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ABSTRACT

K�ılauea volcano, located on the island of Hawaii, is one of themost active volcanoes in the world. It was in a

state of nearly continuous eruption from 1983 to 2018 with copious emissions of sulfur dioxide (SO2) that

affected public health, agriculture, and infrastructure over large portions of the island. Since 2010, the

University of Hawaiʻi at M�anoa provides publicly available vog forecasts that began in 2010 to aid in the

mitigation of volcanic smog (or ‘‘vog’’) as a hazard. In September 2017, the forecast system began to produce

operational ensemble forecasts. The months that preceded K�ılauea’s historic lower east rift zone eruption of

2018 provide an opportunity to evaluate the newly implemented air quality ensemble prediction system and

compare it another approach to the generation of ensemble members. One of the two approaches generates

perturbations in the wind field while the other perturbs the sulfur dioxide (SO2) emission rate from the

volcano. This comparison has implications for the limits of forecast predictability under the particularly

dynamic conditions at K�ılauea volcano. We show that for ensemble forecasts of SO2 generated under these

conditions, the uncertainty associated with the SO2 emission rate approaches that of the uncertainty in the

wind field. However, the inclusion of a fluctuating SO2 emission rate has the potential to improve the pre-

diction of the changes in air quality downwind of the volcano with suitable postprocessing.

1. Introduction

The longest eruptive episode in recorded history for

K�ılauea volcano on the island of Hawaii ended in early

August 2018. K�ılauea’s recent episode was an effusive

(nonexplosive) eruption that resulted in a continuous

source of volcanic gas emissions for the 35 years since

1983. The eruption ended with eruptive fissures in

K�ılauea’s lower east rift zone (LERZ). The LERZ

eruption was an extreme event that had impacts on

visibility as far away as the Mariana Islands, more

than 6000 km away (Guam Homeland Security 2018).

The prevailing northeasterly trade wind regime that

dominates the weather of Hawaii advects volcanic

emissions from K�ılauea to the southwest of the island

chain. Volcanic emissions from K�ılauea can reach

the other Hawaiiian islands when the predominant

northeasterly trade wind regime is interrupted. Oahu,

the most heavily populated island, regularly experi-

enced aerosol impacts from K�ılauea, despite its loca-

tion more than 300 km away. Volcanic emissions reach

Oahu during episodes of southeasterly surface winds

associated with precold frontal conditions, upper-

level disturbances, and Kona low conditions (Tofte

et al. 2017).

Although the most recent eruption has ended for

K�ılauea, the state of Hawaii contains multiple active

volcanoes that will erupt again in the near future, if past

activity is any guide. In July 2019, the U.S. Geological

Survey’s (USGS) Hawaiian Volcano Observatory

increased the alert level for Mauna Loa volcano to

‘‘advisory’’ (USGS 2019a). Historically, eruptions from

Mauna Loa differ from those of K�ılauea in duration

and vigor. During its 1984 eruption, emissions fromCorresponding author: Lacey Holland, lh33@hawaii.edu
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Mauna Loa affected most of the state (USGS 2019b).

Future Mauna Loa eruptions are expected to repeat

this pattern (Pattantyus et al. 2018a).

The noxious haze that arises from volcanic gas and

aerosol emissions is known as ‘‘vog’’ or ‘‘volcanic smog.’’

Vog originates from the gases dissolved within magma.

As magma rises within the earth and approaches the

surface, substantial amounts of gas are released into

the atmospheric environment surrounding K�ılauea

(Edmonds et al. 2013). Water vapor, carbon dioxide,

sulfur dioxide (SO2), hydrogen sulfide, and hydrogen

halides are among the components of the exsolved

gases (Mather et al. 2012).

Vog has appreciable and detrimental effects on hu-

man health (Longo et al. 2010; Tam et al. 2016), water

quality, agriculture, infrastructure (Elias et al. 2009),

and the local economy (Halliday et al. 2019). Vog is

particularly harmful to those with respiratory condi-

tions such as asthma, sinusitis, and respiratory dis-

eases (Kleinman 1995; Ruben et al. 1995; Mannino

et al. 1995; Worth 1995; Tam et al. 2007; Longo et al.

2010). Two EPA criteria air pollutants are among its

components: SO2 gas and fine particulate matter of size

2.5mm or less (PM2.5). The PM2.5 component of vog is

primarily sulfate aerosol (henceforth, SO4) and only on

rare occasion contains ash because of K�ılauea’s effusive

eruptive style. The SO4 primarily forms as a secondary

pollutant from the oxidation of SO2.

K�ılauea was a significant source of SO2 pollution.

Between 2014 and 2017, K�ılauea averaged an SO2 emis-

sion rate of nearly 2 million tons per year (Elias et al.

2018). This number far exceeds the 1.26 million tons of

SO2 emissions from all electricity generated in theUnited

States during 2018 (Environmental Protection Agency

2019). As a potent, volcanic source of SO2 within a

remote, tropical environment, emissions from K�ılauea

evolve differently than urban and industrial sources

of SO2. Pattantyus et al. (2018b) describe some of

the complexities in the SO4 pathways and estimate the

rates of these reactions for K�ılauea.

