap the domain in Fig. 1 and

that occur during the 3-h windows centered at 2100 and

0000 UTC for IASI and CrIS data, respectively. The

aggregated data for each overpass are quality controlled

and then thinned to 90km, which means that assimilated

observations have been subselected to ensure a mini-

mum distance of 90 km between them. Quality control is

performed by excluding 1) FOVs with cloud contami-

nation over 5%, 2) FOVs whose retrievals show relative

humidity $100%, and 3) FOVs that did not reach

convergence. The thresholds used in the quality control

(QC) have been set according to the authors’ experi-

ence. For point 2, the IASI cloud mask is estimated

from the Advanced Very High Resolution Radiometer

(AVHRR), and it is distributed in the level-1C prod-

ucts, whereas the CrIS cloud mask is estimated from

Visible Infrared Imaging Radiometer Suite (VIIRS)

radiance at run time via a collocation software package

developed by AdaptiveMeteo S.R.L.

Preliminary results from a case study of a rainfall

forecast over Kauai in which TRs are assimilated is pre-

sented and discussed in section 4. The full investigation of

this case as well as a more in-depth analysis of the impact

of the new assimilation approach on the forecast’s accu-

racy will be material for two subsequent papers.

3. Assimilation system design and underlying
theory

In this section an overview of the theory underlying

the assimilation design is provided. The Earth-emitted

infrared spectrum at the top of the atmosphere yrad is

related to the true continuous atmospheric fields xtc by

the radiative transfer operator H such that

y
rad

5H (xtc)1 e0 , (1)

where e0 is the observation error with variance R.

FIG. 2. WRF cycling schedule.
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Let us denote with y0rad a vector representing the ra-

diances observed by a satellite instrument; Eq. (1) can

then be discretized in the form

y0rad 5H(xt)1 e0rad , (2)

where H is the forward model operator, which imple-

ments the radiative transfer equation in a finite dimen-

sional space; xt is the discretized representation of xtc,

defined over a vertical pressure grid pt; and e0rad (with

covariance Rrad) is the total observation error, which

includes the measurement error e0 (which after dis-

cretization has covariance Re) and forward model error

with covariance RFM.

Under these circumstances, given a real satellite hyper-

spectral observation y0rad, the retrieval assimilation

problem is reduced to 1) finding the maximum a poste-

riori (MAP) estimate of xtc (inverse problem solution)

for each observation, 2) applying the transformation of

the MAP solution into a small number of statistically

independent quantities that can be directly ingested by

an assimilation system, and 3) assimilating the trans-

formed MAP solution with WRFDA.

The overall system implemented at the MKWC con-

sists of two modules: the inversion module (section 3a),

responsible for steps 1 and 2, that is, for mapping the

observed radiances into vertical profiles of atmospheric

parameters and for applyingMigliorini’s transformation

and the assimilationmodule (section 3b), responsible for

step 3, designed to combine the information embedded

in the TRs with the information on atmospheric state

(background) available prior the observations.

Both modules implement Bayesian approaches to

solve noisy inverse problems in which prior under-

standing or expectation about vertical atmospheric

temperature and water vapor profiles are updated in

the light of the information made available by new

observations. The first module updates a forecast

valid at satellite overpass time using the information

provided by hyperspectral IR observations (inversion

module), while the second module updates the initial

conditions, or background, of a forecast model, using

the output of the first module along with MK-OBS.

Figure 4 details the structure of the system.

The modules are both designed to minimize cost

functions of similar form:

J(x)5
1

2
(x2 x

b
)TB21(x2 x

b
)

1
1

2
[y2H(x)]TR21[y2H(x)] . (3)

The first term on the right-hand side of Eq. (3) can be

thought as the volume in the state space, where the solu-

tion is likely to be found with a certain confidence, before

the observation is made, and it is given by the square dif-

ference of the atmospheric state x to the a priori or back-

ground state xbweighted by the a priori covarianceB. The

second term on the right-hand side of Eq. (3) represents

the region in which the states consistent with the obser-

vations could be found, and it is given by the distance be-

tween themeasurements y and the retrieved state mapped

into measurement space using the observation operatorH

weighted by the total error covariance matrix R.

FIG. 3. Locations of convergent, nonsaturated (RH, 100% for any level) retrievals: (a) clear-sky IASI retrievals

overlaid onAVHRR channel 3 background image valid for 2020UTC 12Apr 2018, and (b) CrIS retrievals overlaid

on a VIIRS true color image valid for 2338 UTC 12 Apr 2018.
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The inversion module tries to minimize Eq. (3), when

the observation y5 y0rad is a vector representing the ra-

diances observed by a satellite instrument, H is the

forward model [Eq. (2)] that maps the atmospheric state

into radiances, and R 5 Rrad is the uncertainty on the

observations due to instrument noise and forwardmodel

errors. The a priori xretb is the best characterization of the

atmospheric state available prior the satellite overpass.

In this study the atmospheric temperature and water

vapor components of xretb are from the WRF RUC

forecast valid at the time of the satellite overpass and are

defined over the vertical pressure grid pret, which is

identical to pwrf for the first 51 levels and has equally

spaced in log(p) levels from the top of the model to the

top of the atmosphere at 0.01 hPa. The uncertainties

related to the a priori state xretb are described by the

background covariance error B 5 Bret, with The as-

similation module, following the same naming conven-

tion introduced in Migliorini (2012), tries to minimize

Eq. (3), when y5 y0ret are the TRs and H5H0
ret is the

observation operator, which maps the atmospheric

space into the transformed retrieval space [Eq. (19)].

