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ABSTRACT
The staff at the Maunakea Weather Center (MKWC) has provided daily forecasts of optical turbulence for the summit of
Maunakea for more than 20 yr. Observational measures of optical turbulence at Maunakea with which to validate official
MKWC forecasts have been available since mid-2009. This paper presents a machine-learning approach to translate the MKWC
experience into a forecast of the nightly average optical turbulent state of the atmosphere. Maunakea observational and forecast
data were collected to build a predictive model of the total and free atmospheric seeing for the following five nights. The
motivation for this work is two-fold: to provide a tool/guidance to the MKWC forecaster and allow for a dynamic calibration of
the optical turbulence algorithm implemented in the MKWC Weather Research and Forecasting (WRF) model.

Key words: turbulence – atmospheric effects – methods: data analysis – methods: observational – methods: statistical –
telescopes.

1 IN T RO D U C T I O N

The Maunakea Weather Center (MKWC) has provided forecasts
of optical turbulence (OT) for the summit of Maunakea for more
than two decades (Businger et al. 2001; http://mkwc.ifa.hawaii.edu).
MKWC forecasters have accrued insight into the parameters that
impact the forecast through years of daily comparisons between
MKWC official forecasts, model guidance, and observational OT
measures (Lyman, Cherubini & Businger 2020). The intensity of the
turbulent fluctuations of the atmospheric refractive index (i.e. OT)
is described by the refractive index structure function, C2

n (Coulman
1985). The maximum telescope resolution is defined by a parameter
called ‘seeing’, which is the full width at half-maximum of the long-
exposure seeing-limited point spread function of a star image at the
focus of a large diameter telescope (Tokovinin 2002). Seeing is the
integral of C2

n over the light’s propagation path and is measured in arc-
seconds. Seeing is an astronomical parameter used in this paper and
in the MKWC forecasts to summarize the optical turbulent conditions
on Maunakea. Seeing and C2

n are complex, non-linear functions of
a number of atmospheric variables, including potential temperature
(θ ), temperature, wind, and turbulence (Cherubini & Businger 2013).
To model C2

n and seeing, and attempt to construct an accurate
prediction, requires the implementation of an OT parametrization
within a weather model running at very high spatial and temporal
resolution (Masciadri, Vernin & Bougeault 1999; Cherubini et al.
2008a; Cherubini, Businger & Lyman 2008b; Cherubini & Businger
2011).

It is very difficult to accurately quantify and predict OT and seeing,
and it is even more challenging to pinpoint the temporal variability
of OT throughout any given night. Of great benefit to the MKWC
forecaster has been the availability of operational measurements of
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OT and seeing from the multi-aperture scintillation sensor (MASS)
and differential image motion monitor (DIMM, MD hereafter;
Kornilov et al. 2007) instruments that have routinely operated on
Maunakea since the fall of 2009.

As a result of more than a decade of experience in carefully com-
paring weather patterns and OT measurements, MKWC forecasters
learned to recognize the large-scale meteorological variables that
foretell future conditions ranging from very good to very bad seeing
conditions for the telescopes at the summit of Maunakea, both in
terms of weather and OT.

The process of issuing the daily forecast of seeing over Maunakea
begins with a review of the latest National Center for Environ-
mental Prediction (NCEP, https://www.emc.ncep.noaa.gov) Global
Forecasting System (GFS) analyses and forecasts by the MKWC
forecaster. The latest radiosonde profiles of temperature, moisture,
and winds with height are also consulted. These profiles measure
the atmospheric stability and wind shear. At this early stage, the
forecaster has an intuition about the current turbulent state of the
atmosphere and for the upcoming nights. This is then refined by
consulting higher resolution predictions made by the MKWC’s
custom implementation of the Weather and Research Forecasting
model (WRF; Skamarock et al. 2008), which predicts C2

n and seeing
(Cherubini & Businger 2013).

The focus of this paper is on understanding the first step of
this process and emulating it through machine-learning algorithms
applied to archived OT and weather data, which span more than a
decade, from 2009 September to present.

Extraordinary progress has been made over the past decade in
machine learning (ML hereafter) with consequences that extend to
virtually every field, whether educational or commercial. To our
knowledge, Milli et al. (2019) were the first study to attempt to
nowcast OT by applying ML framework. Their study applies ML
to historical observations available at high temporal resolution from
Paranal, Chile, to predict the turbulence conditions during the 2 h
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following the latest observation. The goal of their study is to optimize
the telescope’s time and instrument scheduling in the very short term.

The goal of this work is to automate the MKWC forecaster’s ability
to associate average OT observations with large-scale weather pat-
terns and, thereby, anticipate the average OT state of the atmosphere
for each of the five nights that the MKWC forecast spans. This
study’s ambitious expectation is to design a methodology whose
performance tend to match the forecaster performance on one hand,
while also providing the forecaster with another guidance tool. To
accomplish this goal, a suitable data set for ML techniques was
first carefully compiled. Then, through the implementation of an
unsupervised1 ML algorithm (k-means, https://scikit-learn.org/stabl
e/modules/clustering.html#k-means; Pedegrosa et al. 2011), every
past observing night for which OT observations are available is
classified as belonging to one of four groups defined by pairing
the following: (i) a calm or active OT ground layer, corresponding
respectively to low or high values of average ground-layer seeing
and (ii) a calm or active free atmosphere, corresponding to low or
high values of average free atmospheric seeing.