Air quality forecasts and warnings can mitigate the

public health risks associated with vog exposure. Efforts

to develop vog forecasts at the University of Hawaiʻi at
M�anoa (UHM) began in the 1990s to meet the need for

air quality guidance within the state of Hawaii (Businger

et al. 2015; Hollingshead et al. 2003). The transport and

dispersion (hereafter ‘‘vog model’’) that predicts SO2

and SO4 concentrations within the state of Hawaii was

developed initially as a proof-of-concept exercise.

The vog model is a forecast system that has operated

nearly continuously since its implementation at UHM in

2011. Among its users is theHonolulu NationalWeather

Service Forecast Office, which historically has used vog

model guidance to forecast the reduced visibility that

impacts the aviation and marine weather communities

(R. Ballard 2018, personal communication). The vog

model uses state-of-the-science regional weather fore-

casts with real-time volcanic SO2 emission rates that

are input to a custom implementation of a Lagrangian

dispersion model [Hybrid Single-Particle Lagrangian

Integrated Trajectory model (HYSPLIT; Draxler and

Hess 1997; Stein et al. 2015)] to predict the impact of

vog on local air quality for the state of Hawaii. It now

includes a 27-member forecast ensemble that runs on a

High-Performance Computing (HPC) cluster at UHM.

Attempts to develop air quality forecasts for vog

without numerical weather prediction (NWP) guidance

have achieved varying degrees of success. One study

(Michaud et al. 2007) developed statistical relationships

betweenmeteorological variables to describe conditions

that lead to poor air quality in Hawaii. The study

suggested the impact of local wind patterns on the

spatiotemporal variability of SO2 near K�ılauea were

too important to ignore. Others have since succeeded

in applying statistical models that generally perform

well at short lead times (less than 6 h) and show po-

tential at longer lead times during steady, trade wind

conditions (Reikard 2012).

These and other statistical forecast models that do not

simulate physical processes directly, can benefit from

the use of physical models (i.e., weather or air quality

models) to improve forecast skill. Forecast techniques

based on the leveraging statistical relationships are

known to add the most value to short-term forecasts,

while physical models generally perform better at longer

lead times. Although comparisons have been made

between these two types of models, efforts to develop

physical or statistical models should be viewed as

complementary because they can be applied together.

Examples include model output statistics (MOS; Glahn

and Lowry 1972), various ensemble MOS (Wilks and

Hamill 2007) and analog ensemble methods (Delle

Monache et al. 2013; Eckel and Delle Monache 2016),

neural networks (Gardner and Dorling 1999), and blends

thereof (Larson and Westrick 2006; Giorgi et al. 2011).

This list is by no means comprehensive but merely

demonstrates the broad range of statistical forecast

techniques that can enhance the skill of physically

based models or vice versa.

Among the findings of statistical forecast studies of

vog, Reikard (2019) noted the challenges that non-

stationarity in the mean and variance of SO2 concen-

trations introduces. He also noted the difficulty in

forecasting extreme vog events, which are the most

critical events. Although nonstationarity is challeng-

ing to address, both problems can be approached with

1924 WEATHER AND FORECAST ING VOLUME 35

D
ow

nloaded from
 http://journals.am

etsoc.org/w
af/article-pdf/35/5/1923/4995915/w

afd190189.pdf by guest on 31 August 2020



stochastic (probabilistic) methods. Ensemble forecasts

generally provide superior guidance during extreme

events because they aim to produce a probability dis-

tribution that encompasses a range of likely outcomes.

Probability distributions, such as those that ensembles

produce, are more useful to decision-makers than single

deterministic forecast realizations (NRC 2006; AMS

2008; Gill et al. 2008; Hirschberg et al. 2011; Pattantyus

and Businger 2015). Deterministic forecasts cannot ad-

equately characterize the range of scenarios for which

emergency planners and others need to prepare and do

not directly provide the uncertainty information that

WMO Guidelines recommend (WMO 2012). For these

reasons, the vog model now produces operational

ensemble forecasts.

The goal of an ensemble forecast is to provide a range

and probability of scenarios that may occur because of

the limitations inherent in an imperfect forecast sys-

tem. The differences between scenarios are referred

to as ‘‘uncertainty.’’ Ensemble forecasts approximate a

probability distribution using a finite number of sce-

narios (Leith 1974). In a well-calibrated and unbiased

ensemble forecast system, the expected outcome from

this compilation of forecasts often more closely re-

sembles the observed outcome than a single, deter-

ministic forecast. This closer resemblance to observed

outcomes explains the practice of using the ensemble

mean itself as a forecast. When the ensemble forecast

distribution is normal, its mean is the expected value of

the forecast.

Forecast uncertainty commonly arises from either

error in the characterization of initial conditions or from

deficiencies in the model itself. More specific contribu-

tions to forecast error can be attributed to processes that

fall within these broad categories: the contributions of

model error, observation error, data assimilation pro-

cedures, and boundary conditions (Buizza et al. 2005).

Most error contributions to air quality forecasts also fall

under those same broad categories, with perhaps the

addition of errors related to reactive chemistry mech-

anisms and rates (Delle Monache and Stull 2003), such

as the partitioning between SO2 and SO4 in the vog

model (Pattantyus et al. 2018b). These sources of un-

certainty limit the predictive accuracy of models at lon-

ger forecast times through contributions to cumulative

forecast error.