The a priori xb 5 xb* is the best characterization of the

atmospheric state available prior to the assimilation

time. In this study the atmospheric temperature and

water vapor are from the most recent WRF forecast

validating the assimilation time. The uncertainties re-

lated to the a priori state xb* are described by the

background covariance error B5 B*, with xretb 6¼ xb* and

Bret 6¼ B*. This choice represents the most general case

to mimic the situation where the TRs are generated

from an independent data provider and are based on

an a priori potentially incompatible with the assimila-

tion background. In radiance assimilation, the final

analysis is prior dependent. According to Migliorini’s

work, provided that the indicated conditions on the

linearity and on the covariances are valid, radiance and

retrieval assimilation are equivalent, even when the

TRs are generated from an a priori independent from

the model background. Therefore, even if the depen-

dence of the analysis from the background prior be-

comes more complicated for the TR assimilation, the

equivalence holds true, and the contamination of the

analysis from the retrieval prior is mitigated. It is

worth stressing how important it is to ensure that TRs

are generated using a good background forecast and

background error covariance, that is, consistent as

much as possible with those used in operational me-

teorological centers to meet the above mentioned

conditions.

Section 3a provides a description of the inversion

module (radiance inversion and retrieval transforma-

tion), and section 3b describes the assimilation module.

Finally, section 3c describes the forecasting experiment

designed to test the assimilation system.

a. Inversion module

The inversion module is based on Mirto, a 1DVAR

system that allows for the retrieval of atmospheric

temperature, water vapor mixing ratio, carbon diox-

ide, ozone, and surface temperature and emissivity

from calibrated radiances observed by high-spectral-

resolution infrared instruments (Antonelli et al. 2017).

Besides inverting the radiances into physically based

retrievals, the inversion module is also in charge of ap-

plyingMigliorini’s transformation to generate physically

based TRs.

1) FROM RADIANCES TO PHYSICAL RETRIEVALS

Mapping of observed radiances into nonobservable

atmospheric variables is achieved through Bayesian in-

version and, at this stage, is intended for clear-sky cases

only. From a theoretical point of view retrievals of

temperature and water vapor can be also done in cloudy

conditions. In practice, in infrared remote sensing, the

inversion process requires special techniques such as

cloud clearing for partially cloudy conditions (Cho and

Staelin 2006; Gambacorta et al. 2014), and adaptive

FIG. 4. Schematic flowchart of the data assimilation system used to feed the WRF prognostic

component.
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surface level, for overcast conditions. Neither of these

techniques are currently implemented inMirto (Antonelli

et al. 2017), which is the system used to perform the

inversion. The package uses the Atmospheric and

Environmental Research, Inc. (AER), Optimal Spectral

Sampling (OSS) radiative transfer model (Moncet et al.

2008) for the computation of simulated radiances and

Jacobians [Eq. (2)]. At the time of writing, the inversion

package Mirto works with IASI (3303 channels), and

CrIS (826 channels at reduced resolution) observations.

In Mirto the MAP solution for xt, given the observed

radiances y0rad, is found by minimizing the cost function

of the form described in Eq. (3),

J(x)5
1

2
(x2 xretb )

T
B21(x2 xretb )

1
1

2
[y0rad 2H(x)]

T
R21

rad[y
0
rad 2H(x)] , (4)

and it is obtained through an iterative process, expressed

in terms of departure from xretb .

For the chosen case study, in the retrieval module, the

xretb components for atmospheric temperature and water

vapor comes from the RUC system, that is the 3-h

forecast from the run started at 1800 and 2100 UTC

12 April 2018 for the IASI (2024 and 2139 UTC) and

CrIS (at 2338 UTC) overpasses, respectively, while Bret

is derived from B* by retaining the diagonal elements

only. The elements of xretb and Bret relative to carbon

dioxide, ozone, surface temperature, and surface emis-

sivity were generated using the method described in

Antonelli et al. (2017).

The total error covariance matrix used inMirtoRrad is

defined as

R
rad

5R
m
1R

H
, (5)

where Rm represents the errors in the measurements

(instrument noise), and RH represents the errors in the

observation operator (forward model). This last term

represents the errors associated with the radiative

transfer model like the errors in the spectroscopical

parameters (line position and half-width) and the er-

rors due to the atmospheric/surface variables not

specifically accounted for in the radiative transfer

calculations.

The total error covariance matrix as defined in Eq. (5)

was estimated fromretrieval residuals,rrad 5 yrad 2H(x̂ret),

obtained from a large dataset of clear-sky retrievals that

reached convergence. Considering that the diagonal of

the spectral residuals covariance is an estimator of the

instrument noise, for the first term on the right side of

Eq. (5), cov(rrad) was calculated to represent a lower

limit for Rrad. Therefore it was chosen to inflate the

diagonal terms of Rm in RH 5 Rrad 2 Rm, by adding the

spectral residual bias rrad.

The solution after convergence becomes

x̂
MAP

5 xretb 1 (B21 1 ĤTR21
radĤ)

21
ĤTR21

rad[yrad 2H(x̂)

1 Ĥ(x̂2 xretb )] , (6)

where x̂ is the state vector at convergence and

Ĥ5 ›H/›xjx5x̂MAP
is the Jacobian of the observation op-

erator H at convergence [Rodgers (2000), their Eq.

(5.9)]. The forecast profile is used both as the prior

profile xretb in the retrieval and also as the first guess for

the iterative retrieval (as is normal practice in 1DVAR,

except for the cloud variables). In principle, the choice

of the first guess should not affect the value of the so-

lution, unless there are multiple minima, but it affects

the speed of convergence, while the prior xretb clearly

affects the value of the solution through Eq. (6).