The effectiveness of this approach is demonstrated through the
analysis of the number of observing nights falling in each of the four
categories grouped by month. A seasonal trend for the four categories
is found that is largely consistent with the MKWC forecasting
experience (Lyman et al. 2020).

Finally, a predictive ML algorithm is implemented and trained
to learn the underlying associations between nightly averaged OT
observations and corresponding weather variables extracted from
archived model analyses, and provide a prediction of the expected
OT once new weather data are fed into the trained algorithm.

In the operational configuration, for every day the algorithm is run,
the following outputs are produced: (i) an estimate of the average
total (εTOT) and free atmospheric (εFREE) seeing and their standard
deviations (σ (εTOT), σ (εFREE)) for five upcoming nights and (ii) each
of these five nights is classified on the basis of the OT strength in
both the ground layer and free atmosphere as belonging to one of
the four categories defined by the clustering component of the ML
model.

Predictive guidance regarding the average total and free seeing and
their projected variability is of clear benefit to the MKWC forecaster.
However, the ML approach also opens the way for a dynamical
calibration of the C2

n algorithm implemented within the MKWC
WRF model. The accuracy of the predictive Cn

2 algorithm depends
on a predetermined calibration of the minimum of the turbulent
kinetic energy (TKEmin) (Masciadri & Jabouille, 2001; Cherubini &
Businger 2011). The current implementation of the C2

n algorithm
uses a static profile for TKEmin that has a tendency to underestimate
the observed total seeing during very good observing conditions and
overestimate observed total seeing during strong OT episodes.

A study is ongoing to define a set of four TKEmin profiles
corresponding to the four categories identified by the ML model.
The WRF model will thereafter be run with a TKEmin profile,
dynamically selected at every model cycle based upon the average
OT conditions expected by the ML model. Therefore, the idea to
automatize the forecaster intuition has a two-fold purpose: (i) provide
another tool/guidance to the MKWC forecaster and (ii) allow for a
dynamic calibration of the optical turbulence algorithm implemented

1Unsupervised learning is a type of algorithm that learns patterns from
untagged, unclassified data, in contrast to supervised learning where data
are tagged by a human. Unsupervised learning exhibits self-organization that
captures patterns as neuronal predilections or probability densities.

in the MKWC WRF model. At time of writing, the ML algorithm
presented in this study is run operationally and related products are
updated four times daily on the MKWC website.2

The paper is structured as follows: Section 2 describes the data
used in the study and Section 3 illustrates the building blocks of the
implemented ML model and details how it is used to simulate an
operational mode. The results of the study are presented in Section
4. Finally, Section 5 draws conclusions and discusses future model
refinements.

2 O P T I C A L T U R BU L E N C E M E A S U R E M E N T S
A N D W E ATH E R MO D E L DATA S E T S

The observations of optical turbulence used in this study are made
by an MD situated at the top of the Canada France Hawaii Telescope
(CFHT) instrument tower, approximately 7 m above the ground (see
Lyman et al. 2020, Fig. 1). The MD is located between the Gemini
and CFHT observatories (Fig. 1), and generally unaffected by terrain
or other observatories when winds are from the west and east, which
occurs 75 per cent of the time climatologically (Da Silva, 2012). The
DIMM measures the integrated optical turbulence through the entire
atmosphere, thereby providing an estimate of the total atmospheric
seeing (εTOT). The MASS does not sense optical turbulence near the
ground but reconstructs turbulence profiles at six altitudes (h = 0.5, 1,
2, 4, 8, 16 km) above the telescope (Tokovinin & Kornilov 2007) and
provides an estimate of the free atmospheric seeing (εFREE). Ground-
layer seeing, εG, is calculated using the following formula (Skidmore
et al. 2009):

εg = εTOT − εFREE

|εTOT − εFREE|
∣
∣
∣ε

5/3
TOT − ε

5/3
FREE

∣
∣
∣

3/5
. (1)

The MD instruments are set to operate under the following
thresholds: relative humidity <85 per cent and wind speed <14 m s−1

(∼50 km h−1). At time of writing, the MD has operated for over
2800 nights since 2009 September (real-time data are available at
http://mkwc.ifa.hawaii.edu/current/seeing/).

The data set used in this study is an extended version of a seeing
catalogue available online at http://mkwc.ifa.hawaii.edu/current/se
eing/analysis/NbN/?file=mkseeing. This data set was constructed
to allow the MKWC forecaster to more easily correlate optical
turbulence with large-scale (synoptic) weather patterns. In addition
to the MD observations, the seeing catalogue includes carefully
selected variables available in the GFS operational analyses (https:
//rda.ucar.edu/datasets/ds084.1, National Centers for Environmen-
tal Prediction/National Weather Service/NOAA/US Department of
Commerce, 2015). GFS analyses are a blend of observations and a
model first guess field from the previous GFS run. The data set used
in this study, hereafter referred to as the ML seeing catalogue, is
a tabular data set for each night (UTC date) containing the variables
listed in Table 1. These variables are extracted from the GFS analyses
validating 12 UTC (2am HST, the middle of the observing night on
Maunakea) for the corresponding catalogue date. The ML seeing
catalogue also includes the following user derived variables: (i)
shear, |�U/�z|, between 600 and 200mb; (ii) ground-layer seeing,
εG; and (iii) status, which is a categorical variable. The status
indicates the probability the corresponding night is a good (1) or
bad (0) night in terms of weather (high winds, cloud cover, fog,
precipitation, etc.), and indicates whether astronomical observations

2MKWC Machine Learning prediction (http://mkwc.ifa.hawaii.edu/forecast
/mko/trends/index.cgi?trend=latest&param=keyvar&model=neural&res=).
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Figure 1. Detailed map of the summit of Maunakea. The red cross indicates the position of the MD between the Gemini and CFHT observatories.