The wind-varying operational vog model ensemble

simulates only one source of uncertainty in the initial

conditions. It simulates the uncertainty from small errors

in the initial wind field that contribute to the accumula-

tion of errors in the HYSPLIT trajectories (Draxler

2003). As described by Pattantyus and Businger (2015) in

their initial demonstration and qualitative assessment,

each ensemble member simulates transport errors in the

initial field through offsets (61 grid point) in the three-

dimensions (x, y, z) of the modeled wind field. Although

the wind-varying vog model attempts to characterize

one source of uncertainty in the initial conditions

(uncertainty ascribed to errors in the initial wind field)

other sources of uncertainty also exist and may war-

rant inclusion in the vog model ensemble. There have

been successes in other ensemble approaches that use

multiphysics (Jiménez-Guerrero et al. 2013), multi-

model (Delle Monache and Stull 2003), and post-

processing (Djalalova et al. 2015; Garner and Thompson

2013) approaches to ensemble modeling for air quality

applications.

The second approach is novel in that it simulates

the uncertainty associated with the active subsurface

geology. The dynamics of the magma beneath K�ılauea

govern the variations in the emission rate atHalemaʻumaʻu
(K�ılauea’s summit) (Patrick et al. 2018) and include pro-

cesses such as convection, degassing, andmixing that occur

on rapid time scales (Edmonds et al. 2013). Preceding the

summer 2018 eruption in the lower east rift zone, a lava

lake at K�ılauea summit was visible at the surface and

particularly active. FLYSPEC instruments positioned

downstream of the summit provide an estimate of the

variation in the SO2 emission rate (Businger et al. 2015;

Elias and Sutton 2017). From these data, we can esti-

mate how much the varying emission rate contributes

to vog forecast errors. These may also be compared to

the magnitude of uncertainties that arise from trans-

port errors in the initial wind field.

To quantify the amount of SO2 ensemble forecast

error that a varying emission rate contributes, we vali-

date the current operational ensemble prediction system

(hereafter, wind-varying ensemble) and compare it to

the skill of an ensemble created by varying the emission

rate. Although other sources of uncertainty exist and

may affect the vogmodel ensemble, we focus on only the

contributions from the varying emission rate at K�ılauea.

We examine the performance of both ensembles using

observations collected at the Pahala Hawaii Department

of Health (HDOH) air quality monitoring station near the

K�ılauea summit (Fig. 1). For this comparison, we examine

SO2 concentration forecasts during northeast trade wind

conditions when the Pahala site is downwind of the

K�ılauea summit.

2. Data and methods

To compare the skill of the wind-varying vog ensem-

ble prediction system to the emission-varying ensemble,

we analyzed the performance during the period from

January to April 2018. Persistent trade wind conditions
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were present over the K�ılauea summit for the 33 days

included in the analysis. Under trade wind conditions,

reliable estimates of the emission rate are available from

the FLYSPEC array, located southwest of the summit

vent. Moreover, trade winds advect vog toward the

nearby HDOH air quality monitor in Pahala used for

model validation (Fig. 1). Pahala is in an area ;30km

southwest of the summit emission source. Although SO2

from Puʻu ʻ �Oʻ�o can directly impact the air quality mea-

surements at Pahala, the emission rate and emission rate

variability were one and two orders ofmagnitude smaller,

respectively, than those from Halemaʻumaʻu during the

period of study.

In this study, we focus on forecasts of near-ground

hourly averaged SO2 concentrations at the Pahala

HDOHmonitoring site, without consideration of SO4.

This is because currently there is no direct measure-

ment of SO4 aerosol on Hawaii Island. The abundance

of non-SO4 sources of PM2.5 (e.g., sea salt) impacts

Pahala and makes it a challenge to validate the SO4

forecasts directly (Businger et al. 2015). There is a

large amount of variability in the SO2 to SO4 con-

version rate (Porter and Clarke 1997; Kroll et al. 2015;

Pattantyus et al. 2018b). For these reasons, we focus

on forecasts of SO2 concentrations at the nearby HDOH

Pahala air quality monitor.

a. Vog ensemble prediction system

The ‘‘vog model’’ (Businger et al. 2015) is a custom

version of theHybrid Single-Particle Lagrangian Integrated

Trajectory (HYSPLIT; Draxler and Hess 1997) model

that is run operationally at UHM. The UHM im-

plementation of HYSPLIT forecasts SO2 gas and SO4

aerosol concentrations that uses a fixed SO2 to SO4

conversion rate with active dry and wet deposition.

The forecasts represent an hourly average of con-

centrations between 0 and 100m above ground level.

Current postprocessing applies appropriate air qual-

ity thresholds to indicate human health risk.

Meteorological input for the vog model comes from

a custom Advanced Research version of the Weather

Research and Forecasting Model (WRF-ARW) with

data assimilation that produces gridded forecasts twice

per day. In addition to the use of the WRF-ARW

dynamical core, the operational WRF implementation

used for the vog model is unique and differs markedly

from the NAM Hawaii nest. The custom WRF-ARW

configuration contains 2 two-way nested domains, with

FIG. 1. Elevation contour map showing the locations of the K�ılauea summit and Puʻu ʻ �Oʻ�o
vent (black triangles) and Pahala air quality monitor (red dot). The inset shows the location

of the FLYSPEC instrument array southwest of the summit vent. The blue arrow shows the

direction prevailing northeast trade winds.
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horizontal resolution spacing of 4.5 km and 900m, ex-

tending over the central Pacific area and the island

chain, respectively. One nested-down (from the coarser

4.5 km) domain of 900m covers the Hawaiian island

chain (Fig. 2). A total of 51 vertical levels are used. The

vertical spacing is on the order of tens of meters for the

levels nearest the ground, with first model level ;16m

above the surface, and gradually increases with height

as shown in Fig. 2. The spacing never exceeds ;600m

between contiguous levels. The model top is fixed at

40 hPa, which corresponds to a height of;22 km above

ground level.