Retrieved profiles shown in Fig. 5 were obtained for a

CrIS FOVs located ;13 km from Hilo (Fig. 5a) and

;40 km from Lihue (Fig. 5b). The retrieval near Hilo

achieved convergence in five iterations, with a final

x2 5 1.54 where x2
i 5 [yrad 2H(xi)]

TR21
rad[yrad 2H(xi)].

The total number of degrees of freedom for signal

calculated for temperature and water vapor from

Rodgers (2000),

d
s
5 tr[(B21 1 ĤTR21

radĤ)
21
ĤTR21

radĤ] , (7)

gave ds 5 9.65 (with dstemp 5 2.26 for temperature and

dswv 5 7.39 for water vapor). This is the number of in-

dependent quantities in the selected CrIS observed

spectrum useful to characterize the vertical profiles of

temperature and water vapor.

2) FROM PHYSICAL RETRIEVAL TO

TRANSFORMED RETRIEVALS

The inversion module also applies the linear trans-

formation proposed by Migliorini (Migliorini et al.

2008; Migliorini 2012). Under the assumption that the

observation operator is linear within the error bounds

of the retrievals, this transformation can be applied to

the retrievals to 1) mitigate the dependence of the

retrieval from the a priori by isolating the portion of

the profile effectively constrained by the observations,

2) compress as much as possible the information con-

tent embedded in the observations, and 3) map the

retrievals into an orthogonal space where the associ-

ated errors are uncorrelated. The transformation goes

through several steps to map the retrieval solution

x̂MAP in Eq. (6) into the TRs. The first step is to cal-

culate the p nonsingular eigenvectors Lp associated
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with the p nonzero eigenvalues Sp of the observation

error covariance Rrad:

R
rad

5L
p
S

2
pL

T
p . (8)

The second step is to estimate the normalized trans-

formed radiances and Jacobians, y0rad and H0
rad, by pro-

jecting the radiances y0rad and JacobiansHrad, normalized

by the square root of the p#m nonzero eigenvaluesSp,

onto the eigenvectors Lp:

y00rad [S21
p LT

py
0
rad and (9)

H0
rad(x

t)[S
21
p LT

pHrad
(xt) . (10)

The third step is to calculate and diagonalize the

signal-to-noise matrix:

S5 Ĥ0
rad

B1/2 5U
r
L

r
VT

r . (11)

The last step is then to project the normalized

transformed radiances and Jacobians, y0rad and H0
rad on

the r eigenvectors of the signal-to-noise matrix asso-

ciated with eigenvalues li51,... ,r $ 1 that provide an

orthonormal base of dimension r # n onto which the

projection of normalized TRs and the normalized

Jacobians produce the actual components to be as-

similated, that is, the TRs:

y0ret 5UT
r y

0
rad , (12)

and the forwardmodelH in Eq. (2) into the transformed

retrieval observation operator:

H0
ret 5UT

r H
0
rad . (13)

The TRs y0ret represent the fraction of the true state

‘‘readable’’ by the instrument (along with its indeter-

mination eret). They are the candidate observations for

data assimilation, as they do not introduce significant

bias in the analysis due to the a priori information used

in the inversion problem that is potentially inconsistent

with the analysis background. Thus, the TRs are com-

pressed to retain the atmospheric signal embedded in

the original observed radiances, while filtering out most

of the random component of the observation error

(Antonelli et al. 2004).

For the data used in this study, Fig. 6 shows the mean

and the standard deviation of the eigenvalues of the

signal-to-noise matrix [Eq. (11)], whereas Figs. 7 and 8

show y0ret and H0
ret for temperature in kelvins and water

vapor in terms of ln(q) with q in kilograms per kilogram.

In particular, the first figure shows mean and the stan-

dard deviation of y0ret for the 135 IASI FOVs (Fig. 7a),

and the 91 CrIS FOVs (Fig. 7b) selected respectively for

the 2100 and 0000 UTC assimilations, while Fig. 8 shows

the mean and the standard deviation of H0
ret for the

FIG. 5. Example of single CrIS retrievals for temperature and dewpoint temperature in a skew T representation

for 2338UTC 12Apr 2018. The retrieval first guess (blue) comes from theWRF forecast valid at the overpass time.

The retrieval solution is in red, and the closest available soundings for (a) Hilo and (b) Lihue at 0000 UTC are

in black.
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same IASI (Fig. 8a) and CrIS (Fig. 8b) FOVs. The 10

functions showed in each panel of Fig. 8 represent the

first 10 columns of the observation operator corre-

sponding to the eigenvalues of the signal-to-noisematrix

[Eq. (11)] larger than one as shown in Fig. 6. Differences

between the IASI and CrIS functions for the two over-

passes taken into consideration are visible in the figures;

any speculation on the possible reasons for such differ-

ences is deferred to an analysis that will be done on a

statistically significant dataset.

To properly and efficiently assimilate hyperspectral ob-

servations in the form of TRs and to obtain an unbiased

analysis, the forward model operatorH in Eq. (2) needs

to be linear within the error bounds of the retrievals.