Table 1. Variables included in the tabular ML seeing catalogue.

MD optical turbulent data (five targets) GFS variables (33 weather features)

(i) Nightly averaged DIMM seeing (εTOT)
(ii) Nightly averaged DIMM seeing standard deviation
(iii) Nightly averaged DIMM number of measurements

(not a target)
(iv) Nightly averaged MASS seeing (εFREE)
(v) Nightly averaged MASS seeing standard deviation
(vi) MASS number of measurements (not a target)
(vii) Status (0,1)

(i) Potential temperature (θ ) on all GFS levels between 650 and 200 mb by 50 mb intervals
(ii) Wind speed on all GFS levels between 650 and 200 mb by 50 mb intervals
(iii) Wind direction on all GFS levels between 650 and 200 mb by 50 mb intervals
(iv) 600 mb relative humidity
(v) 600 mb precipitable water (PW)
(vi) Vertical shear of the horizonal wind between 600 and 200 mb

are possible or not. Because the MD instrumentation does not record
the specific conditions for observations (active observation, closure
due to weather, or closure due to maintenance) the status variable
has been engineered as follows: status = 0 when MD data are not
recorded and RH > 59 per cent or w600mb ≥ 13 m s−1; or status = 1.
The thresholds for RH and wind speed are conservative thresholds
chosen on the basis of the forecaster’s experience and recognized as
indicators of bad/potentially bad weather nights. These constrains
might be too conservative and result in the exclusion of few transient
weather days that potentially could have been active observing days.
The data set spans from late 2009 September, when MD started
operating, to the end of 2020.

3 ME T H O D O L O G Y

This section describes the components of the implemented MKWC
ML model (Fig. 2) which aims to: (i) predict the nightly average

optical turbulent state of the atmosphere in terms of predicted average
total and free atmospheric seeing and their anticipated standard
deviations (right block in Fig. 2) and (ii) classify the strength of
the optical turbulence in both the ground layer and free atmosphere
(left block in Fig. 2).

Before using the ML seeing catalogue in our ML algorithm, the
data set is pre-processed as follows: (i) only nights with more than
50 MD OT measurements per night are retained and (ii) model
weather data are checked for spurious values, such as null relative
humidity values or spurious potential temperature values (possibly
due to conversion/storage/digitalization errors), and these repaired
appropriately. The null relative humidity is substituted with 1 per cent
values; the spurious potential temperature is filled in with adjacent
values.

From this point onwards, the authors will refer to input features
(Fig. 3) as the atmospheric variables used as input in the ML model
and targets (Fig. 4) the OT variables that are the targeted outputs
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Figure 2. Block diagram of the implemented operational ML model.

for the ML model. The input features follow either a Gaussian
distribution (θ ) or a lognormal/Poisson distribution (wind speed,
pw, RH), and a bimodal distribution for wind direction, indicating
an easterly and westerly prevalence, as expected.

3.1 Data clustering

The MKWC forecaster’s main indication for the classification of OT
strength in the ground and free atmospheric layer comes from the
GFS wind analysis at 600 and 250 mb. Optical turbulence is driven
by many factors but the wind speed at summit level and at the 250
mb reference level have proven, over time, to be dominant factors
to first order, for estimating the average optical turbulent state of
the ground layer and free atmosphere, respectively (Lyman et al.
2020). The analysis of a year of data shows a correlation coefficient
ρ ∼ 0.35 between wind speed at summit surface and total seeing
(Fig. 5a). Chun et al. (2009, fig. 10) also discuss the relationship
between surface winds and ground layer seeing. Similarly, although
perhaps less expected, a correlation coefficient ρ ∼ 0.32 between
free atmospheric seeing and the GFS 250 mb wind speed (Fig. 5b)
is found, which is a manifestation of the upper level jet stream’s
strength and proximity.

To translate the MKWC forecaster’s associative skill into an ML
algorithm, a clustering algorithm for classification is chosen. The
k-mean clustering algorithm used in this study is an unsupervised
ML method, largely used in data mining, that aims to find groups of
observations, or clusters, that share similar characteristics (Pedregosa
et al. 2011).

In this application, the k-mean clustering algorithm classifies:
(i) average optical turbulent behaviour of the ground layer for
each recorded night into good (low) seeing (LG) or poor (high)
seeing (HG) ground layers and (ii) average optical turbulent be-
haviour of the free atmosphere for each recorded night into
good (low) seeing (LFREE) and poor (high) seeing (HFREE) free
atmospheres.

Two separate instances of the k-mean algorithm are run with k = 2:
one targets ground-layer seeing and the second one targets free
atmospheric seeing. For the ground layer, the ML algorithm uses
as input variables the derived ground-layer seeing, εG, measured
total seeing and its standard deviation as measured by DIMM, along
with the wind velocity at 600 and 250 mb levels, and shear derived
from the GFS analyses. All variables are nightly averages.

