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ABSTRACT

The Space Science Engineering Center, in collaboration with the Mauna Kea Weather Center at the

University of Hawai’i at M�anoa, has developed a regional retrieval processor for high-spectral-resolution

infrared data. The core of the processor makes use of an inversion system, referred to as Mirto, which

combines, in a Bayesian way, the a priori knowledge of the atmospheric state, based on available numerical

weather prediction forecasts, with the physical information embedded in satellite observations. Forecast

temperature and water vapor mixing ratio fields over the central North Pacific Ocean are adjusted to produce

synthetic radiances closer and closer to the Suomi NPP Cross-track Infrared Sounder (CrIS) observations

taken in clear-sky conditions. The paucity of synoptic observations over this area and the highly homogeneous

background represented by the ocean provide a good framework for the implementation of this hyperspectral

data inversion system. Nearly real-time (less than 60min from overpass time) Internet publication of re-

trieved atmospheric profiles is made possible by the availability of a direct broadcast system that provides data

from the Suomi NPP platform (CrIS and VIIRS). Themain goal for the implemented system is to provide the

forecasting community with products suitable for nowcasting applications and for optimal data assimilation.

The implemented processor has been running routinely since August 2013. Validation based on the com-

parisons of retrievals with rawinsonde data from Hilo, Hawaii, and Lihue, Hawaii, and GPS-derived total

precipitable water from four stations, performed over a time period of more than 1 year, shows a statistically

significant improvement on the background atmospheric state used as a priori information.

1. Introduction

Several polar-orbiting platforms (Suomi NPP,MetOp-A

and MetOp-B, and Aqua) are currently flying high-

spectral-resolution infrared instruments such as the

Cross-track Infrared Sounder (CrIS) (Han et al. 2013),

Infrared Atmospheric Sounding Interferometer (IASI)

(Blumstein et al. 2004), and AIRS (Aumann et al. 2003).

These instruments are capable of sensing the atmosphere

to a finer vertical resolution than the traditional multi-

channel imagers such as VIIRS (Cao et al. 2014),

AVHRR, MODIS (Cao et al. 2008), and so on. New

missions are also planning to fly similar instruments: the

European Meteosat Third Generation (MTG), which

will be launching geostationary platforms carrying

MTG InfraRed Sounder (IRS) (EUMETSAT 2014);
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Generation (EPS-SG), which will fly IASI of New

Generation (IASI-NG) (Crevoisier et al. 2014); or the

Climate Absolute Radiance and Refractivity Observa-

tory (CLARREO) mission (Cooke et al. 2014), which is

aiming to use high-spectral-resolution infrared data for

climatological applications. These sensors are expected to

play an increasingly important role in refining the

characterization of the atmospheric state at higher

temporal and vertical resolutions.

Since AIRS data (Aumann et al. 2003) became

available in 2001, high-spectral-resolution satellite in-

frared data have been used by the modeling community

mostly in the form of calibrated spectral radiances. The

choice of using radiances (level 1 data) has been driven

by the need for consistent assimilation of different sat-

ellite observations, which led operational meteorologi-

cal centers to assimilate them directly using variational

data assimilation systems. However, more recently, with

the increased number of hyperspectral infrared sensors

in polar orbits and the prospect of a future geostationary

instrument, there has been a renewed interest in as-

similating the thermodynamic fields obtained from ra-

diances (generally referred to as retrievals or level 2

data), especially for limited area models (Chou et al.

2009, 2010; Jones and Stensrud 2012; Reale et al. 2008;

Singh et al. 2012). Level 2 data can be obtained from

level 1 data via inversion (retrieval) algorithms by

means of either an optimal estimation (Rodgers 2000)

or a statistical approach (Smith et al. 2012).

This paper presents a regional processor for high-

spectral-resolution infrared data based on Mirto (not an

acronym), an optimal estimation retrieval system. The

processor has been implemented at the Mauna Kea

Weather Center (MKWC), a weather research and

forecast facility funded by the astronomical observato-

ries onMaunaKea (Businger et al. 2002; Cherubini et al.

2011). The system generates products in the forms of

soundings, instability maps of convective available po-

tential energy (CAPE), total precipitable water (TPW),

lifted index (LI), and scaled projected states (SPS; or

transformed soundings), optimally designed for NWP

data assimilation purposes (Migliorini et al. 2008;

Migliorini 2012). The term ‘‘optimally’’ is used after

Migliorini’s demonstration of the equivalence, under

specific conditions, between the radiance and retrieval

assimilations. When these conditions (described in sec-

tion 2b) are met, not only is the assimilation of retrievals

equivalent to radiance assimilation, but it also bears the

following advantages: it requires smaller computational

loads, and it does not require any knowledge regarding

the sensor characteristics (spectral resolution, in-

strument noise, apodization, etc.). Both these peculiar-

ities make the use of transformed retrievals particularly

attractive to small forecasting centers. Therefore, the

system was designed to provide quasi-real-time (less

than 60min from overpass time) vertical profiles of

temperature and water vapor mixing ratio (level 2

products), their related instability indices [level 3 (L3)

products], and the Migliorini transformed retrievals for

the north-central Pacific Ocean area centered on the

Hawaiian archipelago. The products generated are

currently archived and will be distributed to users in

netCDF format after the system has been presented in a

peer-reviewed publication. The implementation of the

regional service was made possible by the availability

of a direct broadcast system, operated by the Space

Science Engineering Center (SSEC) of the University of

Wisconsin–Madison in collaboration with the National

Weather Service and the University of Hawai‘i at

M�anoa, which provides quasi-real-time level 1 CrIS data

(within 15min from overpass), and by the MKWC op-

erational run of the Weather and Research Forecast

(WRF) Model system (Klemp et al. 2007) (http://www.

wrf-model.org), which provides hourly forecasts over the

central Pacific domain (Fig. 1). The core of the processor,

Mirto, combines the a priori information derived from the

MKWC model fields with the physical information em-

bedded in the satellite observations according to aBayesian

paradigm. The system has been operating daily since Au-

gust 2013.Validationof retrievedfields has beenperformed

over more than one year to assess their accuracy.

The relevance of the processor presented in this paper

is to be found in the use of direct broadcast data to gen-

erate retrieved atmospheric fields for short-term fore-

casting and optimal data assimilation purposes. On one

hand, in fact, the retrieved profiles allow for a charac-

terization of the stability of the atmosphere over the

domain of interest, which is useful in nowcasting appli-

cations. On the other hand, the application of the

Migliorini’s transformation to the derived soundings

would allow the local assimilation systems to generate a

custom analysis within one hour from the satellite over-

pass. The MKWC is directly involved in an international

effort, supported by the EUMETSAT, aimed to

develop a pseudo-operational Rapid Update Cycle

forecast system based on the assimilation of the SPS

(transformed retrievals) from IASI and CrIS. Provided

that the retrieval meets the accuracy needed for a positive

impact on data assimilation, and the timeliness of the

atmospheric products is reduced to 30min from overpass

time, the implementation of the processor would become

an important element in the future development of the

MKWC forecasting and nowcasting capabilities.