This requirement is checked to ensure the applicability

of the approach suggested by Migliorini. Whether a for-

ward model can be considered linear is addressed by

evaluating the difference between the forward model it-

self and its linearization about the retrieval solution x̂MAP,

dy5H(xt)2H(x̂
MAP

)2H(xt 2 x̂
MAP

), (14)

for values of xt within one standard deviation from

x̂MAP, that is, xt 5 x̂MAP 6 ei where the error pattern

FIG. 6. Distribution of eigenvalues (mean and standard deviation) in logarithmic scale, of the signal-to-noise

matrix [Eq. (7)]:(a) the values for the 2100 UTC assimilation (135 IASI FOVs; 3303 channels per FOV) and (b) the

values for the 0000 UTC assimilation (91 CrIS FOVs; 826 channels per FOV). The eigenvalues larger than 1,

indicated by the horizontal dashed line, are those that actually carry significant information about the true state

vector.

FIG. 7. Distribution of y0ret (mean and standard deviation): (a) the values for the 2100 UTC assimilation (135 IASI

FOVs) and (b) the values for the 0000 UTC assimilation (91 CrIS FOVs).
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ei 5 l1/2
i li is the product between the square root of

the ith eigenvalue and the ith eigenvector of the re-

trieval error covariance. Therefore, the first test is

to verify that the covariance of dy is small relative

to Rrad, that is, c
2 5 dyTRraddy is a x2-like quantity

significantly smaller than 1. As an example, Fig. 9

compares the differences dy between the forward

model H(xt) and its linear approximation H(x̂MAP)2
H(xt 2 x̂MAP), in red, with the square root of the di-

agonal elements of the observation error Rrad (in

black) for a single FOV. For each of the selected 91

FOVs of the CrIS overpass c2 was calculated using

for xt 10 error patterns all with the same sign so to get

in one of the two extreme cases of error, and we

found a mean value c2 5 0:0017 with a maximum value

of c2max 5 0:01.

A second test proposed by de Haan aims to detect

possible anomalies in the transformation of the retrieval

solutions by using the differences

y0ret 2H0
retx̂MAP

5H0
retx

t 1 e
y0ret

2H0
ret[x

ret
b

1KH(xt 2 xretb )1Ke
rad

] and (15)

y0ret 2H0
retx

ret
b 5 y0ret 2H0

retx
t 1H0

ret(x
t 2 xretb ) (16)

whose covariance should have expected values that are

dependent on the eigenvalues of the signal-to-noise

matrix [Eq. (11)] as shown in appendix A:

(y0ret2H0
retx̂MAP

)(y0ret2H0
retx̂MAP

)
T
5 (L

r
LT

r 1 I
r
)
21

and

(17)

(y0ret 2H0
retx

ret
b )(y0ret 2H0

retx
ret
b )

T
5 I1H0

retBH
0T
ret

5 I
r
1L

r
LT

r . (18)

The expected values in Eq. (17) lies between 0 and 1.

The smallest values occur for the largest eigenvalues and

FIG. 8. The first 10 columns of the assimilation operator H0
ret (mean and standard deviation) for (a),(b) tem-

perature and (c),(d) water vapor log(q) for (left) the 2100 UTC assimilation (135 IASI FOVs) and (right) the

0000 UTC assimilation (91 CrIS FOVs).
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are related to the information content of y0ret. Values

close to 0 indicate almost independent (informative)

observations, while values close to 1 are associated

with elements of y0ret that do not contain additional

information.

Figures 10a and 10b show that for all the eigenvectors

associated with eigenvalues greater than one, the ob-

served values are close to their expected values, for both

IASI (Fig. 10a) and CrIS (Fig. 10b), while for higher-

order eigenvectors, for IASI, there is a departure from

the observed and expected values that needs further

investigation.

The expected values in Eq. (18) are always larger than

1, with the maximum occurring for the largest eigen-

values. Figures 10c and 10d show that also in this case for

all the eigenvectors associated with eigenvalues greater

than one, the observed values are close to their expected

values for both IASI (Fig. 10c) and CrIS (Fig. 10d). In

addition to demonstrating the correct functioning of the

inversion module, this test could play an important role

for the quality control in the assimilation of the TRs

(section 3b).

b. Assimilation of transformed retrievals
with WRFDA

The assimilation problem consists in estimating the

analysis x̂anMAP that minimizes the cost function Jan(x)

(Migliorini 2012):

Jan(x)5
1

2
(x2 x

b
)TB*21(x2 x

b
)

1
1

2
(y0ret 2H0

retx)
T
(y0ret 2H0

retx) , (19)

and x̂anMAP can be expressed as

x̂anMAP 5 x
b
*1K

ret
* (y0ret 2H0

retxb*), (20)

where

K
ret
* 5B*~H0T

ret(
~H0
retB*

~H0T
ret 1 I

r
)
21

, (21)

with B* and xb* being the prior information used to

constrain y0ret. Specifically, xb* is obtained from the WRF

operational forecast from the 9- and 12-h runs started at

1200 UTC 12 April 2018, and it is defined on a pressure

vertical grid p* 6¼ pret; the background error covariance B*

has been estimated following the National Meteorological

Center (NMC) method (Parrish and Derber, 1992): over a

month of WRF output from both the 0000 and 1200 UTC

cycles were used to calculate the differences between each

WRF 24-h forecast and the WRF 12-h forecast valid at the

same time from the following cycle and then to generating

their covariance.

For Eq. (21) to be implemented, B* and xb* are ex-

pected to have the same order and units of Bret and

xretb , which means that ~H0
ret 5H0

retHconvHinterp accounts for

FIG. 9. CrIS linearity test for (a) longwave and (b) midwave: dy5H(xt)2H(x̂)2H(xt 2 x̂)

for one CrIS FOV near the Lihue rawinsonde station is shown in red, and the observation error

diag(R1/2
rad) is shown in black.
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the proper vertical/horizontal interpolation through the

operator Hinterp and for the proper unit conversion

through the operator Hconv. By retaining the diagonal

terms and by removing the off-diagonal terms of B* in

the characterization of Bret, all of the cross-correlation

terms have been removed, and Bret becomes less con-

straining than B* as suggested byMigliorini et al. (2008)

and Prates et al. (2016).