For the free atmosphere, the ML algorithm uses as input the
observed free seeing and its standard deviation as measured by
MASS, wind velocity at 600 and 250 mb level, and shear from
the GFS analyses; all variables are nightly averages.

The input variables for the ML clustering algorithm are normalized
to share a common scale. This pre-processing step is particularly
important in cluster analysis because groups are defined based on
the distance between points in mathematical space, while the chosen
variables have different units and therefore span on different scales.
The choice of the selected variables is driven by the relational insight
of the MKWC forecaster derived from experience.

The ML procedure runs the two k-mean instances: a cut-off date
in the timeseries underlying the ML seeing catalogue is selected and
data spanning from the beginning of the data base to the selected
date are used by the k-mean algorithm to cluster ground-layer seeing
and free atmospheric seeing in two groups, and to find the relative
centroids. The trained ML algorithm can then classify, through the
k-mean prediction method, any night not included in the training data
set as belonging to the LG or HG cluster of ground-layer seeing or
belonging to the LFREE or HFREE cluster of free atmospheric seeing.
Any given night not in the training data set can further be classified
as belonging to one of the four groups defined by all the possible
combinations of the two pairs of L/H classes.

3.2 Machine learning predictive model

This section describes how the ML algorithm is implemented, with
the following objectives: (i) learn the associations between MD
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236 T. Cherubini et al.

Figure 3. Input features (33) to the ML model, extracted from the ML seeing catalogue: (a) potential temperature θ ; (b) wind speed; and (c) wind direction on
every level from 650 to 250 mb by 50 mb; (d) precipitable water, relative humidity at 600 mb and shear between 600 and 250 mb.

average measurements and selected average GFS variables when
a training data set is provided; (ii) anticipate through a classification
(logistic regression) algorithm the probability (between 0 and 1) that
a given night is going to be a good (1) or bad (0) observing night; and

(iii) predict through a regressor algorithm the average OT behaviour
in both the ground layer and free atmosphere, once weather data
from a model analyses (for case studies) or forecasts (operational
applications) are available.

MNRAS 509, 232–245 (2022)
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Figure 4. Targets in the ML model: nightly averaged total (a) and free atmospheric (c) seeing as measured by MD, and their standard deviations (b and d,
respectively).

Figure 5. (a) Timeseries of normalized surface wind speed as recorded by the surface anemometer (blue solid line) located at the top of the CFHT instrumented
tower, normalized GFS 600 mb wind speed (light blue solid line), and normalized total seeing (red solid line) as recorded by the MD. The timeseries span over
the full year 2020. Data normalization allows the data to be compared on similar scales.

The compiled ML seeing catalogue (Table 1) is the input data set
for our ML model: the weather variables are the model’s features,
while the OT variables and status are the model targets. Once the
cut-off date in the ML seeing-catalogue timeseries is selected, data
from the beginning of the data base to a year before the selected cut-
off date are used as the training data set, DT. The year of data prior
to the cut-off date is used as the validation data set, DV. A prediction
can then be made on the remaining dates from the cut-off date to the
most current time in the timeseries, the testing data set, Dt.

Both the regression and classification components of the ML
model are optimized through the following sequence: (i) data scal-
ing; (ii) dimensionality reduction; and (iii) regression/classification.
A grids-search cross-validation3 process is conducted over this
pipelined sequence to tune the involved hyperparameters and select
those that minimize prediction error on the validation data set.
Various regressors were tested in the ML algorithm’s workflow and
the Bayesian Ridge regressor4 was found to produce the best scores.

A simple logistic regression module was chosen for the categorical
portion of the ML model to predict the target status. The ML model

3https://scikit-learn.org/stable/modules/generated/sklearn.model selection
.GridSearchCV.html.
4https://scikit-learn.org/stable/modules/generated/sklearn.linear model.Bay
esianRidge.html.

is run once to learn, validate, and predict the categorical variable
status, and run again to learn about, validate, and predict the main
four target variables: average total seeing and its standard deviation;
free atmospheric seeing and its standard deviation. While a more
correct approach to this problem would be to implement a multi-
output regression model, in this study the prediction of the various
targets is treated as one separate problem for each target variable.
This assumes that the target outputs are independent of each other,
which may be incorrect. Nevertheless, this approach provides an
effective prediction and the results are very promising. Therefore,
the ML algorithm as currently constructed is worth exploring as a
performance baseline, with the possibility of improving or refining
the ML algorithm in future.

3.3 Operational implementation

This subsection describes how the performance of the implemented
ML model is then tested for a yearlong timeframe, which simulates
an operational set-up. The testing period spans from 2020 January
1 to December 31. The generic date in this timeframe is referred to
as the current date and the day before the current date is referred to
as the cut-off date. The cut-off date is therefore a date in the ML
seeing catalogue that is in the past. For each current date, and each
synoptic cycle (00, 06, 12, 18 UTC), the GFS forecasts validating
every 12-UTC time (2 AM HST) up to 5 d from the current one,
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Figure 6. Clusters as result of running the k-mean algorithm on the full data set (2009–2020) for both the free-atmosphere seeing (panels a, b, c) and the
ground-layer seeing (panels d, e, f). Clusters are four-dimensional but are plotted in two-dimensions, with normalized scales, as a result of considering one
feature at a time. Axes are scaled. Centroids are shown as red dots.

are used to extract and derive the environmental variables defining
the average weather conditions at and above the Maunakea summit
in ML seeing catalogue form. Once a date is selected as current:
(i) the portion of the ML seeing catalogue from its beginning (2009
September) to a year before the cut-off date is used as training data set
for the ML algorithm; (ii) the yearlong timeframe in the ML seeing
catalogue up to the cut-off date is used as the validation data set for
the ML algorithm; and (iii) the environmental variables from the GFS
forecasts (therefore data belonging in the simulated future) are used
as input features. The desired outputs (targets) are the predictions
of the average total and free atmospheric seeing and their standard
deviations for each synoptic cycle and the following five nights.