The paper is structured as follows: section 2 provides a

theoretical background for the inversion core Mirto, the

implementation of the regional processor system is
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described in detail in section 3, validation strategies

and results are presented in section 4, section 5 de-

scribes the retrieval diagnostics in terms of spectral

residuals, and conclusions and future works are pre-

sented in section 6.

2. Mirto

Mirto is an inversion system based on optimal estima-

tion, implemented in Python, and designed to run on

multicore computers. It is an evolution of the Matlab-

based University of Wisconsin Physical Retrieval

(UWPHYSRET) package, (Antonelli et al. 2008), de-

veloped at SSEC, with the same physics but fully recoded

in Python and improved in efficiency (currently, the system

inverts one CrIS observation in less than 0.5 s using six

cores). Mirto allows for the retrieval of atmospheric vari-

ables from level 1 (calibrated radiances) data observed by

high-spectral-resolution infrared instruments. These vari-

ables include atmospheric temperature, water vapor mix-

ing ratio, carbon dioxide, ozone, and surface temperature

and emissivity. In addition, Mirto generates the Migliorini

transformed retrievals, or SPS, for temperature and water

vapor along with maps of instability indices (CAPE, LI,

and TPW). Mapping of observable (radiances) into non-

observable variables inMirto is achieved throughBayesian

inversion (Rodgers 2000) and, at this stage, is formulated

for clear-sky conditions only. Mirto uses the Atmospheric

and Environmental Research (AER) optimal spectral

sampling (OSS) clear-sky radiative transfer model

(plane-parallel geometry) for the computation of simu-

lated radiances and analytical Jacobians based on local-

ized training (Moncet et al. 2008). The AER OSS was

chosen for its good balance between speed and accu-

racy that makes the model suitable for applications

like Mirto, the computational core of the described

regional service. The Mirto system is intended to be

open source and currently works with CrIS and IASI

observations. Mirto’s modular nature allows for its

application to other current and future high-spectral-

resolution instruments such as MTG IRS, and AIRS.

Mirto, and its precursor UWPHYSRET, have been

adopted by EUMETSAT as the foundation for the

algorithm theoretical basis document of MTG IRS

(EUMETSAT 2014) and for the development of the

level 2 validation of demonstration processor in the

framework of MTG IRS–related activities.

a. Theoretical background

The inversion inMirto is based on theminimization of

the cost function J(x) defined as

J(x)5 (x2 xb)TB21(x2 xb)

1 [y
rad

2H(x)]TR21
rad[yrad 2H(x)] . (1)

The first term on the right-hand side of Eq. (1) can be

thought as the volume in the state space, where the solu-

tion is likely to be found with a certain confidence before

the observation is made, and it is given by the square dif-

ference of the retrieved state x to the a priori or

FIG. 1. Domain of the WRF system operated at the MKWC, which provides hourly forecasts over the central

Pacific area.
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background state xb weighted by the a priori covariance

matrix B. The second term on the right-hand side of Eq.

(1) represents the region in which the states consistent

with the observations could be found, and it is given by

the distance between the measurements yrad and the re-

trieved state mapped into measurement space using the

observation operator H and weighted by the total error

covariance matrix, Rrad, defined as

R
rad

5R
m
1R

H
, (2)

where Rm represents the errors in the measurements

(instrument noise), and RH represents the errors in the

observation operator (forward model).

In particular, the observation operator error co-

variance matrix RH represents the errors associated

with the radiative transfer model like the errors in the

spectroscopic parameters (line position and half-

width) and the errors due to the atmospheric–surface

variables not specifically accounted for in the radiative

transfer calculations. This component of the total error

covariance matrix is difficult to estimate, and it is not

clear how an erroneous characterization would influ-

ence the retrieval accuracy. The estimation of Rrad is

described in section 2.

The minimization of the cost function J(x) [Eq. (1)] is

done using the Marquardt–Levenberg (ML) iterative

scheme (Levenberg 1944; Marquardt 1963), whose ith

iteration is given by

xi11 5 xi 1 [(11 g
i
)B21 1 (Hi)TR21

radH
i]21

3 f(Hi)TR21
rad[yrad 2H(xi)]2B21(xi2 xb)g, (3)

where Hi 5 ›H/›xi is the Jacobian of the observation

operator, and the ML parameter gi is changed from one

iteration to the next one to provide a mixed approach

between the steepest descend approach (Avriel 2003),

where g / ‘ and the Gauss–Newton approach

(Nocedal and Wright 1999), where g / 0, that is pre-

ferred near the solution because then the convergence is

quadratic. The strategy for selecting g is relatively ar-

bitrary. In principle, g should be chosen depending on

the degree of linearity of the observation operator. At

this stage, in the implemented system, g is chosen ac-

cording to the degree of increase or decrease of x2, de-

fined by Eq. (5.25) of Rodgers (2000) as

x2 5 [y2H(x)]TR21
rad[y2H(x)] . (4)

At the first iteration, g0 is set to 3. As the iterative

process goes on, the value of g is modified according to

the change of the cost function between one iteration

and the previous one. If x2 increases, g is multiplied by a

factor of 5; if x2 decreases, g is divided by a factor of 2.

When convergence criterion is met, g is set to 0, and one

last iteration is performed to calculate the final solution

x̂. It is worth mentioning that the x2 is calculated only

over the selected channels (shown by the green dots in

Figs. 19 and 20, described in more detail below).

The convergence criterion is met when the change in

the state space, normalized by the state uncertainty d2
i is

smaller than a defined threshold Jconvergence. Following

Rodgers’ notation (Rodgers 2000),

d2
i 5 (x

i
2 x

i11
)TS21(x

i
2 x

i11
) , (5)

where, according to Eq. (5.30) of Rodgers (2000),

Si 5 [(11 g
i
)B21 1 (Hi)TR21

radH
i]21 ; (6)

then, if

d2
i

n
,J

convergence
� 1, (7)

where n is the number of elements of the state vector,

the minimization process has reached convergence. The

threshold value is chosen arbitrarily. Good results have

been achieved with a value of J 5 0.03. When conver-

gence is not met, the iterative process stops after a

maximum number of 10 iterations, and a flag indicating

that convergence has not been reached is raised.

The knowledge of the atmospheric state prior the

observations, generally called a priori or background

knowledge, plays an important role in the retrieval al-

gorithm. This a priori consists of two parts: the best es-

timate of the atmospheric state prior the observation is

taken, xb and an associated covariance matrix B repre-

senting the error–likelihood of the estimate.

InMirto, the a priori xb is also used to characterize the

first guess x0 and the linearization point xa in Eq. (3). In

the current implementation, the a priori xb is derived

using NWP model short-term forecast validating the

time of the satellite overpass for atmospheric tempera-

ture and water vapor. Atmospheric ozone and carbon

dioxide a priori are derived from climatological datasets

(http://www.esrl.noaa.gov/gmd/dv/iadv/graph.php?

code5HIH&program5ozwv&type5vp and http://www.

esrl.noaa.gov/gmd/ccgg/trends/, respectively).

Specifically, the atmospheric temperature and water

vapor are provided by theMKWC, which runs theWRF

Model operationally over the north-central Pacific area.