The WRF physics package that the current operational

configuration uses includes (i) WRF single-moment

6-class scheme, which resolves ice, snow, and graupel

processes suitable for high-resolution simulations (Hong

and Lim 2006); (ii) the Mellor–Yamada–Janjić (MYJ)

planetary boundary layer scheme (Janjić 2002), which

solves the prognostic equation for the turbulent kinetic

energy; (iii) theRapidRadiationTransferModel (RRTM)

longwave–shortwave radiation scheme (Mlawer et al.

1997); and (iv) a simple downward integration that

efficiently allows for clouds and clear-sky absorption

and scattering (Dudhia 1989).

The WRF-ARW Model routinely runs four times

daily with initial conditions at synoptic times (0000,

0600, 1200, and 1800 UTC) produced by a WRF data

assimilation system. The WRF data assimilation sys-

tem ingests local surface and upper-air observations

along with aircraft and satellite observations. Boundary

conditions are updated every six hours with model

output from the National Centers for Environmental

Prediction (NCEP) Global Forecasting System (GFS).

Each forecast cycle produces a 60-h duration fore-

cast that is output twice daily with forecast output in

3-hourly increments.

The operational vog model incorporates emission

estimates of SO2 from the USGS, as described in

Businger et al. (2015). The initial emission rate is

distributed among 20 sources, 10 each for the summit

emission source and the Puʻu ʻ �Oʻ�o vent. The sources are

distributed as vertical line emissions with a tilt related to

the prevailing trade winds. The largest portion of emis-

sions is aloft. These parameters were based on prior

empirical studies.

During the period of this study (January–April 2018),

the two primary sources of volcanic SO2 were the

K�ılauea summit vent and the Puʻu ʻ �Oʻ�o vent (Fig. 1).

Emissions from the summit vent were measured at

high temporal resolution using an array of FLYSPEC

instruments located southwest of the summit and vent.

The real-time emission rates that USGS provides rep-

resent a rate that has been averaged over nearly a week.

The FLYSPEC array provides emission estimates at

high temporal resolution (Horton et al. 2003, 2006, 2012;

Elias et al. 2006; Elias and Sutton 2012; Elias et al. 2018;

Businger et al. 2015) (Fig. 1 inset). The vog model in-

gests USGS weekly averaged emission rate estimates

FIG. 2. Domains from the WRF-ARW that provide meteorological input to the vog model.

The outer domain (domain 1) has 4.5-km resolution. The inner domain (domain 2) has 900-m

resolution and includes 51 vertical levels with a fixed top near 40 hPa.
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from the FLYSPEC array to produce hourly SO2

and SO4 forecasts 60 h out twice per day (0000 and

1200 UTC). These forecasts are at 900-m horizontal

resolution over the main Hawaiian Islands. An ex-

ample of the deterministic forecast under prevailing

trade wind weather conditions is in Fig. 3a.

In September 2017, an operational 27-member en-

semble was implemented operationally. The ensemble

uses the methods described in Pattantyus and Businger

(2015) and Draxler (2003). This method perturbs the

underlying wind field with variations in the meridional,

zonal, and vertical directions for a total of 27 (33) com-

binations. Among other products such as the ensemble

mean, the vog model ensemble produces forecasts of

the probability that different air quality categories are

exceeded (Fig. 3b). The concentrations and probabilities

that are shown represent an average over a layer

0–100m above ground level (AGL) based on the locations

and characteristics of HYSPLIT-generated Lagrangian

particles.

To examine how varying emission rates impact forecast

uncertainty, an ‘‘emission-varying’’ ensemble was created.

This ensemble differs from the operational (wind-varying)

ensemble forecast in how its perturbations are generated.

The wind-varying model perturbs the wind field and

incorporates weekly averaged SO2 emission rates.

To create the emission-varying ensemble, we resam-

ple hourly FLYSPEC emission rates from the previous

day to simulate the variability in observed emission

rates within the ensemble. The 10-s FLYSPEC emis-

sion rates, with a higher degree of quality control

than available in the real-time weekly averages, were

available for January–April 2018 and converted to

hourly averages. The difference in quality control

impacts the concentration forecasts and necessitates

the use of appropriate quality assessment metrics when

comparing the two ensembles.

Emission rates at the summit for each day demon-

strate variability within the hourly averages and a

skewed distribution (Fig. 4), so resampling methods

are used. HYSPLITmakes use of fictitious ‘‘particles’’

(i.e., air parcels) to simulate atmospheric transport

and dispersion. The locations of the particles for the

emission-varying ensemble are initialized from the

previous 12-h cycle using the same initial locations

as the operational deterministic forecast. The next

forecast cycle is run with a daily averaged emission

rate and is used to initialize the emission-varying

ensemble.