Once the ML predictions on the average OT state of the atmosphere
for the next five nights are available, a classification of these five
nights is then possible via the ML k-mean algorithm, as described
in Section 3.1. The ML k-mean algorithm uses as a testing data set
the input features extracted by the GFS forecasts valid for the next
five nights. The full output, once both the ML and k-mean portion of
the model are run, is composed of the OT predictions, their standard
deviations, and the associated L/H classes for each night (Fig. 2).

4 R ESULTS

4.1 Data clustering

A distinct separation of classes and centroids are evident in Figs 6(b)
and (d), consistent with the known large influence of the wind speed
at 250 mb on free atmospheric seeing and the wind speed at 600
mb on ground-layer seeing, respectively (see Tables 2 and 3). Given
the complex nature of OT and the low number of clusters requested
(k = 2) it was not expected that fully separated clusters would be
obtained in all cases; the resulting separation seen in Fig. 6 is very
encouraging.

Table 3 shows that the ML k-mean for the classification of the
ground layer OT provides a centroid for which the mean total seeing

Table 2. LFREE and HFREE classes in terms of the mean OT parameters as
defined by the ML k-mean algorithm when characterizing the free atmosphere
OT behaviour.

εTOT σ (εTOT) εFREE σ (εFREE) εG

LFREE 0.65 0.18 0.32 0.15 0.52
HFREE 0.78 0.22 0.64 0.35 0.60

Table 3. LG and HG classes in terms of mean OT parameters as defined by the
ML k-mean algorithm when characterizing the ground layer OT behaviour.

εTOT σ (εTOT) εFREE σ (εFREE) εG

HG 1.03 0.32 0.68 0.34 0.92
LG 0.61 0.16 0.37 0.19 0.44

for the LG classes is 0.61 arcsec, which is very close to Maunakea’s
observed median seeing of 0.65 arcsec (Lyman et al. 2020), while the
centroid for the HG class provides a mean total seeing value close to
1 arcsec. Similarly, the LFREE class for the characterization of the free
atmosphere, shows a centroid for which the mean free atmospheric
seeing corresponds to ∼0.32 arcsec during calm nights, which is very
close to the observed median free seeing of 0.35 arcsec (Lyman et
al. 2020), while the HFREE class identifies OT episodes characterized
by free atmospheric seeing values about double in strength (∼0.6
arcsec).

Regarding the ground layer, the number of calm nights dominates
the LG events, which climatologically peak during summer, with
maxima in June and September/October, which are historically the
months with best seeing quality (Fig. 7b). The occurrence of more
active nights and poorer seeing is greater during the winter season.
During the middle of the summer, there are fewer episodes of high
surface winds and/or strong winds aloft that account for the smaller
maximum in poor seeing.

MNRAS 509, 232–245 (2022)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/509/1/232/6391506 by guest on 16 N
ovem

ber 2021



Forecasting seeing for MKO with machine learning 239

Figure 7. Number of cases from the full catalogue (2009–2020) separated by classes L/H, for both the free atmosphere (a) and the ground layer (b).

Regarding the free atmosphere, the number of less active nights
with better seeing peaks during summer as expected (Fig. 7a). During
the winter season, the westerly jet stream aloft increases in strength
and moves closer to Hawaii, resulting in more weather disturbances
entering the subtropical Central Pacific area from the north, which
increases the chance for turbulence aloft. These findings, which
were obtained by applying a clustering technique on the ML seeing
catalogue, are consistent with the seeing climatology observed over
the years (Lyman et al. 2020).

Finally, the pairing of low OT events in both the ground layer
and free atmosphere (LG, LFREE) is the largest of the four possible

combinations (Fig. 8), clearly peaking during the summer months.
This result is consistent with the fact that Maunakea is considered the
best ground site on Earth for optical astronomy. Events during which
both the ground and free atmospheric seeing are poor are more likely
to occur during winter when the polar jet-stream is climatologically
closest to Hawaii. It is interesting that during spring and fall the
chance of having good seeing in the ground layer yet poor seeing
aloft is greatest. This may reflect the fact that during these seasons the
circumpolar jet stream tends to exhibit higher Rossby-wave numbers
and the flow aloft has greater meridional excursions that impact the
subtropics.
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Figure 8. Number of cases from the full catalogue (2009–2020) separated by the combination of classes L/H, as defined by the ML k-mean algorithm. Blue
bars refer to cases for which both ground layer and the free atmosphere seeing is good (LG, LFREE); orange bars refer to cases for which ground-layer seeing is
poor (HG) and the free atmosphere seeing is good (LFREE); green bars refer to cases for which ground-layer seeing is good (LG) and the free atmosphere seeing
is poor (HFREE); red bars refer to cases for which both the ground layer and the free atmosphere contribute to poor seeing (HG, HFREE).

