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Abstract. The orientations, locations, sizes, and relative abundances of secondary fractures
observed along small natural faults can be accounted for by a three-dimensional elastic model.
Secondary fractures along small subvertical left-lateral strike-slip faults in massive granitic rock of
the Sierra Nevada of California (1) consistently strike 25°+10° counterclockwise from their host
faults and dip at angles greater than 80°; (2) generally are absent along the central portions of the
fault traces; (3) are numerous near the ends of some fault traces but absent along others; and (4) in
rare cases form echelon arrays either centered along a fault trace or just past the fault trace ends.
These observations are consistent with secondary fractures that nucleated near the perimeter of an
elliptical fault along a "cohesive rim" of high slip resistance and propagated in three dimensions
normal to the local most tensile stress. The fracture orientations relative to the faults reflect small
stress drops during slip on the faults. The observations and model together have direct
implications for how faults grow and conduct fluids. Secondary fractures are likely to be larger at
the ends of small strike-slip faults rather than at their tops and bottoms. As a result, if strike-slip
faults grow in an unrestricted manner, they are more likely to be linked end-to-end rather than top-
to-bottom, especially where slip is small. Hydraulic conductivity is likely to be enhanced at the
linkages between faults, so highly conductive regions along linked strike-slip faults are more

likely to be vertical rather than horizontal.

1. Introduction

A recent report by the National Academy of Sciences [1996] on
the flow of fluids along fractures in rock noted that three key
questions commonly arise in scientific and engineering
investigations of fractured rock:

1. How can the fractures that are significant hydraulic
conductors be identified, located, and characterized?

2. How do fluid and chemical transport occur in fracture
systems?

3. How can changes to fracture systems be predicted and
controlled?

The report concluded that knowledge of the processes
responsible for producing distinctive fracture patterns can help us
understand systems of fracture flow, and in particular, that
understanding the geometry of fracture systems in the field is a
central issue. This paper addresses these points.

The specific focus here is on the effect of secondary fractures
along faults, fractures that form in response to fault slip. These
fractures can link originally discontinuous faults both
mechanically [Segall and Pollard, 1983; Martel, 1990; Biirgmann
et al., 1994] and hydraulically [Long and Witherspoon, 1985;
National Academy of Sciences, 1996]. As a result, secondary
fractures must greatly influence how faults grow and how fluids
circulate in the Earth's crust.

Explanations for these fractures should be physically plausible
and consistent with field observations. The occurrence of
secondary fractures near fault trace ends is in general consistent
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with the strong stress concentrations predicted there by linear
elastic fracture mechanics, or LEFM [Erdogan and Sih, 1963;
Pollard and Segall, 1987]. In conventional LEFM treatments,
however, a physically implausible stress singularity is predicted at
the tip (two-dimensional (2-D)) or perimeter (three-dimensional
(3-D)) of a fracture [e.g., Lawn and Wilshaw, 1975; Kassir and
Sih, 1975]. In cohesive zone theory, or CZT [e.g., Dugdale, 1960;
Barenblatt, 1962; Rudnicki, 1980; Martel, 1997], this singularity
is eliminated by postulating an enhanced resistance to slip near the
fault trace end in a "cohesive zone." The resisting cohesive zone
shear stresses annul the stress singularity that otherwise would
arise at the fault trace end. A series of recent papers have applied
CZT to address slip and deformation along faults [Martel and
Pollard, 1989; Cowie and Scholz, 1992; Biirgmann et al., 1994;
Willemse et al., 1996; Cooke, 1997, Willemse, 1997; Martel,
1997]. Willemse [1997] provided the only three-dimensional
treatment of cohesive zones in the context of faulting, but he did
not focus on secondary fracturing.

In addition to these mechanically based models, several
investigators have produced secondary fractures around three-
dimensional shear fractures in blocks of plastic in laboratory tests
[Adams and Sines, 1978; Germanovich et al., 1994; Cooke and
Pollard, 1996]. Shear fractures in the plastics develop without the
grain-scale influences in rock samples [e.g., Peng and Johnson,
1972; Tapponier and Brace, 1976; Wong, 1982] and thus are
appropriate to consider in an examination of faults with
dimensions of several meters or more. Other than a brief
discussion by Scholz [1990], the conceptual three-dimensional
models arising from laboratory studies have not been rigorously
compared to secondary fractures along natural faults in the earth.