In addition to the 26 ensemble members based on

resampled emission rates, the daily averaged emission

rate is also used as an ensemble member for a total of

27 ensemble members, although the previous day’s

emission rates are oversampled, the result is the same

number of members as the wind-varying ensemble that

represents the distribution of emission rates.

FIG. 3. Examples of (a) the operational deterministic forecast of SO2 concentrations and (b) the probability that

the SO2 concentration will exceed 0.1 ppm are shown based on the wind-varying ensemble. The stars indicate the

locations of the (left) K�ılauea summit and (right) Puʻu ʻ �Oʻ�o emission sources. Solid blue contour lines indicate

elevation above sea level in 500-m increments.
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b. Measurements

We use air quality measurements of SO2 from the

Hawaii Department of Health (HDOH) long-term

monitors to assess the quality of vog model forecasts

of SO2 concentration. For this study, we use only days

with prevailing northeasterly trade winds, or about

27.5% of days. These days were determined from

anemometer-based windmeasurements taken less than

2 km southwest of the summit emission source when

the vector-averaged wind speed exceeds 4m s21, and

the wind direction was between 258 and 758. The wind

speed ranges were selected based on the annual wind

speed distribution and the need to avoid measurement

errors in wind direction at low wind speeds. The range

of wind directions was based on the statistical major

mode of the distribution of wind directions at the site.

We also examine the wind characteristics at Pahala.

The Pahala site has a pronounced diurnal sea breeze

and mountain–valley circulation forced by differential

radiation across the island of Hawaii and nearby ocean

(Smith and Grubisic 1993) (Fig. 5) that necessitates the

use of a mesoscale model that accurately characterizes

these circulations.

c. Forecast performance analytics

To assess the skill of the vog model ensemble system,

we examine ensemble error characteristics and the en-

semble skill–spread relationship across forecast lead

times. First, we compare the characteristics of errors

associated with the operational wind-varying ensemble

system to that of the emission-varying ensemble. This

comparison is performed through the use of the opera-

tional model’s deterministic forecast, and that of the

operational wind-varying ensemble mean as perfor-

mance benchmarks. The deterministic forecast is one

member of the operational ensemble and a stand-alone

forecast product. Then, we examine the performance of

the spread–skill relationship of each ensemble as com-

pared to its own ensemble mean. A well-calibrated en-

semble forecast accurately simulates uncertainty in the

expected value of the forecast. In this section, we show

the error metric formulations used to assess each en-

semble (or when appropriate, the operational deter-

ministic forecast). These statistics are calculated for

each ensemble (or deterministic) forecast for the same

sets of observations.

The deterministic and ensemble forecast performance

are compared by using the mean absolute error (MAE)

and the continuous ranked probability score (CRPS)

(Unger 1985; Hersbach 2000; Gneiting and Raftery

2004). The CRPS is considered a proper forecast score,

meaning that a forecast score cannot gain an advantage

through a forecast that differs from the expected fore-

cast value. We use the MAE and CRPS in conjunction

with one another to compare single-member forecasts

to the probability distribution of the wind-varying and

emission-varying ensembles. The CRPS formulation is

identical to the MAE in cases where the ensemble

consists of exactly one member, such as the determin-

istic operational forecast or the mean of an ensemble

used as a forecast.

For a single forecast realization xi, such as the deter-

ministic forecast, with corresponding observation yi, the

MAE is summed over all forecast and observation pairs

as follows [Eq. (1)]:

MAE5
1

n
�
n

i51

jy
i
2 x

i
j . (1)

The MAE expresses the average size of forecast

errors.

Because we seek a comparison between the perfor-

mance of a single, deterministic forecast and the wind-

varying and emission-varying ensembles, we use the

CRPS. The CRPS is the integral of Brier scores at all

possible thresholds h for the predictand (a continuous

random variable). Observed values are denoted y.

FIG. 4. Box-and-whisker plots show the distribution of

hourly averaged SO2 emission rates for days of persistent

trade winds between January and April 2018. The center line

indicates the median (Q2). The interquartile range (IQR),

or difference between the first and third quartiles (Q1, Q3),

is shown as the length of the boxes. Whiskers extend to the

greater (lesser) of Q1 2 1.5 3 IQR (Q3 1 1.5 3 IQR) or the

lowest (highest) emission rate contained therein. Outliers,

values outside of the bounds of the whiskers, are shown as

open circles.
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The CRPS is expressed in the following equations

[Eqs. (2) and (3)]:

crps(F, y)5

ð‘
2‘

[F(h)2H(h2 y)]2 dt , (2)

CRPS5
1

n
�
n

i51

crps(F
i
, y

i
). (3)

In this formulation, F is the predictive cumulative dis-

tribution function (CDF), or the distribution of ensem-

ble forecast values. The term H(h 2 y) is the Heaviside

(or unit step) function. The Heaviside function has a

value equal to zero when h, y and has a value equal to

one elsewhere. Because the CRPS is a generalized form

of the MAE, this metric allows the direct comparison of

skill between ensemble and deterministic forecasts.