The model configuration, at the time of this study, en-

compasses three two-way nested domains, with hori-

zontal resolution spacing of 15, 3, and 1 km (Fig. 1);
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40 levels in the vertical are used. The vertical spacing is

on the order of tens of meters for the levels nearest the

ground and gradually increases with height. The model

top is fixed at 10 hPa, which corresponds to a height of

about ;25km above the ground level. The WRF Model

is run twice daily with 0000 and 1200 UTC initial condi-

tions produced by a WRF data assimilation system

(Barker et al. 2012). Boundary conditions are updated

every 6h using model output from the National Centers

for Environmental Prediction (NCEP) Global Forecast

System (GFS). Each forecast cycle produces a 60-h-long

forecast as output. More on the MKWC WRF configu-

ration can be found in Cherubini et al. (2006, 2011).

Mirto uses WRF output from the 15-km horizontal

grid domain from the most current WRF forecast cycle

available, which is the same order of magnitude as the

CrIS’s field of view (FOV). Because the Suomi NPP

overpass times over the central Pacific area are close to

0000 and 1200 UTC, the most current WRF forecast

validating the satellite overpass’ time is usually theWRF

forecast initialized 12h earlier. Since the WRF Model

forecast extends only up to 10hPa, climatological pro-

files available within the AER Line-By-Line Radiative

Transfer Model (LBLRTM) libraries are used to ex-

trapolate the a priori for temperature and water vapor

up to satellite altitude at 0.1 hPa.

The a priori for surface temperature (ST) is obtained as

random perturbation of the lowest level a priori atmo-

spheric temperature using a Gaussian probability distri-

bution with mean equal to 0K and standard deviation of

3K, while the surface emissivity (SE) is represented in the

form of principal component amplitudes. Different sets of

principal components are generated and used for each

surface type according to the classification scheme defined

by the International Geosphere–Biosphere Programme

(IGBP) (Loveland et al. 1991, 1999). For observations over

the ocean, one set of PCs is generated using simulated

Masuda emissivities (Masuda et al. 1988) stratified by

different viewing angles (between 08 and 608) and wind

speeds (between 0 and 30ms21). For observations over

land, dedicated sets of PCs are calculated for each IGBP

class by using for training all the emissivity contained in the

National Aeronautics and Space Administration (NASA)

SE atlas retrieved from IASI global observations over the

last six years (Zhou et al. 2011). For each IGBP class,

the principal components are calculated after applying the

logit transformation to the original emissivity spectra:

z(n
i
)5 log

"
«(n

i
)

12 «(n
i
)

#
. (8)

Examples of the logit-transformed emissivity de-

rived for the NASA IASI emissivity atlas for IGBP

classes 1 (evergreen needleleaf forests) and 10

(grasslands) along with the logit-transformed ocean

emissivity from the Masuda model are shown in

Fig. 2.

Using the correct IGBP class, a small number (3–7)

of principal component amplitudes are then used to

represent the full SE spectrum to be associated to each

CrIS observation. The a priori is then obtained by

setting all the amplitudes to 0, which implies that the

best estimate of SE, before the observation is made,

corresponds to the mean of the training set used for

that specific class. Instead, the a priori covariance is

FIG. 2. Logit of surface emissivities for IGBP classes 1 and 10, and

for ocean.
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provided by the 3–7 leading eigenvalues for the se-

lected class. Figure 3 compares the first 7 eigenvalues

and eigenvectors of the logit-SE covariance matrix

(principal component amplitudes) for the same classes

shown in Fig. 2.

It is worth remarking that, in principle, the choice of

the first guess (here equal to the a priori) should only

affect the efficiency (convergence speed) and not the

accuracy of the retrieval process. However, the shape of

the cost function can be relatively complex with local

maxima and minima. Therefore, it cannot be excluded

that the accuracy of the result of the iterative approach

will depend also on the first guess.

1) BACKGROUND COVARIANCE MATRIX

The background covariance error represents the un-

certainty associated to the a priori state xb. The complete

background covariance used by Mirto is a block matrix

composed of five blocks:

d the atmospheric components derived from the fore-

cast model: T and log(q) [where q is the specific

humidity (kg kg21)],
d the atmospheric components for CO2: a diagonal matrix

with constant values of 16ppmv2 on the diagonal,
d the atmospheric components for O3: a climatological

matrix of log(w) [where w is the ozone mixing ratio

(kg kg21)] derived from ozonesondes,
d the surface component for ST: single value set to 3K,

and
d the surface component for the SE amplitudes: the

diagonalmatrix with the eigenvalues of the correspond-

ing SE IGBP class (as shown in Fig. 3) in LOGIT space.

For atmospheric temperature and water vapor, in the

current implementation, the a priori or background

covariance has been estimated following the National

Meteorological Center (NMC) method (Parrish and

Derber 1992). At first, the model perturbations are

calculated and used as a proxy for the estimate of the

forecast error. For the NMCmethod, in fact, the model

perturbations, for regional applications, can be calcu-

lated as the differences between the WRF 24-h fore-

casts and the 12-h forecasts valid at the same time.

Climatological estimates of the background error may

then be obtained by averaging these forecast differ-

ences over a period of time (usually a month). The 40

consecutive days spanning the time frame June through

July 2013 were used to calculate the background co-

variance (BE) matrix currently in use, and both the

0000 and 1200 UTC cycles output were included in the

statistics. As it would be desirable to use a dataset

representative of a larger number of cases/events

through the meteorological year, the covariance matrix

will be refined in the future. The uppermost model level

is located at 10 hPa; therefore, the covariance for

temperature above 10 hPa had to be arbitrarily calcu-

lated starting from the highest WRF level temperature

covariance and adding to it a constant increment (5%–

10%) at each level from 10 hPa to the top of the at-

mosphere, at 0.1 hPa. The covariances for water vapor

above 10 hPa are set to the same value of the uppermost

WRF level water vapor covariance. Figure 4 shows the

full background covariance blocks for T–Q and O3,

respectively.

The background covariance for ozone is set to clima-

tological values obtained from in situ observations of

ozonesondes (http://www.esrl.noaa.gov/gmd/dv/ftpdata.

html). For the carbon dioxide, the variances have been set

arbitrarily to 16ppmv2. In the sameway, theSTvariancehas

been set to 3K2, while for the SE amplitudes, the variances

are set to the eigenvalues derived for the characteristics

(IGBP class) of the observations (as shown in Fig. 3).

Since Mirto retrieves temperature, water vapor,

ozone, ST, and SE simultaneously, the role of the cross-

correlation terms in the a priori covariance are

FIG. 3. First seven (left) eigenvalues and (right) PCs derived for land (IGBP classes 1 and 10) and ocean emissivities

in logit space.
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important. At this stage, only the cross-correlation terms

between temperature and water vapor mixing ratio are

taken into account, while every other cross-correlation

term is set to 0 to reflect the lack of information on the

interdependencies among the other variables.

The estimation of the background covariance matrix

prepared as described above is not fully mature/complete

yet. Other methodologies to calculate the background

covariance error for the WRF temperature and water

vapor will be investigated. The goodness/accuracy of the

retrieval algorithm is strongly dependent on the back-

ground covariance matrix. In fact, if the error covariance

information provided by the a priori is such that the

satellite observations are not constrained enough, the

posterior error covariance of the retrievals of the atmo-

spheric state could be worse than the a priori error

covariance, a situation that clearly needs to be avoided.