This paper opens by describing patterns of secondary fractures
along small faults in the Sierra Nevada of California. These
observations are used to construct a geometric model of fracturing
around a simple three-dimensional fault. Three-dimensional
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LEFM and CZT mechanical models are discussed next and
examined in light of the field observations and then are compared
to the conceptual models and the laboratory results of other
investigators. The paper concludes with a discussion of
applications for three-dimensional cohesive zone models.

2. Field Observations
2.1. Small Faults

Small faults and joints of the Sierra Nevada batholith are well-
suited for field investigation owing to their abundance and superb
exposures. The most detailed observations have been made in the
drainage of Bear Creek [Segall and Pollard, 1980, 1983; Segall
and Simpson, 1986; Martel et al., 1988; Martel, 1990; Biirgmann
and Pollard, 1994; Christiansen, 1995] in the Mount Abbot 15'
quadrangle, but faults and joints throughout the batholith have a
similar appearance [e.g., Moore, 1963; Lockwood and Moore,
1979]. Radiometric analyses indicate the faulting at Bear Creek
occurred between 72 Ma and 75-79 Ma [Segall et al., 1990].
Geochemical, mineralogical, and microstructural evidence suggest
that during faulting the ambient pressure was about 100-200 MPa
and the temperature was ~300-350°C [Martel et al., 1988; Ague
and Brimhall, 1988]. These conditions most likely reflect a depth
of faulting of several kilometers.

The predominant joints and small faults of Bear Creek strike
east-northeast, dip steeper than 80°, and are less than a centimeter
thick. Their traces typically are straight and less than several tens
of meters long. Based on their straight trace geometries on
surfaces of varied orientations, the joints and small faults can be
idealized as planar features. The joints are mineralized,
containing undeformed crystals of chlorite and epidote. The faults
also are mineralized but contain deformed mineral assemblages of
chlorite and epidote * quartz + calcite £ white mica [Segall et al.,
1990]. The abundance of quartz along many faults is striking
given how scarce quartz is along the joints; this key point will be
pursued further in the discussion. The faults display subhorizontal
slickenlines, and they offset dikes and inclusions left-laterally.
The faults thus appear to be nearly pure left-lateral strike-slip
faults. Segall and Pollard [1983] argued compellingly that the
small faults did not originate as shear fractures but rather from
shearing of preexisting joints. This shearing presumably reflects
changes in the orientations of the regional principal stresses after
the joints opened.

2.2. Secondary Fractures

Secondary fractures developed along many of the small faults
[Moore, 1963; Segall and Pollard, 1980, 1983; Biirgmann and
Pollard, 1994; Martel, 1997]. In numerous cases they link
originally discontinuous faults together. Secondary fractures can
be grouped according to how their traces are distributed along a
fault trace. ‘

2.2.1. Secondary fracture traces that intersect fault trace
ends. Traces of secondary fractures most commonly occur near
but behind the ends of a small fault trace (Figure 1), and they are
rare away from fault trace ends. The secondary fractures usually
dip steeper than 80°, have gently curved traces, and strike 25°+10°
counterclockwise from the faults; fracture strikes outside this
range are remarkably rare. The fractures appear planar in three-
dimensional exposures, not twisted. The secondary fractures are
not symmetrically arranged along the faults. Near, but behind an
end of a fault trace, secondary fractures occur only on one side of
the fault. Near the east-northeast end of a fault trace secondary

MARTEL AND BOGER: FRACTURING AROUND FAULTS

Figure 1. Photograph showing oblique secondary fractures near
the end of a small fault. Photograph taken at the Kip Camp
outcrop of Segall and Pollard [1983], where faults strike
approximately N65°E on average.

fractures extend only to the northeast, whereas near the west-
southwest end of a fault trace the secondary fractures extend only
to the southwest. Significantly, secondary fractures do not occur
near the ends of all fault traces, and along some fault traces
several secondary fractures exist. The trace length of a secondary
fracture typically does not exceed a few percent of the trace length
of the host fault. Where secondary fractures cut inclusions, the
margins of the inclusions are aligned, indicating that the
secondary fractures originated as opening mode fractures and not
shear fractures. Although most secondary fractures have exposed
thicknesses of no more than a few millimeters, some have
apertures of several centimeters and are filled with quartz,
chlorite, and epidote. Usually, no more than a few secondary
fractures occur near the end of a fault trace (e.g., Figure 1);
commonly, there is one or none.