In theWRFDAimplementation, theTRsare assimilated

by an adapted version of the original satellite radiance

module. The WRFDA radiance assimilation module has

been expanded to include a new instrument called TRs. In

WRFDA, each sensor is identified by a triplet used in the

radiative transfer model [either RTTOV or Community

Radiative Transfer Model (CRTM)], which includes the

platform number, satellite identification number, and the

sensor number. TR is uniquely identified by its new sensor

number. Each eigenvector of observation operator in

Eq. (13) is considered a channel and thus the WRFDA

assimilates the observations y0ret in Eq. (12) as if they were

separate channels from a new instrument called TR.

The implemented observation operator ~H0
ret com-

putes the model equivalent (simulated data) for every

observation; ~H0
ret consists of three components. The first

component is the three-dimensional interpolator Hinterp

that interpolates the model background temperature

and humidity horizontally to the observation location

(using latitude and longitude from the observation

FOV), and vertically to the number of pressure levels

used by Mirto. For the vertical interpolation, piecewise

functions were adopted using themodel vertical levels at

the observation location (e.g., de Haan et al. 2004). The

second component of ~H0
ret is the unit converter Hconv,

which converts the background units for water vapor

from grams per kilogram to the Mirto internal units of

log(q) with q in kilograms per kilogram. The third

component of ~H0
ret is the projection operator H0

ret that

maps the interpolated temperature and humidity pro-

files into the TR space.

We emphasize that, in the current configuration, nei-

ther Mirto nor theWRFDAmodule for TR assimilation

implement any bias correction scheme. Since it has been

demonstrated that the bias correction is very relevant

for an assimilation experiments to be successful (Eyre

2016), a variational bias correction scheme (Desroziers

et al. 2005; Eyre 2016) is under development for the

FIG. 10. (a),(b) The square root of the diagonal values of the covariance (y0ret 2H0
retx̂)(y

0
ret 2H0

retx̂)
T
(in red) and

the distribution of values (mean and standard deviation) for (LLT 1 I)21/2 from Eq. (17) (in black) and (c),(d) the

square root of the diagonal values of the covariance (y0ret 2H0
retxb)(y

0
ret 2H0

retxb)
T
(in red) and the distribution of

values (mean and standard deviation) for (I1LLT)1/2 from Eq. (17) (in black) for the (left) 2100 UTC assimilation

(135 IASI FOVs) and (right) 0000 UTC assimilation (91 CrIS FOVs).
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WRFDA module. The opportunity to implement a

variational bias correction (Merchant et al. 2020) for

Mirto, and hence to redefine the observation error co-

variance matrix, will be evaluated in a follow-up study.

When no cloudmask is available, or in the presence of

not-detected clouds, to screen out cloud-contaminated

retrievals, the implemented WRFDA module for the

TR observations has also the option to performs a QC

based on Eq. (22). Since for every element i5 1, . . . , r of

the y0ret(i) vector, the observation minus background

variance is (11l2
i ), and since this value changes from

element to element in the observation vector y0ret and it

also changes from retrieval to retrieval, it seems reason-

able to use (1 1 l2)1/2 to scale the ith components of the

TRs y0ret(i)5 y0ret(i)=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
11 l2

i

q
and the corresponding row

of observation operator H 0
ret 5H0

ret=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
11 l2

p
. Equation

(18) then can be written

�
y0ret 2H 0

retxb
��
y0ret 2H 0

retxb
�T

5 I
r
. (22)

Because of this normalization, the difference between

the observation and background becomes more inde-

pendent from the element position in the array and from

the individual retrieval. The QC would reject any nor-

malized observation whose difference
�
y0ret 2H 0

retxb
�
is

greater than 3 (i.e., outside the 3s confidence interval).

c. Forecasting experiment

To test the TR assimilation within the MKWC 3-h

cycling system, the following experiment was designed

for a record breaking heavy rainfall event that occurred

in April 2018 over the western Hawaiian Islands of Oahu

and Kauai. The underlying meteorological conditions

on 12 April include a deep tropical upper-tropospheric

trough (TUTT) developing to the northwest of the

State of Hawaii, bringing increasingly cold air aloft with

FIG. 11. Horizontal cross section ofQ innovation (8C) for model level numbers (a),(b) 1 (’1015 hPa) and (c),(d) 10

(’850 hPa) for (left) 2100 UTC assimilation (IASI) and (right) 0000 UTC assimilation (CrIS).
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it. At the surface, a low-level ridge to the northeast of