On the other hand, if the a priori knowledge is too

constraining, only part of the information embedded in

the satellite observations could be exploited. This situa-

tion should be avoided as well.

2) TOTAL ERROR COVARIANCE MATRIX

The total error covariance matrix Rrad as defined in

Eq. (2) has two components, which were estimated from

retrieval residuals,

r
rad

5 y
rad

2H(x̂
ret
) , (9)

obtained from a large dataset of clear-sky retrievals that

reached convergence. The first term on the right side of

Eq. (2) Rm, associated to the instrument noise, was ob-

tained from the covariance of the spectral residuals,Rm5
cov(rrad), while the second term on the right side of

Eq. (2), RH, associated to the systematic error because of

the forward model uncertainties, was estimated using the

mean of the spectral residuals, RH 5 E(rrad)E(rrad)
T.

Figure 5 compares the square root of the diagonal

elements of the total error covariance, Rrad, used

by Mirto with the CrIS nominal noise (solid dark line)

for all the channels used in the inversion process.

[Figures 19 and 20, described in more detail below, show

the individual components of Rrad by presenting the

square roots of the diagonal elements of Rm (red lines

labeled as s) and RH (blue lines labeled as m) super-

imposed on the CrIS nominal noise (black dashed lines)

for the longwave (LW) and midwave (MW) portion of

the spectrum.] The proper characterization of RH is still

an area of active research.

b. Scaled projected states

The determination of the atmospheric state (re-

trievals) from passive high-spectral-resolution infrared

radiances is an ill-posed problem, and the solution x̂

provided by Eq. (3) is obtained by adding prior con-

straints to complement the instrument measurements.

The dependence of the retrievals from the prior in-

formation makes their assimilation in NWPmodels not

optimal unless the inversion and assimilation systems

share the same a priori. This led, in the past, to the

development of direct radiance assimilation schemes.

Migliorini (2012) demonstrated that satellite observa-

tions in SPS form, obtained by a specific transforma-

tion of the retrievals, represent, under well-defined

circumstances, a valid (equivalent) alternative to the

assimilation of radiances. The circumstances are that

1) the forward model H is approximately linear in

proximity of x̂ within a region of radius comparable to

the retrieval error, and 2) the a priori matrix used in the

inversion has larger variance than the one used in the

assimilation (Migliorini et al. 2008; Migliorini 2012;

FIG. 4. (a) Background (a priori) covariance matrix for tempera-

ture and water vapor. The matrix is derived from a dataset of dif-

ferences between the MKWC WRF 24-h forecasts and the 12-h

forecasts verifying at the same time and contains cross-correlation

terms between the two variables. (b) Background (a priori) co-

variance matrix for ozone. Thematrix is derived from climatological

values log[w(O3)] from ozonesondes [where w(O3) is the ozone

mixing ratio (kg kg21)].
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Prates et al. 2016). When these circumstances are ver-

ified, the assimilation of satellite observations can be

performed using the SPS without the need of a non-

linear radiative transfer model as observation operator.

Following Migliorini (2012), Mirto generates the SPS,

at first, by transforming the retrievals x̂ into

y
ret

[ x̂2 xb 1KH0xb , (10)

where H0 5S21
p 3LT

p 3H is the Jacobian normalized

using the p nonsingular eigenvectors Lp associated to

the largest eigenvalues S
2
p of total error covariance

Rrad such thatRrad ’ LpS
2
pL

T
p , andK is the Kalman gain

given by

K5BH0T(H0BH0T1 I
p
)21 , (11)

where Ip is the identity matrix in the p-dimensional space

spanned by the columns of Lp.

To obtain the SPS y0ret, Eq. (23) of Migliorini (2012),

the scaled components of the B1/2yret are projected onto

the direction of the columns of Vr, that is, the r non-

singular eigenvectors of the signal-to-noise matrix,

S5H0
retB

1/2, with eigenvalues larger than one, derived

from the decomposition S ’ UrLrV
T
r (where Ur and Vr

are respectively the r left and right eigenvectors of S

associated to the Lr eigenvalues larger than 1):

y0ret 5L21
r (L2

r 1 I
r
)VT

r B
21/2y

ret
, (12)

where Ir is the identity matrix in the r-dimensional space

spanned by Vr. The observation operator, Eq. (24) of

Migliorini (2012), associated to y0ret is then

H0
ret 5L

r
VT

r B
21/2 , (13)

where Lr are the r eigenvalues of S larger than 1.

Figure 6 shows the temperature and water vapor

components of the assimilation operator.

Using the SPS, the assimilation problem becomes,

using Eqs. (35) and (36) of Migliorini (2012),

x̂ret*MAP5 xb* 1K+
ret(y

0
ret 2H0

retx
b*) , (14)

where

K+
ret 5B*~H0T

ret(
~H0
retB*

~H0T
ret 1 I

r
)21 , (15)

B* being the background assimilation covariance and xb*

the assimilation background. The SPS currently gener-

ated by Mirto contains 61 levels of temperature in (K)

and 61 levels of ln(q) in (kgkg21), with the first level

being temperature near the surface, the 61st element

being temperature at the top of the atmosphere, the

62nd element being ln(q) at the surface, and the 122nd

element being ln(q) at the top of the atmosphere to be

consistent withH0
ret. Also,B* is expected to be consistent

with the order and the units of B and x, which means

that ~H0
ret 5 H0

retHconvHinterp accounts for the proper

vertical–horizontal interpolation, obtained through the in-

terpolation operator Hinterp, and for the proper unit con-

version, obtained through the conversion operator Hconv.

The strengths of the assimilation approach proposed by

Migliorini are to be found in the lower computational

load with respect to traditional radiance assimilation and

in the fact that all the sensor characteristics (spectral

resolution, instrument noise, apodization, etc.) are em-

bedded in y0ret and H0
ret; therefore, they are transparent to

the assimilation system. Therefore, a single module can

be used to assimilate equivalently data from different

high-spectral-resolution sensors from current (NPP and

FIG. 5. Square root of the diagonal elements of the total error covariance matrix Rrad (gray circles) compared with

the CrIS nominal noise (black line) for all channels used in the retrieval process.
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MetOp) and future [Joint Polar Satellite System (JPSS)

and MTG] platforms.

Preliminary results obtained assimilating SPS into

regional models are described in Antonelli et al. (2015),

De Haan et al. (2015), and Prates et al. (2016).