Table 4. ML data sets in the experiment described in Section 4.2.

Data set Timeframe

DT 2009 to 19 April 2019
DV 20 April 2019 to 19 April 2020
Dt 20 April 2020 to 31 December 2020

4.2 Training and validation of ML predictive model

With reference to Section 3.2, we select the cut-off date of 2020
April 20 as an explanatory example. The corresponding timeframes
for DT, DV, and Dt are listed in Table 4. One of the main steps of
the implemented ML module, after data scaling, is dimensionality
reduction by selection of the most important input features in the
data sets, that is, those providing better scores in the underlying
cross-validation analysis.

The number of input features selected and passed to the final step of
the ML algorithm, the regressor, varies depending on the chosen date
and the size of the training data set. The training process identifies
between 14 and 18 most important features, depending on the cut-off
date in the timeseries, when the target is the total observed seeing,
and between 22 and 25 most important features when target is the
free atmospheric seeing.

The dimensionality reduction process reveals as most important5

those variables that the forecaster also recognizes through experience
as dominant factors in predicting seeing. The wind speed on the
model levels closest to the summit, that is 650, 600, and 550 mb, are
the most important variables in determining the total atmospheric
seeing, followed by potential temperatures at 650 mb and, with minor
contributions, potential temperature from summit level up to the

5The input features’ scores of the dimensionality reduction method, Se-
lectKbest, used in the modelled pipeline is often referred to as ‘features’
importance and it is unitless.

middle of the troposphere. Wind direction, shear, and moist variables
(RH and PW) contribute little by comparison (Fig. 9a).

For observed average free atmospheric seeing the analysis is, as
expected, more complex. Potential temperature largely dominates
in the middle atmosphere. The impact of wind peaks at 250 mb
(jet level) and falls off gradually at lower altitudes, except for a
secondary maximum at 650 mb (just below summit level). The
calculated wind shear provides redundant information to that in the
wind profile. As expected, moisture related variables contribute very
little (Fig. 9b). These results are consistent with the experience of
the MKWC forecaster (Lyman et al. 2020).

The ML algorithm shows good predictive skill, particularly in
terms of the total atmospheric seeing, with a correlation coefficient of
0.67 (Fig. 10a). As expected, the free atmospheric seeing prediction
is slightly less accurate, with a correlation coefficient of 0.47. A few
outliers are seen, more numerous for free seeing prediction, where
the ML algorithm tends to underestimate stronger OT episodes.
A possible explanation for this observation is that the stronger
turbulence events are the least numerous in the seeing catalogue
(Fig. 4b), therefore providing a smaller showcase for training.
It is reasonable to assume that the ML algorithm will improve
performance in predicting strong OT events as their number increases
with time.

Capturing the behaviour of OT in the free atmosphere is more
difficult than capturing the behaviour of the total seeing (compare
Fig. 10a and c), which may be due to a greater underlying complexity
for the regressor to handle. Also, Masciadri, Lombardi & Lascaux
(2014) pointed out that MASS data could potentially carry biases
when compared to higher resolution OT vertical profilers like the G-
Scidar. These biases could affect any model and/or calibration based
on them. Nevertheless, at the time of this writing, the MD is the only
consistent OT data source available to the MKWC and, although
potentially biased, these seeing observations remain a critical tool
in the quest to better understand and predict OT on Maunakea and
develop predictive tools like the one presented in this study.
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Forecasting seeing for MKO with machine learning 241

Figure 9. Features importance when observed total (a) and free atmospheric
(b) seeing are targets for the ML model. Light blue bars indicate wind speed,
green bars indicate wind direction, and navy blue bars indicate potential
temperature. Wind shear between 600 and 250 mb (light green bar), relative,
relative humidity (blue bar), and total precipitable water (magenta bars) at
summit level are also shown.

4.3 Operational set-up: a yearlong experiment

This section summarizes the results of the experiment described in
Section 3.3, which simulates an operational set-up and a yearlong
timeframe. For each date in 2020, the ML algorithm was run and
the GFS forecasts from the four synoptic cycles are used to provide
input features validating at 12 UTC (2 AM HST) for five nights past
the chosen date. For each day of the year a prediction, stratified by
the model forecast hour validating the 12 UTC, is made. For example,
the 00 UTC GFS cycle provides the input features for the 12, 36, 60,
84, and 108 h of forecast, the 06 UTC GFS cycle provides the input
features for the 6, 30, 54, 78, and 102 h of forecast, and so on for
the remaining 12 and 18 UTC cycles. The ML algorithm predicts the
corresponding OT variables.

The overall result is a multiprediction for each night, stratified by
forecast hour. The figures discussed in the next paragraph only refer
to the 12 h prediction. Similar plots have been made and analysed for

all other forecast time-steps but are not shown here as they convey
very similar graphical contents: the slow increase of the GFS forecast
error with the forecast time results in small differences in the ML
algorithm’s performance as forecast time increases (Table 5).

Overall the predicted behaviour of the total and free atmosphere
OT (Fig. 11) is well captured by the ML algorithm and seasonality
is clearly reproduced. It is also reassuring to see that the predicted
standard deviation tends to be smaller in correspondence to lower
values of predicted seeing, which is also the case for the correspond-
ing measurements. Fig. 12 shows the scatterplots and corresponding
statistics for this experiment, which are consistent with the results in
Fig. 10.