2.2.2 Secondary fracture traces past fault trace ends.
Secondary fracture traces locally occur past fault trace ends
(Figure 2). These extend across the projection of the fault trace in
contrast to the more common secondary fractures that intersect a
fault trace near its end. These secondary fractures generally strike
25°+10° counterclockwise relative to the fault and appear to dip
about as steeply as the fault. Fracture patterns such as this are not
unique to the faults of Bear Creek: Granier [1985] and Martel and
Peterson [1991] have documented similar fracture arrays near the
ends of faults in Europe.

2.2.3. Bands of echelon secondary fractures. Parallel to
some faults are structures several meters long that contain
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Figure 2. Secondary fractures (light lines) past the northeast end
of a fault trace (heavy line). The southwest end of the fault (heavy
dashed line) is concealed. The inferred extension of the fault out
of the plane of the outcrop is shown in a light dashed line. This
fault is located about 200 m north of the Waterfall site of Martel
[1990]. The local strike of the fault ranges from N50°E to N70°E.

numerous echelon fractures with trace lengths less than several
centimeters (Figure 3). We informally refer to these structures as
"zipper crack bands." The short fractures forming a band typically
dip steeper than 80° and generally strike 25°%10°
counterclockwise from the strike of the band as a whole. The
fractures appear to be planar, not twisted. They are mineralized
with epidote and chlorite. Along some bands, no central fracture
is exposed (Figure 3a), but along others, a fracture a few
millimeters thick containing epidote and chlorite extends along the
center of the band (Figure 3b). Where a central filling is present,
the secondary fracture traces extend about equal distances on
either side of the filling trace. We have not been able to measure
any slip across the central fractures of zipper crack bands; if slip
has occurred, it is less than a millimeter or so. In spite of careful
field inspection, we also have been unable to determine whether
the short oblique fractures cut the central fracture or vice-versa.
Zipper crack bands are far less common than secondary fractures
that intersect a fault trace near its end.

3. Conceptual Geometric Model

Figure 4 shows a conceptual three-dimensional geometric
model, based on the Sierran field observations, of a small vertical
left-lateral fault with secondary fractures. Figure 4 shows the
south face of the fault as viewed from the southwest. In the
attendant coordinate system the z axis is horizontal and points
south, normal to the fault. The x axis points east, and the y axis
points up. A horizontal plane through the fault center (e.g., plane
C of Figure 4) intersects the fault in a line we term the equator.

We postulate that the small faults are elliptical. The traces of
the faults of Bear Creek do not require an elliptical fault geometry,
but such a geometry is consistent with the surface textures widely
observed on joints in massive rock [e.g:, Pollard and Aydin,
1988], and the simple faults of Bear Creek originated as joints
[Segall and Pollard, 1983]. Simple normal faults (i.e., single
faults with a planar slip surface) in sedimentary rocks also have
been inferred to have roughly elliptical shapes based on their slip
distributions [Barnett et al., 1987; Walsh and Watterson, 1989;
Nicol et al., 1996]. In our geometric model (Figure 4) we show
the simplest elliptical form, that of a penny.

Secondary fractures in Figure 4 are depicted as vertical and
planar, and they are centered near the perimeter of the fault. We
envision three general shapes of secondary fractures. Each shape
can be formed from one or two semicircles. Semicircular (i.e., D-
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shaped) fractures do not extend across the fault. P-shaped
fractures extend past the fault perimeter, flare out to cross the fault
plane, and then extend down the other side a small distance.
Circular (i.e., O-shaped) fractures are the third shape. Depending
on one's perspective and where one looks around the fault
perimeter, the P- and D-shaped secondary fractures can appear
backward or upside-down.

In describing the location of fractures around our conceptual
penny-shaped strike-slip fault, we adopt a "clock-face"
convention. The 12:00 and 6:00 positions refer to the top and
bottom of the fault, respectively; a line in the plane of the fault
that is tangent to the fault perimeter is horizontal at those points.
The 3:00 and 9:00 positions refer to the west and east ends of the
fault, respectively; a line tangent to the fault perimeter is vertical
there.