The bias (mean error) [Eq. (4)] and the Spearman

rank correlation are indicators of forecast quality. The

bias shows the average (denoted with an overbar) dif-

ferences between the corresponding observation x and

forecast y pairs. It indicates if the forecast and observed

concentrations are similar in size and if one generally

reports a higher or lower value than the other, on av-

erage. The bias formulates as follows:

bias5 (y2 x) . (4)

The bias is included to examine systemic differences

between individual forecasts. In other words, this metric

demonstrates if a forecast is usually higher (bias. 0) or

lower (bias , 0) than the observations.

The Spearman rank correlation r shown in Eq. (5)

indicates the correspondence between forecasts and

observations. The Spearman rank is a robust, non-

parametric indication of correlation. We focus on only

comparing the physical processes that lead to vog

forecast uncertainty and not necessarily in the strength

of a linear relationship. Neither ensemble has under-

gone calibration or postprocessing which would improve

the statistical relationship between the observations and

ensemble forecasts:

FIG. 5.Wind direction, speed (color), and frequency (%) for Pahala during January–April 2018 for each time of day

(UTC; shown above each plot).
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r5
6�d2

i

n(n2 2 1)
, (5)

where di indicates differences between the ranks of the

forecast and observations and n is the number of ob-

servations. This statistic applies to the deterministic

forecast and the mean of each ensemble to determine

how well the most common way to use each ensemble

corresponds to observations.

Mason and Weigel (2009) first developed the gen-

eralized discrimination score D. The generalized dis-

crimination score quantifies the ability of a forecast to

discern between different observed outcomes as one of

the many dimensions of forecast quality (Murphy 1991).

This generalized discrimination score is also known as the

‘‘two-alternative forced-choice’’ (2AFC) and quantifies the

forecast attribute of ‘‘discrimination,’’ the ability to discern

between differences in observational values. Later, Weigel

and Mason (2011) extend the formulation to include en-

semble forecasts of continuous variables [Eq. (6)]. In this

formulation, x denotes observations and y denotes ensem-

ble forecasts. In this case, ys and yt denote two ensemble

forecasts compared over n observations:

D5
1

2
(t

R,x
1 1). (6)

In this formulation of D, tR,x is Kendall’s rank corre-

lation coefficient (Sheshkin 2007) for n observations

within the n-element vector of corresponding ensem-

ble ranks R 5 (R1, . . . , Rn); R is the full n-element

vector of ensemble ranks for all ensemble forecasts,

which include ys and yt. The rank for ensemble forecast

ys within a set of n ensemble forecasts (y1, y2, . . . , yn)

is expressed in Eq. (7):

R
s
5 11 �

n

t51
t 6¼s

u
s,t
, (7)

with us,t 5 1, if Fs,t . 0.5; us,t 5 0.5, if Fs,t 5 0.5; and

us,t 5 0, if Fs,t , 0.5.

The term Fs,t denotes the proportion of ensemble

member pairs that exceed the threshold. The formula-

tion for Fs,t in this example is as formulated in Eq. (8):

F
s,t
5
�
ms

i51

r
s,t,i

2
m

s
(m

s
1 1)

2

m
s
m

t

, (8)

wherems is the number of ensemble members of ys, and

likewise for mt. The rank of ys,i is denoted as rs,t,i with

respect to the entire set of pooled ensemble members

sorted in ascending order.

The derivation of D for continuous ensemble fore-

casts in Weigel andMason (2011) is thorough, and these

equations result in ameasure that uses ranks to determine

how well differences in ensemble forecasts distinguish

between differences in observed values. A generalized

discrimination score D of 0.5 denotes a forecast with no

skill. Scores greater than 0.5 denote a skillful forecast.

This score is also related to the area under the relative

operating characteristic curve, which relates the hit rate

and false alarm rate for multiple thresholds to indicate

forecast skill (Buizza and Palmer 1998; Mason and

Graham 1999).

Ensemble forecasts can characterize uncertainties in

the SO2 forecast that arise from model error, also called

the spread–skill relationship. We evaluate the spread–

skill relationship in terms of how well the ensemble

spread characterizes errors in the ensemble mean fore-

cast, as described in Hopson (2014). The mean absolute

deviation of ensemble members from the ensemble

mean (MADEM) is as follows [Eq. (9)]:

MAD
EM

5
1

n
�
n

i51

jx
i
2 xj . (9)

In this formulation, xi is the value associated with an

individual ensemble member, x is the value of the en-

semble mean, and n is the number of ensemble mem-

bers. The MADEM can be compared directly to the

MAE for the ensemble mean to indicate how well the

ensemble spread characterizes the errors in the ensem-

ble mean. Thus, the MAE is calculated for the ensemble

mean of the wind-varying and emission-varying en-

sembles and compared to the MADEM of each. In a

well-calibrated ensemble, the larger errors in the MAE

should correspond to a larger spread between ensemble

members – and a larger MADEM.

3. Results

We compare the performance of the wind-varying

ensemble to that of the operational deterministic

forecast and the emission-varying ensemble. We first

find a baseline for error magnitudes of SO2 forecasts,

and then examine measures of correspondence and

the spread–skill relationship. We examine the error

magnitudes for the operational deterministic fore-

cast, the wind-varying (operational) ensemble, and

the emission-varying ensemble. We show the skill of

each ensemble mean. We then examine how well the

deterministic forecast and ensemble means corre-

spond to measurements of SO2. Finally, we look at

forecast discrimination, the ability of the forecasts to

discern variations in SO2 concentration.
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We examine the error magnitudes (MAE) of the op-

erational deterministic forecast, the mean of the oper-

ational ensemble, and mean of the emission-varying

ensemble to the CRPS of the wind-varying ensemble

and the emission-varying ensemble.