3. Implementation of the regional service

The automated system for nearly real-time retrievals

of CrIS data, implemented around Mirto, allows for

Internet publishing of the results with timeliness of less

than 60min with respect to the overpass time. The in-

version of CrIS data relies on the direct broadcast ca-

pabilities available at the University of Hawai’i at

M�anoa and on the operational modeling activities of the

MKWC. The system produces level 2 and level 3 prod-

ucts over the region that span from 19.58N to 23.58N and

from 1508W to 1658W. Retrievals are generated for the

a.m. and p.m. overpasses of the Suomi NPP spacecraft,

which occur around 0000 and 1200 UTC. (Subsets of

level 2 data for the latest overpass are available at http://

mkwc.ifa.hawaii.edu/satellite/polar-skewt.cgi, while pre-

vious overpasses are available at http://mkwc.ifa.hawaii.

edu/archive/satellite/polar-skewt.cgi.) The system gen-

erates and posts on the MKWC website maps showing,

for each 18 3 18 box, one red or yellow dot indicating

the location of one clear-sky retrieval if available

within that box. Dots are superimposed to the VIIRS

true color image for daytime overpasses (Fig. 7) and to

the VIIRS day–night band (DNB) image for the night

ones (Fig. 8). Each dot is linked to a skew-T plot of the

retrieved profiles and of the 12-h WRF forecast closest

to the satellite overpass used as the inversion a priori

(Fig. 8c). The skew-T diagram also includes the ra-

winsonde profiles if the retrievals’ FOV falls within

75 km from the radiosounding launch locations. Yellow

dots show the location of the retrievals for the closest

FOV to the radiosounding location’s launch. This

product is meant to be used routinely by the MKWC

forecaster; therefore, only a representative subset of

the retrieved profiles is displayed. Maps of level 3 data

such as CAPE, LI, and precipitable water (PW) are

also available (http://mkwc.ifa.hawaii.edu/satellite/

polar/cris.cgi). The instability indices for all the avail-

able retrievals aremapped on the VIIRS image (Fig. 9).

For any individual CrIS FOV,Mirto is currently set up

to use a subset of 864 unapodized CrIS radiances (out of

the 1305 nominal channels) selected by applying Rodgers’

method based on individual channel information content

as defined in Eq. (2.77) of Rodgers (2000).

In situ observations providing information on atmo-

spheric stability over the central Pacific area are sparse,

with the main ones being the twice daily rawinsondes

profiles. Atmospheric instability is of great importance

to any forecasting facility and is more so for theMKWC.

The center, in fact, besides alerting the telescope facili-

ties on Mauna Kea of approaching bad and hazardous

weather conditions, is in charge of accurately predicting

fair weather conditions. Telescope operators can maxi-

mize telescope usage by employing instrumentation

matched to the expected weather conditions. Atmo-

spheric stability plays an important role for the MKWC

forecaster and, therefore, for the astronomy community

as it is closely related to atmospheric optical turbulence,

FIG. 6. (left) Temperature and (right) water vapor components of the observation operator H0
ret. Each colored curve represents the two

components of the ith row (numbered in the legend) of the observation operator.
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the phenomenon responsible for telescope image degra-

dation. The implemented system provides a particularly

valuable tool to analyze and diagnose atmospheric sta-

bility over Hawaii using CrIS and more so when IASI

retrievals are added.

A close look at Figs. 7 and 8 reveals an interesting

discrepancy aloft. Analyses of the retrievals indicate a

systematic bias of the WRF Model 12-h forecast with

respect to rawinsonde in both temperature and partic-

ularly in upper-tropospheric dewpoint (relative humid-

ity). This bias is confirmed by the validation analysis

presented in the next section and has been consistently

present since the beginning of the operative im-

plementation (section 4).

For the night overpass, Fig. 8 shows three blue dots

corresponding to the three FOVs closest to the grid summit

location under clear conditions and for convergent re-

trievals. The corresponding skew-T diagrams provide di-

agnostic, as opposed to forecast, information on the

temperature and relative humidity conditions for the lowest

atmospheric layers above the summit. These observations

differ as expected from the rawinsonde information from

Hilo, Hawaii, at those same levels and provide useful

guidance for the forecast of summit conditions.

The meteorological scenario on 7 and 8 September

2015 was characterized by persistentmidlevel moisture to

the west of the Hawaiian archipelago, coupled with a fresh

influxof tropicalmoisture drawn toward the state ofHawaii

by anupper-level lowdeveloping to thewest andHurricane

Jimena weakening to the northeast. Rawinsondes–

retrievals in Hilo and Lihue, Hawaii, reveal a weak or in-

distinct tradewind inversion anda large amount ofmoisture

available in the atmosphere (Fig. 7). The retrievals allow the

instability to be assessed throughout the domain. The de-

rived stability patterns show an atmospheric river of moist

unstable air impacting the main Hawaiian Islands on 7 and

8 September 2015 (Zhu and Newell 1994).

4. Validation

The goal of the validation analysis is to demonstrate

that the satellite retrieval system is able to improve the

characterization of the atmospheric state provided by the

12-h WRF forecast used as a priori in the retrieval pro-

cess.Mirto retrievals, used for validation, over the central

Pacific area were generated for 480 overpasses within a

period of time that ranges from May 2014 to September

2015. The validation compares the Mirto retrievals and

the a priori (WRF Model) with available in situ mea-

surements. Currently, level 2 and level 3 products gen-

erated from CrIS data are being routinely validated

against GPS data (PW) and rawinsondes (temperature

FIG. 7. (a) CrIS retrieval locations superimposed on VIIRS true color image for 2319 UTC 7 Sep 2015. Each dot is linked to a skew-T

plot of the retrieved (black solid line) and the 12-h WRF forecast validating at the satellite overpass time used as retrieval a priori (gray

dashed line) profiles. Sonde profiles (magenta dashed line) are added to the skew diagrams linked to the yellow dots marking the closest

retrieved profiles’ locations to (b) Lihue and (c) Hilo soundings.
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andwater vapor) launched atHilo andLihue. In addition,

retrieval residuals are monitored for each overpass to

ensure that the Bayesian inversion is properly done.

a. GPS TPW

Ahandful ofGPSground stationsprovide real-timeTPW

data, which can be used in the validation procedure. The

stations used in this study are Honolulu, Hawaii (latitude:

21.318; longitude: 2157.928), Kauai, Hawaii (latitude:

21.988; longitude:2159.768), Hawi, Hawaii (latitude: 20.258;
longitude: 2155.888), and Mauna Loa, Hawaii (latitude:

19.548; longitude:2155.588; elevation: 3429m), as shown in

Fig. 10. Another station is available in Hilo, but because of

the high average cloud coverage, it has not been used to

validate retrieved profiles. For each overpass, TPW from

the retrieved profiles of the field of view within 75km and

with surface pressure within 100hPa (50hPa for Mauna

Loa) from the GPS station site location/pressure has been

calculated and compared with the TPW estimated by the

GPS stations. The comparison consistently shows thatMirto

increases the linear correlation and reduces the root-mean-

square differences between GPS TPW and the background

TPW (derived from the WRF a priori) (Figs. 11 and 12).

Particularly interesting are the results obtained for the high-

elevation station located onMaunaLoa, where the retrieval

improves significantly the WRF a priori estimate of the

upper atmospheric water vapor content, as shown by the

smaller spread of the data distribution in the corresponding

scatterplot.

b. Rawinsondes

Validation of retrieved temperature and water vapor

with rawinsonde observations is often controversial

without dedicated sondes launched before and after sat-

ellite overpass and without auxiliary instrument to

properly characterize the true atmospheric state (Tobin

et al. 2006). The comparison of the punctual high-vertical-

resolution sonde observations with the broad-spatial- and

lower-vertical-resolution retrievals may, and often does,

lead to ambiguous results. Besides the different spatial

and vertical resolutions, the comparison between Mirto

retrievals and rawinsondes is polluted by time differences

between satellite overpass and actual sonde observation

time; potential contamination of retrievals by clouds

(cloud mask algorithm based on VIIRS cloud mask is

under development); distance between observations as-

sociated to successful retrievals and rawinsonde; and fi-

nally, by rapidly changing topography near the launching

stations of Hilo and Lihue. To mitigate these issues, two

ad hoc procedures were adopted.