As discussed in previous section, episodes of strong observed OT
degrade some of the statistics. The differences between the results
shown in Figs 10 and 12 are due to differences in the data source
from which the weather variables are inferred. In order to test the
ML algorithm under optimal conditions, GFS analyses are used in
the former experiment. These forecasts are also used in the latter
experiment to test the ML model in an operational setting, which is
when a prediction on the future state of the atmosphere is desired and
weather analyses of the atmosphere for that time are not yet available.
The operational configuration carries the GFS forecast error into the
ML algorithm. Therefore, a slight degradation of the statistical scores
for this set-up is to be expected.

Similarly, there is a degradation of the statistical measures as the
forecast hour increases, corresponding to an expected increase in
the GFS forecast error with increasing forecast time (Table 5). The
statistics show a good correlation coefficient (∼0.6) and good bias
corrected rms (∼0.2) for the predicted total seeing for the forecast
hours 6, 12, and 18, which refer to the first observing night.

Once the ML algorithm is run for 2020, each day is classified in
terms of the L/H classes for the OT turbulence in the ground layer
and free atmospheric layer. This will potentially have a large impact
on a follow-up study that will focus on a dynamic calibration of
the OT algorithm implemented within the MKWC WRF model.
The a priori knowledge of the OT strength in both the ground
and free atmosphere layers will be used to select the appropriate
calibration for the TKEmin before a WRF simulation is made. The
results from this study will be the main focus of a follow-up
paper.

5 SU M M A RY, C O N C L U S I O N S , A N D
DI SCUSSI ON

By carefully comparing large-scale meteorological variables relevant
to Maunakea with operational measurements of OT from the MD
instruments and forecast output from NOAA’s GFS weather model,
the MKWC forecaster learned to anticipate the average turbulent
state at the summit of Maunakea and in the free atmosphere above
for the five upcoming nights. This paper leverages ML algorithms
to construct an automated prediction model that mimics the MKWC
forecaster’s ability to associate average OT observations with large-
scale weather patterns seen in the GFS model output, and thereby
anticipate the average OT state of the atmosphere for each of the five
nights that the MKWC forecast spans. The results of this study show
that it is possible to capture the insight of the Maunakea forecaster in
predicting the average OT behaviour at Maunakea (MK) and produce
a novel tool that the MK forecaster and the MK telescope operators
can consult to help make forecast decisions. In addition, the success
for this approach opens a new door that allows for the development
of a dynamic calibration of the optical turbulence algorithm that
estimates OT as part of the WRF model cycle.
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Figure 10. Scatterplots of the ML predicted versus observed: (a) total seeing and its (b) standard deviation; (c) free atmospheric seeing and its (d) standard
deviation for the testing data set Dt. Correlation coefficients are also shown.

Table 5. Statistics for the ML predicted total and free atmospheric seeing and their standard deviations, at various forecast hours, for the yearlong 2020
experiment. The highlighted grey row refers to the 12th hour forecast referred to in Fig. 12 and discussed in the text.

Forecast
hour

BIAS
εTOT

RMSE
εTOT

CORR
εTOT

BIAS
εFREE

RMSE
εFREE

CORR
εFREE

BIAS
σ (εTOT)

RMSE
σ (εTOT)

CORR
σ (εTOT)

BIAS
σ (εFREE)

RMSE
σ (εFREE)

CORR
σ (εFREE)

6 − 0.002 0.199 0.639 − 0.035 0.247 0.491 0.002 0.086 0.476 − 0.009 0.200 0.424
12 − 0.006 0.204 0.612 − 0.040 0.246 0.493 0.001 0.088 0.449 − 0.010 0.201 0.413
18 − 0.009 0.207 0.599 − 0.040 0.250 0.472 0.001 0.087 0.462 − 0.010 0.203 0.383
24 − 0.007 0.210 0.584 − 0.040 0.250 0.474 0.002 0.087 0.449 − 0.009 0.205 0.359
36 − 0.009 0.212 0.568 − 0.045 0.256 0.438 0.002 0.087 0.460 − 0.011 0.206 0.356
48 − 0.010 0.211 0.578 − 0.049 0.256 0.442 0.003 0.085 0.487 − 0.012 0.207 0.343
72 − 0.009 0.216 0.548 − 0.053 0.258 0.422 0.005 0.091 0.384 − 0.012 0.210 0.311
96 − 0.011 0.223 0.502 − 0.051 0.265 0.378 0.005 0.090 0.394 − 0.010 0.210 0.313
120 − 0.029 0.242 0.368 − 0.058 0.264 0.392 0.001 0.093 0.320 − 0.015 0.206 0.361

The robust data set used in this study, the ML seeing catalogue,
which contains selected variables from the GFS model output,
is paired with the OT measurements provided by MD over the

decade since their installation. The implemented model includes
an ML module and data clustering module. In operational mode,
the ML module learns the underlying associations between OT
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Figure 11. (a) 2020 timeseries of free atmospheric seeing as measured by MASS (red solid line) and as predicted by the ML algorithm (blue solid line);
measured and predicted ± standard deviation is also shown. (b) 2020 timeseries of free atmospheric seeing as measured by DIMM (red solid line) and as
predicted by the ML algorithm (blue solid line); measured and predicted ± standard deviation is also shown (thin error bars). Black lines show the probability
for a given night to be a good or bad observing conditions night as predicted by the ML algorithm (y-axis on the right).

measurements and large-scale weather variables relevant for the
summit of Maunakea from the ML seeing catalogue and provides
a prediction for the average total and free atmospheric seeing, their
standard deviations, and the expected status of each observing night
(targets). The clustering module assigns the predictions for the nights
in the ML seeing catalogue into four OT categories defined by the
pairs: (LG, LFREE), (LG, HFREE), (HG, LFREE), (HG, HFREE).