Our results show the wind-varying ensemblemean has

smaller errors than those of the deterministic forecast

(Fig. 6). When the entire PDF of the wind-varying en-

semble forecast is used, the CRPS indicates it exhibits

smaller errors than using its mean as a forecast or the

using the deterministic forecast upon which it is based.

The mean of the emission-varying ensemble has the

most substantial errors of all forecasts in the compari-

son. The emission-varying ensemble as a whole displays

errors roughly the same size as the deterministic oper-

ational forecast.

Forecast bias is the average difference between the

forecast and observation (i.e., whether the forecasts are on

average higher or lower than the observations). It indicates

systematic errors. The mean of the emission-varying en-

semble shows the most substantial bias at most lead times

and forecasts concentrations that are much higher than

observed (Fig. 7). Themean of the wind-varying ensemble

displays the bias closest to zero for nearly all lead times and

more closely matches the values of the observations than

the deterministic forecast.

We use the Spearman rank correlation to show how

the operational deterministic, mean of the wind-varying

ensemble, and the mean of the emission-varying en-

semble correspond to measurements of SO2 at Pahala.

With this metric, we find the SO2 concentrations

simulated with the emission-varying ensemble generally

correspond more closely to observed SO2 concentra-

tions than either the deterministic operational forecast

or the wind-varying ensemble mean forecast (Fig. 8).

This also has implications for the bias shown in Fig. 7.

Because the correspondence is stronger, a greater por-

tion of the error in the emission-varying ensemble are

FIG. 6. The mean absolute error (MAE) for the deterministic

forecast is shown (solid black line) for forecast lead hours 1–60. The

MAE of the wind-varying ensemble mean is shown (black dashed

line) with the continuous ranked probability score (CRPS) for the

wind-varying ensemble (solid blue line). These are compared to

the MAE for the experimental emission-varying ensemble mean

(red dash–dotted line) and the CRPS for the experimental

emission-varying ensemble (solid gold line). The number of

observations for each forecast hour is shown (green dots) and

corresponds to the axis on the right.

FIG. 7. Bias is shown for the operational deterministic forecast

(solid black line), the wind-varying ensemble mean (dashed black

line), and themean of the emission-varying ensemble (dash–dotted

red line). A thin, solid black line indicates the zero bias line.

FIG. 8. The Spearman rank correlation is shown for the operational

deterministic forecast (solid black line), the mean of the operational

ensemble (dashed black line), and the mean of the emission-varying

ensemble (solid red line) for forecast hours 1–60.
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likely to be systematic relative to the portion of random

errors than those observed in the other forecasts

shown. Although the deterministic operational fore-

casts and mean of the wind-varying ensemble have

smaller errors on average, portions of these errors

arise from variability in the emission rate. Some of

the error that emission rate variability introduces can

be simulated.

The generalized discrimination scores show that the

emission-varying ensemble has a better ability to dis-

tinguish between different observations of SO2 (Fig. 9).

The emission-varying ensemble is a skillful forecast for

nearly all forecast hours and has a discrimination score

that exceeds 0.5, the ‘‘no skill’’ value for this verification

metric. During most forecast hours, discrimination score

of the emission-varying ensemble is greater than that of

the wind-varying ensemble. This is likely because during

periods of eruptive activity, such as when there is an

active lava lake is at K�ılauea’s summit, the forecasts

benefit from updated emission rates and variability

information.

Another critical aspect of a forecast ensemble is the

spread–skill relationship. With the MAE as the primary

error metric, we compare the error magnitudes for the

deterministic operational forecast, the wind-varying

ensemble mean, and the mean of the emission-varying

ensemble. For a well-calibrated ensemble, the spread

should approximate the size of the errors of the en-

semble forecast mean.

The spread of the wind-varying ensemble closely re-

sembles the errors associated with the forecast mean and

incurs smaller MAEs than the deterministic forecast

(Fig. 10). The errors in the mean of the emission-varying

ensemble are larger than its spread and larger than

those of the deterministic forecast. There are indica-

tions that this relates to the large, systematic bias in the

emission-varying ensemble (i.e., the emission-varying

ensemble forecasts an excessive amount of vog) (Fig. 7).

The emission-varying ensemble is unable to characterize

the full range of errors in its forecast mean. There are

additional sources of error for which the emission-

varying ensemble does not account. The errors in the

mean of the emission-varying ensemble are also larger

than that of the wind-varying ensemble. However, the

amount of spread in the emission-varying ensemble is

about the same size as the spread in the wind-varying

ensemble. This shows that the variability in the emis-

sion source can contribute as much to the variability

in the forecast concentrations as variability in the

wind near the emission source. There are also indica-

tions that the systematic bias present in the emission-

varying ensemble contributes to the large errors in its

ensemble mean.