Hawaii produced easterly trade winds that advected a

continuous supply of deepmoisture into the area. During

subsequent days the TUTT deepened, further destabi-

lizing the air mass, and slowly shifted westward. On

15 April 2018, the U.S. rainfall record for a 24-h period

was broken, with ;50 in. (127 cm) rainfall recorded on

the north coast of Kauai. This historic event provides a

uniquely important opportunity to investigate the po-

tential of assimilating hyperspectral TRs to create a more

complete picture of the state of the atmosphere in the

hours before the flooding began. IASI andCrIS TRs have

been produced by the Mirto system, using as a priori the

default MKWC WRF 12/6h forecast validating the sat-

ellites’ overpass times, for eachMetOp andNPPoverpass

available in the time frame from 2100 UTC 12 April to

0000 UTC 15 April. MK-OBS for this time frame have

also been considered for assimilation. The 3-h WRF

RUC system was started on 2100 UTC 12 April with an

assimilation on the 9-h WRF forecast initialized on

1200 UTC 12April (cold run), and it ran up to 0000 UTC

15 April for a total of 18 assimilation processes and rel-

ative forecasts (OP experiment). Each assimilation used

as background the previous cycle 3-h forecast. The cy-

cling system so designed is expected to enhance the cu-

mulative impact of assimilating observations through the

various cycles. A second WRF RUC system was also run

as a control experiment (CNTR) in which assimilation of

the TRs was turned off. Results from these experiments

are presented in section 4. The Kauai 2018 case study

and the impact of this new assimilation approach on the

forecast accuracy of themodeling systemwill be carefully

investigated and detailed in a subsequent paper.

4. Results

One of the strengths of the assimilation system de-

scribed in this paper is its independence from the

FIG. 12. As in Fig. 11, but for horizontal cross section of Q innovation (g kg21).
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characteristics of the hyperspectral instruments. The

two assimilation scenarios presented in this section used

data from two different instruments, IASI and CrIS. All

the instrument related variables (spectral resolution,

instrument noise, viewing geometry, etc.) are embedded

in the 1DVAR inversion (Mirto). Therefore, the TRs

derived from two different hyperspectral sensors can be

treated in exactly the same way by the assimilation

system as all the information regarding the sensors and

the observation error covariances are embedded in y0ret
and H0

ret, both made available by the retrieval provider

(Mirto). The assimilation was done following Migliorini

et al.’s (2008) recipe with the covariance of the obser-

vation error used for the TRs being the identity matrix.

The magnitude of the temperature and water vapor

analysis increments, defined as the difference between

the analysis x̂anMAP and the background xb*, is comparable

for the two instruments, with the increments being, in

both cases, smaller near the surface (Figs. 11 and 12a,b )

than middle model levels (Figs. 11 and 12c,d). This is to

be expected given the vertical structure of the observa-

tion operator (Fig. 8): smaller near the surface than in

the middle atmospheric levels. The results shown imply

that most of the atmospheric signal contributed by the

hyperspectral observations comes from the region be-

tween the upper part of the boundary layer around 800

and 250hPa.

The temperature field is in general well predicted over

the central North Pacific region, likely due to its smooth

spatial variability that is well constrained by the initial

and boundary conditions, while the water vapor field is

less well constrained. The results show that, unlike the

analysis increment for potential temperature, the ones

for water vapor do reflect a higher granularity of the

highly variable humidity field. Therefore, a larger im-

pact is expected from the assimilation of the TRs in the

water vapor analyses.

The analysis increments in potential temperature at

2100 UTC (Fig. 13a) are smaller in magnitude, com-

pared to the 0000 assimilation (Fig. 13b), while for water

vapor (Fig. 13c) they are comparable to the 0000 UTC

ones (Fig. 13d). Figure 13b shows a layer of negative

temperature analysis increments between 100 and

300 hPa, neutral down to 400 hPa, and then positive

from 400 hPa down to 850 hPa for the CrIS assimila-

tion. As for humidity, Figs. 13c and 13d show larger

FIG. 13. Vertical cross sections of analysis increments: (a),(b) Q innovation (8C) and (c),(d)Q innovation (g kg21)

for the (left) 2100 UTC assimilation (135 IASI FOVs) and (right) 0000 UTC assimilation (91 CrIS FOVs).
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analysis increments both negative and positive in the

950–700-hPa layers, that is, a layer around the trade

wind inversion, which is where the satellite would be

expected to help the most.

As a reference to compare the analysis increments

obtained with the assimilation of TRs, a second run was

carried out assimilating onlyMK-OBS for the 0000UTC

run assimilation. Figures 14 and 15 show the tempera-

ture and water vapor analysis increments for the MK-

OBS runs for 2100 and 0000 UTC so that they can be

directly compared to Figs. 11 and 12. In addition, Fig. 16

shows the analysis increments produced by MK-OBS

only on the same vertical cross section of Fig. 13. From

the assimilation of MK-OBS, it clearly emerges that the

dominant contribution to analysis increments is due to

radiosondes. From the direct comparison, the temper-

ature analysis increments obtained in the two assimi-

lations are consistent in size and sign for both the

assimilations at 2100 and 0000 UTC. The analysis

increments related to the assimilation of TRs, however,

have a significantly wider spatial coverage and much

higher representativeness, especially in terms of water

vapor distribution. This is likely due to the paucity of

water vapor observations available for the MK-OBS

over the central Pacific area. If compared to an analysis

done with satellite radiances, the representativeness

would likely be comparable.

To further assess the correct functioning of the

assimilation module, it is necessary to show that the

analysis increments actually bring the background

fields closer to the observations. To measure the

distance from the atmospheric fields and the obser-

vations, the background and the analyses are mapped

into radiance space through the application of the

forward model H as in Eq. (2). For each FOV used in

the assimilation, a state vector x is created using the

vertical profiles of temperatures and water vapor in-

terpolated from the background or from the analyses

FIG. 14. As in Fig. 11, but for conventional observations only.
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and borrowing the components for carbon dioxide,

ozone, and surface parameters (temperatures and

emissivity) from physical (untransformed) retrievals.