The geometric model accounts for each of the three secondary
fracture distributions previously described. A horizontal cross
section through the fault center (plane C of Figure 4) yields the
most commonly observed fracture trace distribution, that of
secondary fractures (if present) being concentrated near the end of
a fault trace. The secondary fractures intersected by plane C are
D-shaped. ‘A horizontal cross section through the 1:30 position
(plane B of Figure 4) can yield secondary fractures that intersect
the fault trace as well as fracture traces that occur past the tip of a
fault trace. In order to produce the pattern of Figure 2, where
secondary fracture traces extend across the projection of a fault
trace, the secondary fractures must extend past the fault perimeter
and across to the other side (i.e., be P-shaped). Horizontal cross
sections near the 12:00 or 6:00 positions can yield the zipper crack
arrays. The fractures intersected here are O-shaped and extend the
same distance on either side of the fault. A slice just above the
fault top (plane A of Figure 4) would reveal only a zipper crack
band. A slice just above the bottom of the fault (plane D of
Figure 4) would yield a zipper crack band along with a central
fracture (the fault) provided that the secondary fractures can grow
a small distance vertically back toward the fault center (i.e., be O-
shaped).

If the conceptual geometric model is valid, it indicates how the
secondary fractures grow. First, the notable scarcity of secondary
fractures along the central portion of most fault traces (e.g., Figure
1) and the scarcity of zipper crack bands with central fractures
require that secondary fractures do not propagate vertically for a
significant fraction of a fault radius back toward the fault equator.
Second, examples of secondary fractures past fault trace tips
(Figure 2) are scarce, as are fault-parallel zipper crack bands that
lack central fractures. This suggests that secondary fractures do
not propagate vertically for a significant fraction of a fault radius
away from the fault equator. Third, secondary fractures like those
in the zipper crack band of Figure 3b must have either propagated
through the fault or else propagated vertically past the fault
perimeter and then propagated back toward the fault center on the
other side of the fault (i.e., be O-shaped).

4. Mechanical Models

Mechanical models for secondary fracturing around three-
dimensional faults can be based on either LEFM or CZT. We first
discuss an LEFM model and how it corresponds to our field
observations and conceptual geometric model, and then we
explore a CZT model. The key aspects of secondary fracturing
that we seek to account for are the locations, orientations, relative
sizes, and relative abundances of the fractures.
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Figure 3. Photographs of a zipper crack band (a) without and (b) with a central fracture. The average strike of the
band is N35°E. These structures are located at the Trail Junction Meadow outcrop of Martel et al. [1988].

4.1. LEFM and CZT Models

In LEFM, fractures are idealized as perfectly sharp features in a
material capable of supporting infinitely large stresses [Broek,
1983], and inelastic deformation near the fracture edge is small
[Kanninen and Popelar, 1985]. As a consequence of the
exceedingly sharp tip of the fracture, a singular (infinite) stress
concentration theoretically arises at the fracture edge [Lawn and
Wilshaw, 1975; Kassir and Sih, 1975]. This so-called "near-tip"
stress concentration dominates the stress field near the fracture
edge. The near-tip stress concentration also has a characteristic
form [Lawn and Wilshaw, 1975] that has been widely used to
predict the orientation in which secondary fractures propagate
[Pollard et al., 1982; Ingraffea, 1987; Cruikshank et al., 1991].
The precise character of the stress concentration depends on the
mode of fracture, that is, the orientation of relative motion of the
fracture walls with respect to the orientation of the fracture
perimeter. For a vertical, penny-shaped strike-slip fault the

relative motion at the 3:00 and 9:00 positions is perpendicular to
the fault perimeter. This is pure mode II slip. The relative motion
at the 12:00 and 6:00 positions parallels the fault perimeter. This
is pure mode III slip. Locations at other places along the fault
perimeter feel a mixture of mode II and mode III shearing. Mode
I displacements correspond to opening of fracture walls; along an
idealized smooth-walled fault the mode I displacements will be
Zero.

CZT was developed independently by Dugdale [1960] and
Barenblatt [1962] to provide a mathematically tractable way to
describe a physically plausible, finite stress concentration at the
tip of an opening mode fracture in a linear elastic material.
Rudnicki [1980] subsequently discussed application of CZT to
faults. This theory postulates that elevated stresses, which resist
the opening or sliding of fracture walls, occur in a "cohesive zone"
just behind the fracture tip. If these resisting stresses are
sufficiently strong and act over a sufficiently large portion of a
fracture, they eliminate the theoretical singularity in stresses at the
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Figure 4. Conceptual model of a vertical penny-shaped strike-slip fault and secondary fractures.

fracture tip. The following equation describes this balance in two
dimensions [Martel, 1997]:

: . -1{a—R
w ¢ —sin ]( )
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a

Here t, 1¢, and 1f are the shear stresses parallel to the fault in
the far-field, in the cohesive zones at the fault ends, and along the
fault between the cohesive zones, respectively. The term a is the
half length of the fault, and R is the length of the cohesive zone.
The material outside the cohesive zone is considered to behave as
a linear elastic material, but the material inside the cohesive zone
need not be. The leading minus sign on the right side of (1)
requires (% - 1f) and (1™ - 1¢) to have opposing signs. This
means that a shear stress drop at the fault center (T - tf) and a
shear stress rise (T® - 1) in the cohesive zone go hand-in-hand.
For short cohesive zones (R<<a) the right side of (1) is large,
meaning that the shear stress rise in the cohesive zone would be
large relative to the shear stress drop at the fault center.