1) COMPARISON WITH RAWINSONDES IN

PRESSURE DOMAIN

For 480 CrIS overpasses, M available rawinsondes

were compared with all of the retrievals (and relative a

priori) that 1) were within 50km from rawinsonde sites,

2) reached convergence, 3) had maximum relative hu-

midity less than 98%, and 4) had surface pressure greater

FIG. 8. As in Fig. 7, but for 1148 UTC 7 Sep 2015.
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than 900hPa. To make the comparison, the rawinsonde

profiles were also screened for potential saturation (rel-

ative humidity , 98%) and were interpolated on the

retrieval (a priori) vertical pressure grid. For each

pressure level, i5 1, . . . ,L, whereL is the total number of

vertical levels, the root-mean-square differences

RMS
posterior
i 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
M

j51

(s
i,j
2 hx̂

i,j
i)2

M

vuut and (16)

RMS
prior
i 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
M

j51

(s
i,j
2 hx

o,i,j
i)2

M

vuut , (17)

between the rawinsonde field sj and the mean of the

available retrieval corresponding field (hx̂ji) and between

the rawinsonde sj and the mean of the corresponding a

priori (hxo,i,ji) fields were calculated for all available cases
for Lihue and Hilo (Figs. 13 and 14). The left and center

panels of Figs. 13 and 14 show the results for two in-

dependent atmospheric variables: temperature and water

vapor mixing ratio, respectively. However, since the ra-

diative transfer (forward model) is sensitive to a combi-

nation of these two states and since the water vapor

mixing ratio rapidly decreases in magnitude with the al-

titude, it was chosen to show the comparison results also

in terms of relative humidity (right plots), which, by its

own formulation, combines T and q and is always within

the range 0%–100% throughout the whole atmosphere.

With no cloud mask available to be applied to the

observations before and/or after the inversion process,

the potential cloud contamination was screened for by

eliminating nonconvergent retrievals and convergent

profiles with relative humidity . 98%.

Results over Lihue, calculated over 938 CrIS retrievals

averaged around M 5 189 rawinsondes, show that the

retrieval process reduces the a priori water vapor mixing

ratio root-mean-square (RMS) above the altitude corre-

sponding to 900hPa. Largest improvement occurs between

850 and 750hPa, just at the trade wind inversion base

height estimated by Cao et al. (2007) around 2000m

(800hPa). Below 950hPa, however, it is possible to spot a

small degradation of the a priori water vapor mixing ratio

RMS. Also, in temperature, a degradation of the posterior

FIG. 9. L3 products derived from CrIS retrievals superimposed

on VIIRS true color image on 2319 UTC 7 Sep 2015. (a) Total PW,

(b) LI, and (c) CAPE.

FIG. 10. GPS station locations.
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RMS is visible between 180 and 300hPa. However, the

small degradations disappear in the relative humidity plots

on the right, suggesting again that the retrieval optimizes the

combined effect of water vapor mixing ratio and tempera-

ture rather than the individual components. Overall relative

humidity a posteriori RMS differences are about 10% ev-

erywhere except for a peak around the top of the boundary

layer (around 800hPa), where higher variability is expected,

and with a consistent improvement with respect to the a

priori RMS particularly pronounced around 200hPa.

Results over Hilo (Fig. 14), obtained by averaging 301

retrievals overM5 108 rawinsondes, seem to confirm the

conclusions drawn from Fig. 13. The posterior tempera-

ture RMS is worse than the prior one between surface

and the altitude corresponding to 850hPa, and also, the

posterior water vapor mixing ratioRMS is worse than the

prior one between 900 and 800hPa. However, the pos-

terior RMS in terms of relative humidity is shown to be

smaller or equal to the prior RMS for the same vertical

regions. Similar effects are also shown between 600 and

400hPa and 250 and 180hPa, where, despite having

larger RMS in temperature, the retrieval improves the

relative humidityRMS.As for Lihue, above the top of the

boundary layer (around 800hPa), the posterior relative

humidity RMS differences are about 10%.

It is also worth mentioning that over Hilo, the me-

dian cloud cover ranges from 63% to 83% (https://

weatherspark.com/averages/33129/Hilo-Hawaii-United-

States), while over Lihue, it ranges from 57% to 73%

(https://weatherspark.com/averages/33119/Lihue-Hawaii-

United-States).

Given these numbers, it is possible to speculate that, for

observations with higher probability of being only par-

tially contaminated by clouds (small cloud fraction within

FOV), the retrieval process can still provide the proper

combination of temperature and water vapor, but does

not perform as well in getting the correct individual

values as they are diversely conditioned in the a priori

matrix, which has been defined for clear-sky-only pixels.

2) COMPARISON WITH RAWINSONDES IN

PRINCIPAL COMPONENT DOMAIN

Rawinsondes have much higher vertical resolution

with respect to NWP model and retrieved profiles;

FIG. 11. (left) Scatterplots betweenGPS- andWRF-derived TPW and (right) the GPS- and retrieval-derived TPW

for (top) Kauai and (bottom) Honolulu. Marker size is inversely proportional to FOV distance from the GPS station

locations. Shading darkness is inversely proportional to time distance between the GPS and the satellite overpass

times. The quantity R represents the linear correlation between GPS andWRF–retrieval values of TPW. The values

m, s, and RMS represent the mean, standard deviation, and RMS of the differences GPS and WRF–retrieved TPW,

respectively. The value FOVs represents the number of observations plotted and used to derive the statistics.
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therefore, the comparison level by level only provides

limited information on the effective differences between

the profiles. For this reason, a comparison in the ra-

winsonde principal component space is investigated.

The basic idea is to derive the principal components

(PCs) from a relatively large set of rawinsondes and to

use different numbers of them, as basis functions, to

represent both sondes and retrievals (along with the a

priori) with different degrees of explained variance.

The covariance of the rawinsonde profiles is defined

for each variable as

C5E[(S2E[S])(S2E[S])T] , (18)

where S is an atmospheric field such as temperature,

water vapor mixing ratio, or relative humidity observed

or derived from the rawinsonde. The idea is to use the

empirical orthogonal functions, or PCs, generated by

diagonalizing the covariance C of the rawinsonde

profiles,

C5UJVT ,

to calculate the RMS differences in Eqs. (16) and (17) as

function of Nt, the number of PCs (columns of the left

eigenvectors U, or rows of the right eigenvectors VT,

associated to theNt, largest eigenvaluesJ of C), used to

represent the profiles
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and j 5 1, . . . , M; i 5 1, . . . , L; q 5 1, . . . , Nt are re-

spectively the amplitudes of the jth rawinsondes, of the

jth mean retrieval, and of the WRF jth mean a priori,

FIG. 12. As in Fig. 11, but for (top) Hawi and (bottom) Manua Loa.
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projected onto the qth individual PC (column ofU). The

lower-order PCs (corresponding to the largest eigen-

values in J) are those that explain most of the profile

variance and have lower vertical resolution with respect

to the higher-order ones.