Overall, the emission-varying ensemble that we present

has larger errors than the wind-varying ensemble. These

errors are similar in size to the operational deterministic

forecast. The wind-varying ensemble and its mean have

the lowest errors of all forecasts examined. The proba-

bility distribution of SO2 forecasts in the wind-varying

ensemble aptly characterizes the expected size of errors

in its mean, when used as a forecast. However, the

emission-varying ensemble had a better degree of cor-

respondence to the measurements at Pahala and was

FIG. 9. The generalized discrimination score for ensembles is

shown for forecast hours 1–60. The operational (wind-varying)

ensemble (black line) is shownwith the emission-varying ensemble

(red line).

FIG. 10. The mean absolute error (MAE) for the deterministic

forecast is shown (solid black line). The MAE of the ensemble

mean forecast for the wind-varying ensemble is shown (black

dashed line) with the mean absolute deviation (MAD) for the

wind-varying ensemble spread (solid blue line). These are compared

to the MAE for the emission-varying ensemble (red dash-dotted

line) and the MAD for the spread of the emission-varying

ensemble (solid gold line).
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better able to distinguish between different observations

at Pahala.

4. Discussion

We explored two different ways to create ensemble

forecasts to predict SO2 concentrations based on per-

turbing the initial conditions. One method is based on

perturbations in the initial wind field (wind-varying en-

semble) near the emission sources. The other is based on

perturbations in the strength of the SO2 emission

source (emission-varying ensemble). The latter uses a

relatively simple method to generate an ensemble that

emulates forecast uncertainty from a variable SO2

emission source.

Although the ensemble created from perturbations

in the wind field led to a better forecast in terms of

metrics related to error magnitude, the mean of the

emission-varying ensemble had a better correlation

with observations and an improved ability to discern

between different observations of SO2.

The emission-varying ensemble displayed a better

discrimination score. This means that the emission-

varying ensemble has a better ability to distinguish

between differences in observations than the wind-

varying ensemble. Both ensembles would benefit greatly

from the use of postprocessing and other techniques that

reduce systematic biases in the forecasts.

Bulk error statistics show the mean of the emission-

varying ensemble has larger errors than both the mean

of the wind-varying ensemble and the operational

deterministic forecast. The weekly averages used in

the wind-varying ensemble were received in real time

without postprocessing review and thus received a dif-

ferent degree of quality control than the emission rates

used to create the emission-varying ensemble. Prior ef-

forts to bias-correct deterministic vog model forecasts

were implemented using the weekly averaged emission

rates. It is for this reason that the biases in the deter-

ministic forecast and wind-varying ensemble mean are

relatively small. The emission-varying ensemble did not

have a similar bias-correction applied and such a treat-

ment likely would affect its performance. It is for this

reason that we emphasize the comparisons between the

ensemble spread and measures of its discrimination.

There is potential to improve ensemble forecasts of

SO2 through the inclusion of an emission rate that var-

ies. We find that the subweekly emission rate at K�ılauea

varies to such a large extent that it contributes nontrivially

to the fluctuations in SO2 concentrations observed at

Pahala. When we include the size of the fluctuations in

the emission rate, the ability of the ensemble to predict

changes in the air quality at Pahala improves.

Other studies have shown that ensemble skill may be

improved through the characterization of additional

processes or additional ensembles–if the members are

skill ful, especially in cases where the ensemble is un-

derdispersive (i.e., systematically fails to encompass the

full range of likely outcomes) (Ebert 2001). Because the

emission-varying ensemble is a skillful forecast, it could

be used to increase the spread of the wind-varying vog

ensemble. However, the current wind-varying ensemble

does not appear to be underdispersive. Both methods

to generate a vog ensemble are likely to benefit greatly

from the application of postprocessing or statistical

methods, such as the analog ensemble technique (Delle

Monache et al. 2013).

Our study also suggests that for K�ılauea the vari-

ability in the emission rate itself places a nonnegligible

constraint on the predictability of SO2 concentrations.

The uncertainty that arises from a varying emission rate

is unique from, and of similar magnitude to, the uncer-

tainty that arises from initial errors in atmospheric

transport.

5. Conclusions

We compare the wind-varying vog model ensemble

to an ensemble created by perturbing the strength of

the volcanic SO2 emission source. Our findings show

that the emission-varying ensemble and its mean have

substantially larger errors than the operational (wind-

varying) forecasts. The reasons for this are not clearly

understood and warrant further exploration. The emission-

varying ensemble, however, is more skillful at discerning

between relative concentrations of SO2 as a proxy for

vog (i.e., when more or less vog than the usual amount is

expected.) This also means the emission-varying en-

semble is likely to be a useful forecast for applications

in which identifying relative amounts of SO2 are helpful.

The emission-varying ensemble is able to simulate

forecast uncertainty related to the magnitude of varia-

tions observed in the emission rate. The emission-

varying ensemble is a skillful forecast that is likely to

benefit from postprocessing and other methods that

address systematic forecast biases. We also show that

variability in the emission rate can produce nearly as

much variation in the resulting SO2 concentration fore-

cast as perturbations in the initial wind field.Variability in

the emission rate is likely to be a limiting factor in the

predictability of concentrations of volcanic SO2.

We show that when we include fluctuations in SO2

emission rate, we are better able to predict the changes

in air quality that occur downwind of the source. This

relatively simple method to generate an ensemble shows

that a varying emission rate can introduce nontrivial
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amounts of forecast uncertainty in volcanic air pollution

forecasts.
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