The state vectors xb* and x̂anMAP are then fed to the

forward model H to create the synthetic spectra, that

is, the radiances that would be observed by the in-

strument if the atmospheric part of xt was identical to

the background or the analysis profile. The differ-

ences between the radiances thus obtained and the

one actually observed generate the residuals rbg 5
y0rad 2H(xb*) and ran 5 y0rad 2H(x̂anMAP). Figures 17 and

18 show the root-mean-square (RMS) of the residuals

for the 2100 (IASI) and 0000 (CrIS) UTC scenarios

calculated over the 135 and 91 FOV used in the as-

similation. The RMS of rbg is represented by the blue

points, and it is larger than the RMS of ran, red points,

while the observation error used as reference is repre-

sented by the dotted line in black. The reduction in the

spectral residual derived from the analysis suggests that

the assimilation of the TRs brings the simulated radi-

ances closer to the ones actually observed by the satellite

instruments as it is supposed to do.

Figure19 shows the comparison between the OP and

CNTR experiments, in terms of RMS of the 3-h accu-

mulated precipitation predicted by the 18 forecasts

completed during the full cycle. The observed (true) 3-h

precipitation used in the RMS calculation comes from

the Mount Wai‘ale‘ale rain gauge (WLLH1). While a

precipitation analysis on the scale of theWRF domain is

not available at the time of writing, the WLLH1 rain

gauge is chosen among all available because it is the one

showing the early onset of this precipitation event and

reflects the large-scale signal (Chambers 2003), and also

because its observations are independent because they

have not been used in the process of assimilation and

creation of the analysis. The large-scale signal is re-

flected by the model prediction, given the chosen hori-

zontal grid resolution of 4.5 km. The other available rain

FIG. 15. As in Fig. 12, but for conventional observations only.
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gauges show instead the local effects of the strong oro-

graphic enhancement that, along with the large moisture

content of the air mass, contributed to the record-

breaking event recorded at Waipa Garden, in the north-

ern part of Kauai. Predicting with high accuracy the

distribution of this precipitation event is beyond the scope

of this paper and would require a much higher horizontal

grid resolution; therefore, it is left to a separate study. The

RMS comparison suggests an improvement in the forecast

accuracy when TRs are assimilated versus when they are

not. The improvement is more evident during the second

dayof assimilationbothbecause of the expected cumulative

positive impact and because the magnitude of the rainfall

was increasing then. Further studies to asses the efficacy of

this methodology and to characterize the full impact on the

forecast accuracy are needed. A statistical analysis over a

longer period of assimilation to assess the impact of the TR

assimilation is the subject of a second experiment currently

in progress and of a subsequent paper.

5. Conclusions

The launch of satellites carrying hyperspectral sensors

has created renewed interest in assimilating satellite

retrievals, especially for limited-area weather models.

Satellite retrievals that attempt to exploit the informa-

tion content embedded in thousands of channels pro-

vided by these very high-resolution sensors represent

an opportunity for a formidable gain in the assimilation

computational efficiency over current radiance assimila-

tion methods by off-loading the radiative transfer calcu-

lation to the retrieval provider. An obstacle to successful

retrieval assimilation has historically been the bias intro-

duced by the retrieval prior. However, Rodgers (2000) and

Migliorini et al. (2008) provide a theoretical framework to

mitigate possible inconsistencies between retrieval and

assimilation a priori information and identify the cir-

cumstances under which the radiance and retrieval as-

similations are equivalent. In this paper, the Migliorini

approach was implemented and tested in WRF 3DVAR,

using data provided by the 1DVAR inversion package

Mirto (Antonelli et al. 2017). The resulting assimilation

system is integral to a WRF RUC system that nominally

runs every three hours and allows for consistent assimi-

lation of IASI andCrIS data over the central Pacific area

surrounding Hawaii. At the MKWC, Mirto takes on

the role of the data provider and TRs are produced in

house; however, TRs provided by an external source

FIG. 16. As in Fig. 13, but for conventional observations only.
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could also be ingested without any change to the as-

similation system. Another positive aspect of the as-

similation system detailed here is its independence

from the characteristics of the hyperspectral instru-

ments. The analysis results presented in this paper are

derived by assimilating data from two different in-

struments, IASI and CrIS. All the instrument related

variables (spectral coverage, spectral resolution, instrument

noise, viewing geometry, etc.) are embedded in the

1DVAR inversion (Mirto) and in the Migliorini

transformation. Therefore, the TRs derived from the

two different hyperspectral systems have been treated

in exactly the same way by the assimilation system, that

is, the assimilation module did not need to know

whether the TRs were generated from IASI from

CrIS. Significantly, the results of the data assimilation

FIG. 17. IASI: Comparison of the (a) longwave and (b) midwave spectral residuals generated

for the background (blue dots), for the analysis (red dots). The black curve represents the

observation error. Averages were done over the 69 FOVs candidates for the 0000 UTC

assimilation.

FIG. 18. As in Fig. 17, but for CrIS, with averages being done over the 91 FOVs candidates.
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experiments described in this paper, compared to the

case where only MK-OBS were assimilated, confirm

the implementability of Migliorini’s approach and open

the way to dedicated studies to assess the validity of

the theory.

The results indicate that a larger impact of the as-

similation of hyperspectral data is expected from

changes in the water vapor distribution rather than in

the temperature field because of the higher spatial

variability of the water vapor concentrations and the

independence of the water vapor field from temper-

ature and pressure. Therefore, beyond demonstrating

the practicality of the Migliorini approach for hyper-

spectral data assimilation, the potential for improving

the regional weather prediction system currently imple-

mented at theMKWCwas also demonstrated. Preliminary

results comparing forecasts from a cycling system with

and without TR assimilation have shown a decrease in

RMS of the 3-h accumulated precipitation forecast.