Since only a limited number of independent pieces of in-

formation are embedded in the observations, about 5–6 for

water vapor and 10–12 for temperature calculated according

to Eq. (2.50) of Rodgers (2000), it is qualitatively expected

that above those numbers, the distance between the rawin-

sondes and the retrieved/forecast profiles increases. The

word ‘‘qualitatively’’ here indicates that, being the PCs de-

rived from the rawinsonde and those derived independently

for each variable, they do provide only a suboptimal base to

represent the information content of the retrievals.

Three years of rawinsonde data for each station were

collected. The sonde profiles were then interpolated

on a common pressure grid with L 5 100 levels ranging

from 1015hPa to 0.1 hPa and used to generate the PCs

for temperature, water vapor mixing ratio, and relative

humidity (Fig. 15).

The samedata used in the previous sectionwere selected,

projected, and reconstructed using different numbers Nt of

PCs. RMS values of the differences between the re-

constructed retrievals and reconstructed rawinsonde

(rmsposterior) and between reconstructed a priori and re-

constructed rawinsondes (rmsprior) were then calculated for

different number of PCs used in the reconstructions.

Figure 16 shows that,whenusing only onePC, for bothHilo

and Lihue, the reconstructed retrievals (dark solid line with

diamonds) are in better agreement with the reconstructed

rawinsondes than the first guess (gray dashed line with

circles). The thin dashed line indicates the reconstruction

error, that is, the RMS differences between the full vertical

resolution rawinsonde and the one reconstructed using only

one PC. This seems to indicate that Mirto properly moves

the basic vertical structure of the WRF Model (a priori)

toward the rawinsonde. Figure 17, obtained using the first

five PCs, shows a similar behavior, but now in the boundary

layer, rmsposterior(Nt 5 5) and rmsprior(Nt 5 5), after the

reconstruction, are almost equivalent. This indicates that, as

Nt increases and the reconstruction error decreases, the

RMSof the differences ismore andmore dominated by the

differences of vertical resolution between the rawinsonde

and the retrieved/forecast profiles in the portion of the at-

mosphere with greater variability.

FIG. 13. Comparison of Mirto (black solid line) and WRF (dashed gray line) profiles with collocated rawinsondes launched from Lihue.

Shown are the RMS errors for (left) temperature (K), (center) water vapor mixing ratio (g kg21), and (right) relative humidity (%).
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By the time Nt 5 20, PCs are used (as shown in

Fig. 18), and for any number greater than 20 (not shown

in the paper), the RMS of the boundary layer water

vapor mixing ratio differences assumes the same struc-

tures shown in Figs. 14 and 13, which correspond to a

reconstruction based on all the available PCs.

It is worth noting that the PCs in relative humidity

have sharper and more localized maxima in the ver-

tical structure with respect to the PCs in temperature

and water vapor (Fig. 15). This makes them better

suited to demonstrate the consistency of the improve-

ment of Mirto on the WRF a priori as the amount of

explained variance and the vertical resolution increase

with Nt. In fact, while in temperature and water vapor

mixing ratio, the relative magnitude of RMS values

changes with Nt so that rmsposterior(Nt) b rmsprior(Nt) in

the relative humidity space rmsposterior(Nt) % rmsprior

(Nt) for every level and for every Nt, with the equal sign

holding true for Nt $ 5 and for the levels in the

boundary layer.

Validation of ozone and surface parameters would

add valuable information on the behavior of the in-

version system; however, since no cloud mask is

available at time of writing, it is considered beyond the

scope of the article, and it is left to future work.

5. Retrieval diagnostic

A spectral residual analysis has also been carried out

to determine whether the behavior of Mirto is correct.

Spectral residuals have been consistently proven useful

in detecting systematic anomalies in instrument and data

processing performances (Tobin et al. 2013; Masiello

et al. 2012; Esposito et al. 2007; Hultberg 2009). In ad-

dition, the analysis of spectral residuals allows for esti-

mates of relevant variables such as instrument noise

(Serio et al. 2015) and calibration artifacts (Han et al.

2013; Strow et al. 2013). In particular, the standard de-

viation of the spectral residuals, calculated for con-

verging retrievals for a well-behaved system, is expected

to approach the random component of the instrument

noise (Serio et al. 2015).

The statistics calculated for the spectral residuals ob-

tained from 2500 nonsaturated, converging retrievals is

shown in Figs. 19 and 20. In general, the shape of the

standard deviation of the residuals follows quite closely

FIG. 14. As in Fig. 13, but for Hilo.
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the shape of the instrument noise; however, the inset in

Fig. 19 indicates that the random component of the CrIS

noise might actually be underestimated with respect to

its true value.

In addition to the calculation of the mean and standard

deviation, principal component analysis (PCA) of the

noise-normalized spectral residuals (Antonelli et al. 2004)

has been used as a diagnostic tool. In fact, it helps identify

potential sources of error, such as inconsistencies between

the observation and the forward model and/or calibration

issues. The application of PCA (Figs. 21 and 22) to the

2500 noise-normalized spectral residuals obtained from

converging retrievals collected from different overpasses

indeed provided two interesting indications of the behav-

ior of the inversion system.

From the analysis of the first 10 PCs for the LW

band, a form of ringing in the second and third PCs in

and around the ozone absorption band is found. The

issue with ringing has been investigated and described

by Han et al. (2013) and Han (2015).

A second relevant indication comes from the eigen-

values of the covariance of the noise-normalized spec-

tral residuals (Fig. 23). If the residuals were just the

random component of the instrument noise, the eigen-

values should have been flat and close to 1. The first

eigenvalues being larger than 1 indicate that the spectral

residuals still carry spectral information not exploited by

the retrieval. This is likely due to the components of the

observation error not properly accounted for in the total

covariance matrix (forward model error, correlated in-

strument noise, uncertainties in the distribution of the

minor chemical species in the atmosphere, possible

cloud contamination, etc.).

Future improvements of the retrieval system, based

on improving the observation error and the a priori co-

variances, will aim to obtain eigenvalues closer to unity.

Continuous monitoring of the principal components and

of the eigenvalues of the spectral residuals is a powerful

diagnostic tool to evaluate the performances of the re-

trieval system and is planned to be fully implemented in

the near future.

6. Conclusions

This paper describes the implementation of a regional

service over the Hawaiian Islands that aims to combine

weather forecasts with satellite high-resolution infrared

observations to provide better characterization of the

atmospheric state. The service is based on Mirto, a

Bayesian inversion system that provides level 2 products

in nearly real time (,60min from satellite overpass

time), including scaled projected states, that is, level 2

products tailored to optimal data assimilation.