The following is a summary of the conclusions from applying the
ML model.

(i) The clustering module is able to group more than a decade of
OT nightly data in four categories defined by pairing the following
states: (i) weak (LG) or (ii) strong (HFREE) turbulence in the ground
layer; and (iii) a calm (LFREE) or iv) active (HFREE) free atmosphere.
The cluster’s centroids defined by the k-means algorithm (Tables 3
and 4) identify average values of seeing that are largely consistent
with the climatology of seeing for Maunakea (Lyman et al. 2020).

(ii) Analysis of the occurrences of the four categories by month
shows that more turbulent nights and poorer seeing in the ground
layer are likely during the winter season, with a smaller maximum in
poor seeing during the middle of the summer when sporadic episodes
of high surface winds and/or strong winds aloft are possible. The
number of nights with better seeing in the free atmosphere peaks
during summer as expected with the mean polar jet stream shifted
northward away from Hawaii.

(iii) The occurrences of low OT events in both the ground layer
and free atmosphere, analysed by month, are the largest of the
four possible class pairings, peaking during the summer months.
This result is consistent with the fact that Maunakea is a premier
site for astronomy. Events during which both the ground and free
atmospheric seeing are poor are relatively less common. These nights

are more likely to occur during winter when the mean position of the
polar jet stream is closest to Hawaii.

(iv) Using the most recent year of the ML seeing catalogue as a
validation data set, the ML module of the implemented model shows
the following.

(i) The wind speed on the model levels closest to the summit
(650, 600, and 550 mb) are the most important factors in
determining the total atmospheric seeing.

(ii) The potential temperature largely impacts OT prediction
in the middle atmosphere, while wind speed at the jet level (250
mb) and close to the surface (650 mb) are important.

(iii) Moisture shows a minor to null influence, consistent
with the observation that there is relatively little moisture above
the summit of Maunakea, except during storms when MD
observations are typically not available.

(iv) The ML algorithm shows good predictive skill, particu-
larly in terms of the total atmospheric seeing, with a correlation
coefficient of 0.67. The free atmospheric seeing prediction is
slightly less accurate, with a correlation coefficient of 0.47.

(v) When the ML model is used in an operational setting and the
GFS forecasts are used as input, the following results are found.

(i) The predicted behaviour of the total and free atmosphere
OT and their standard deviations are well captured by the ML
algorithm and their seasonality is reproduced in a way that is
consistent with the observations.

(ii) Statistics show a good correlation coefficient (∼0.6)
and good bias-corrected rms (∼0.2) for the predicted total
seeing, and a fair ∼0.5 correlation coefficient and 0.25 bias-
corrected rms for free atmospheric seeing for the forecast
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Figure 12. Scatterplots of the ML predicted versus observed: (a) total seeing and its (b) standard deviation; (c) free atmospheric seeing and its (d) standard
deviation for 2020 in operational mode. Correlation coefficients are also shown.

hours 6, 12, and 18, which refer to the first observing night.
Although a longer testing period is needed in order to draw
the appropriate conclusions, the ML model seems to match the
MKWC forecaster’s performance (fig. 15 in Lyman et al. 2020)
in predicting the nightly averaged OT behaviour at the summit
of Maunakea.

5.1 Future work

Although the preliminary results presented in this study are very
encouraging and the effectiveness of this approach are demonstrated
by the presented statistics, there is room for improvement. For ex-
ample, a multi-output regression model should be investigated as the
targeted outputs are not necessarily independent of each other. Also,
sensitivity studies to the ML algorithm’s hyperparameters could
be carried out and more sophisticated regressors could be tested.
A further algorithm upgrade could envision more classifications
(k > 2) classes in order to capture, for example, extremely low OT

episodes. Finally, the constraints behind the status variable could be
made less conservative to include more cases with higher relative
humidity and the impact of these cases in the statistics studied.
Moreover, it is recommended that a flag recording the status of the
observing night be included in the instrumentation at the summit of
Maunakea.

An ongoing parallel study is being carried out: four TKEmin profiles
have been generated that correspond to the four main OT scenarios
commonly observed at the Maunakea summit and identified by the
clustering algorithm: (LG, LFREE); (LG, HFREE); (HG, LFREE); and (HG,

HFREE). The goal of the new study is to dynamically initiate OT within
the MKWC WRF model’s OT parametrization scheme.

In summary, this paper describes the implementation of an ML
model that has a two-fold purpose: (i) to mimic the process followed
by the MKWC forecaster when issuing his/her daily OT forecast,
and thus provide the MKWC forecaster with an additional predictive
tool to anticipate the average total and free seeing and their projected
variability and (ii) to allow for construction of a dynamic calibration
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of the optical turbulence algorithm in WRF by selecting a TKEmin

profile that corresponds to the appropriate OT category for a given
weather pattern. The results for this latter study will be presented in
a future paper.
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