Significant additional work remains to fully explore

the impact of the new assimilation approach on the

accuracy of forecasts and to further assess the validity

of Migliorini’s theoretical work. A subsequent paper

that is in preparation will detail the impact of the as-

similation system on the accuracy of the WRF fore-

cast of precipitation for the record-breaking Kauai

flood event using a high-resolution nested grid. In ad-

dition, a longer-running experiment to demonstrate the

impact of the assimilation of TRs more generally is also

in the works.
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APPENDIX A

Derivation of Eq. (17)

This appendix provides the description of the steps

needed to calculate the quantity in Eq. (17):

FIG. 19. RMS of the 3-h accumulated precipitation forecast calculated for each of the eighteen

60-h forecasts for the OP (red line) and CNTR (blue line) experiments.
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(y0ret 2H0
retx̂MAP

)(y0ret 2H0
retx̂MAP

)
T
. (A1)

As suggested by de Haan, the demonstration of

Eq. (17) starts from a manipulation of Eq. (15), which

is obtained from Eqs. (16), (22), (24), and (26) of

Migliorini et al. (2008):

y0ret 2H0
retx̂MAP

5H0
retx

t 1 e
y0ret

2H0
ret[x

ret
b 1KH(xt 2 xretb )1Ke

rad
] ,

(A2)

which can be further manipulated to obtain

y0ret 2H0
retx̂MAP

5H0
ret(I2KH)(xt 2 xretb )

1 (UTR21/2 2H0
retK)ey . (A3)

To avoid the use of subscripts, and y0ret being of dimension

r, in the following demonstrationsU,V, andLwill represent

Ur, Vr, and Lr. Equations (A2) and (A3) then become

y0ret 2H0
retx̂MAP

5H0
ret[(I2KH)(xt 2 xretb )

1 (B1/2VL21UTR21/2 2K)e
y
] . (A4)

The second term of (A4) can be rewritten as

B1/2VL21UTR21/2 2K

5B1/2VL21UTR21/2 2B1/2VL(LLT 1 I)21UTR21/2

5B1/2VL21[I2LLT(LLT 1 I)
21
]UTR21/2

5B1/2VL21(LLT 1 I)21UTR21/2 . (A5)

so that Eq. (A1) can be rewritten as

H0
ret[(I2KH)B(I2HTKT)1B1/2VL21(LLT 1 I)

22

3L21VTB1/2]H0T
ret . (A6)

With a focus on the products inside the most external

parentheses,

(I2KH)B(I2HTKT)1B1/2VL21(LLT 1 I)22L21VTB1/2

5 (B2KHB)(I2HTKT)1B1/2VL21(LLT 1 I)22L21VTB1/2

5B2KHB2BHTKT 1KHBHTKT 1B1/2VL21(LLT 1 I)22L21VTB1/2

5B2B1/2VL(LLT 1 I)I21UTR21/2R1/2ULVTB21/2B2BB21/2VLUTR1/2R21/2U(LLT 1 I)21LVTB1/2

1B1/2VL(LLT 1 I)21UTR21/2R1/2ULVTB21/2B2B21/2VLUTR1/2R21/2U(LLT 1 I)21LVTB1/2

1B1/2VL21(LLT 1 I)22L21VTB1/2

5B2 2B1/2VL(LLT 1 I)21LVTB1/2 1B1/2VL(LLT 1 I)21LL(LLT 1 I)21LVTB1/2

1B1/2VL21(LLT 1 I)22L21VTB1/2

5B1/2V(LLT 1 I)21[(I2LLT)(I1LLT)1 (LLT)
2
1 (LLT)

21
](LLT 1 I)21VTB1/2

5B1/2V(LLT 1 I)21(I1L22)(LLT 1 I)21VTB1/2 ; (A7)

thus

(y0ret 2H0
retx̂MAP

) (y0ret 2H0
retx̂MAP

)
T
5H0

ret[(I2KH)B(I2HTKT)1B1/2VL21(LLT 1 I)
22
L21VTB1/2]H0T

ret

5L(LLT 1 I)21[I1 (LLT)
21
](LLT 1 I)21LT

5 (LLT 1 I)21 . (A8)

APPENDIX B

Derivation of Eq. (18)

This appendix provides the description of the steps

needed to calculate the quantity in Eq. (18):

(y0ret 2H0
retx

ret
b )(y0ret 2H0

retx
ret
b )

T
. (B1)

As suggested by de Haan, the demonstration of

Eq. (18) starts from a manipulation of Eq. (16):

y0ret 2H0
retx

ret
b 5 y0ret 2H0

retx
t 1H0

ret(xt 2 xretb )

5 e0rad 1H0
ret(xt 2 xretb ) , (B2)

which, considering e0rad to be uncorrelated with eb 5
(xt 2 xretb )(xt 2 xretb )

T
, implies
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y0ret2H0
retx

ret
b 5 y0ret 2H0

retx
t 1H0

ret(xt 2 xretb )

5 [e0rad1H0
ret(xt2xretb )][e0rad1H0

ret(xt2xretb )]
T

5 e0rade
0T
rad 1H0

retBH
0T

5 I1H0
retBH

0T . (B3)

Using the alternative expression in Eq. (24) ofMigliorini

et al. (2008), H0
ret 5LrV

T
r B

21/2, it is possible to write

(y0ret 2H0
retx

ret
b )(y0ret 2H0

retx
ret
b )

T

5 I1 (L
r
VTB21/2)B(L

r
VTB21/2)T

5 I1L
r
LT

r . (B4)
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