FIG. 15. PCs of (top) temperature, (middle) water vapor mixing

ratio, and (bottom) relative humidity derived from all available

(clear sky) rawinsondes launched in Lihue between January 2012

and September 2015.
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FIG. 16. Comparison of Mirto (solid line) and WRF (dashed line) profiles with collocated rawinsondes launched

from (top) Hilo and (bottom) Lihue. Solid dark lines with diamonds represent the RMS difference between retrievals

and rawinsonde for temperature (K), water vapormixing ratio (g kg21), and relative humidity (%), reconstructed using

only one PC. Gray dashed lines with circles represent the same quantities between first guesses and rawinsondes. Solid

thin lines represent the RMS of the differences between the original (full vertical resolution) rawinsondes and the

reconstructed ones.
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FIG. 17. As in Fig. 16, but reconstructed using the first five PCs.
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FIG. 18. As in Fig. 16, but reconstructed using the first 20 PCs.
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The regional retrieval system runs daily at the Mauna

Kea Weather Center in Hawaii. Currently, the system

produces CrIS level 2 and 3 output from level 1 data for

each overpass of the Suomi NPP spacecraft at about

0000 and 1200 UTC daily. Specifically, it provides ver-

tical profiles of temperature and relative humidity and

related stability indices on an approximately 68 3 68 grid
centered on the Hawaiian archipelago. A coincidence of

advantageous factors made this implementation possi-

ble and important: (i) the availability of a direct

broadcast system operated by the SSEC in collaboration

with the NationalWeather Service and the University of

Hawai‘i at M�anoa, which provides nearly real-time

(about 15min from satellite overpass time) high-

resolution infrared data from the CrIS sensor on

Suomi NPP; (ii) the availability of operational WRF

forecasts at the MKWC, which provide the a priori

knowledge of the atmospheric state needed by the re-

trieval system; and (iii) the paucity of atmospheric ob-

servations in the north-central Pacific area.

Following a Bayesian approach, the WRF Model

background fields are blended with the physical

information present in the satellite observations,

resulting in new diagnostic guidance that has been made

available on the MKWC Internet pages since August

2013. Besides the retrievals of atmospheric temperature

and water vapor, and the generation of some instability

indices, the overall relevance of this work relies on the

generation of SPS [retrievals transformed according to

Migliorini (2012)], which makes the assimilation of re-

trieved profiles not only possible but computationally

efficient.

Previous attempts to assimilate level 2 data did not

account for the distorting influence of the a priori back-

ground used in the retrieval inversion, making assimila-

tion unsuccessful. With their work, Rodgers (2000) and

Migliorini et al. (2008) introduced a transformation

method to overcome this issue and properly assimilate

retrieved profiles by removing the a priori information

from the retrievals.

While national meteorological centers routinely as-

similate satellite radiances, Migliorini (2012), by dem-

onstrating the theoretical equivalence between radiance

and retrieval assimilation, generated a renewed interest

FIG. 19. Comparison of the mean (m) and the standard deviation (s) of the spectral residuals (r), with the random component of the

CrIS noise equivalent radiances (NEDR), for the LW band. The expected value of the residuals m represents the square root of

the diagonal elements ofRH, the systematic error component of the total error covariancematrix used byMirto. The standard deviation of

the residuals s represents the square root of the diagonal elements of Rm, the instrument noise error component of the total error

covariance matrix used by Mirto. Green dots represent the channels used by the retrieval system.
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in investigating the use of transformed level 2 data, es-

pecially for smaller centers. Radiance assimilation of

hyperspectral data, in fact, implies large computational

costs and in-depth knowledge of the sensor character-

istics, which not every center can afford. In this regard,

the use of the transformed retrievals (SPS) bears two

important advantages for NWP data assimilation: it re-

quires smaller computational loads, and it makes it

possible to treat data from different sensors equiva-

lently. For these reasons, MKWC entered an un-

dergoing project supported by EUMETSAT on the

assimilation of SPS, whose results will be presented in a

paper currently in preparation.

A validation analysis of the implemented system has

been carried out to assess the retrieval accuracy. The re-

sults presented in this paper indicate that the information

retrieved from the satellite data improves the accuracy of

the background state provided by WRF forecasts. Vali-

dation results were obtained by comparing both level 2 and

level 3 environmental data records (EDRs) CrIS products

collocated in time with rawinsondes from Lihue and Hilo

(vertical profiles of temperature andwater vapor) andwith

fourGPS stations located throughout theHawaiian Islands

(total precipitable water).

The results obtained using rawinsondes were consis-

tent in showing no degradation of retrieved relative

humidity with respect to the a priori throughout the

entire vertical profile extent. Improvements were found

at the top of the boundary layer (trade wind inversion)

and in the layers aloft, where the background fields seem

to exhibit consistent moisture biases. Improvements in

temperature were also shown, but they were less

consistent. This is not surprising because temperature

is a well-predicted variable by both global and meso-

scale models and therefore is not easily improved.

Moreover, the inversion system tends to perform better

in improving the combination of atmospheric tempera-

ture and water vapor (relative humidity) rather than the

individual variables.

The results obtained with TPW comparisons showed

that Mirto retrievals increase the linear correlation be-

tween GPS TPW and the background TPW (WRF a

priori) and reduce the root-mean-square differences

between GPS TPW and the background TPW (WRF a

priori). Particularly interesting are the results obtained

FIG. 20. As in Fig. 19, but for the MW band.

FIG. 21. PCs of the noise-normalized spectral residuals for the

LW band.
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for the high-elevation station located on Mauna Loa,

where the retrieval significantly improves the WRF es-

timate of the columnar water vapor content.

In addition to the atmospheric validation, results

from a diagnostic analysis were presented. The analysis

was performed by monitoring the spectral residuals for

convergent, nonsaturated retrievals. Following Serio

et al. (2015), the standard deviation of the spectral re-

siduals was found to properlymimic the instrument noise,

while the principal components analysis of the spectral

residuals suggested that the whole spectral information

embedded in the observations might not yet be fully ex-

ploited by the inversion system. This might likely be due

to the components of the observation error not explicitly

accounted for in the error covariance matrix (forward

model error, correlated instrument noise, uncertainties in

the distribution of the minor chemical species in the at-

mosphere, etc.). Future improvements of the retrieval

system will aim to obtain eigenvalues closer to unity by

improving the characterization of the a priori and the

total error covariance matrices. Continuous monitoring

of the principal components and of the eigenvalues of the

spectral residuals was found to be a powerful diagnostic

tool to evaluate the performances of the retrieval system.

Future work

While results from the validation of the Mirto retrieval

system are encouraging, more can be done to improve the

system by screening the observations for cloud contami-

nation (implementation of a cloud mask) and by im-

proving the characterization of the a priori and of the

total error covariances. Therefore, in the near future, the

validation will be refined to include comparisons of re-

trievals and a priori with atmospheric analyses screened

for cloud contamination by means of the VIIRS cloud

mask collocated with CrIS observations. A denser GPS

dataset available on Mauna Loa will be used to validate

the derived TPW over complex terrain. Data from me-

teorological sensors available on Mauna Kea will also be

used to investigate the retrieval performance over the

island of Hawaii. Furthermore, the continuous monitor-

ing of the principal components and the eigenvalues of

the spectral residuals will allow Mirto algorithm re-

finement. Once the validation and diagnostic parts of the

Mirto system are fully operative, the research will focus

on the improvement of the a priori and the total error

covariance matrices. Eventually, given the modular na-

ture of the Mirto retrieval system, more sensors will be

included as input to the system. In particular, IASI A

and B data, given the local overpass times between

2100 and 2200 UTC and 0900 and 1000 UTC, will nicely

complement the CrIS overpasses.
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