Two key implications of two-dimensional CZT in terms of
secondary fracturing have been discussed recently [Martel, 1997)].
First, along a fault with cohesive zones with a uniform shear
stress, the peak principal tensile stress develops near the back of
the cohesive zone away from the fault tip, rather than at the fault
tip, and is finite. No secondary fractures would form if the tensile
stress concentration were too small, but multiple secondary
fractures could develop behind the tip of a fault trace if the tensile
stresses were large enough [Cooke, 1997]. Second, if the stress
drop during slip is low, then secondary fractures would tend to be
nearly planar with a gently curved trace. This is because the
orientations of the principal stresses near a cohesive zone are
similar to those far from the fault. Two-dimensional CZT thus
can account for a far wider range of secondary fracture locations
and orientations than an LEFM model, and unlike LEFM, can

M

account for the orientations of secondary fractures observed thus
far in the field. A limitation of the two-dimensional theory is that
it cannot fully describe the stress field around a fault that is
bounded in size. This motivates a three-dimensional analysis.

In examining LEFM and CZT models in three dimensions, we
consider a simple fracture geometry and use simple boundary
conditions. We model a penny-shaped fault of radius a in an
infinite, homogeneous, isotropic, linear elastic material. The
cohesive zone, if present, is ring-shaped, with an outer radius r=a
and inner radius r=b (Figure 5) For the sake of simplicity and to
ease comparison with the Sierra Nevada faults, we consider a
vertical, left-lateral strike-slip fault like that of Figure 4. The
coordinate origin is at the fault center and the x and z axes are
horizontal, the z axis being normal to the fault and the x axis being
parallel to fault strike. The angle 6 is measured in the plane of the
fault about the z axis. At 12:00, 6 =0. The angle o is measured in
the horizontal plane about the y axis and equals zero along the
positive x axis.

Boundary conditions are set using a tensor convention, with
tensile stresses being positive. A uniform horizontal shear stress
0, acts at a large distance from the fault and drives slip on the
fault. Dimensionless far-field boundary conditions in our initial
analyses are as follows:

Oy =0y~ =-1, (2a)
O™ = Oy = 0y, = 0y = G,,,° = G =0 (2b)

On the fault, two shear stress conditions are applied. In all
cases, -
f_
Oy =0. 3)

The shear stress after slip along the portion of the fault ringed by
the cohesive zone (i.e., r<b) is O'uf , and the shear stress within the
cohesive zone (b<r<a) is 6,,°. Based on work by Sneddon [1946]
and Kassir and Sih [1975], the stress singularity at the perimeter
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Figure 5. Geometry of elements used to define a vertical penny-
shaped strike-slip fault with a cohesive zone. Only one quadrant
of the total of 1320 elements is shown. The outermost four rings
of elements define the cohesive zone. The z axis is normal to the
fault and extends toward the viewer.

of a penny-shaped fault will be annulled if the following
relationship holds [also see Tada et al., 1973]:

— - a—\/az—b2
O .—-0__. ]
2 o _ )
O,—0,s

. Jaz _p?
The leading minus sign on the right side of (4) again requires (> -
f) and (v - 1°) to have opposing signs. Willemse [1997] used an
expression analogous to (4) and applied a Poisson's ratio of zero in
his analyses. The choice of a Poisson's ratio of zero guarantees
that the normal stress parallel to the fault perimeter (Ggg) Will not
be singular, even if a cohesive zone is absent. However, the
solutions of Sneddon [1946] indicate that if the stress singularity is
annulled everywhere around the fault perimeter for 6,, and G,,,
the two other normal stresses orthogonal to Ggg, then Ggg also will
be nonsingular. Thus (4) holds for any value of Poisson's ratio.
For a fault lacking a cohesive rim we initially assume that the
shear stresses acting on the fault face are zero everywhere. For a
fault with a cohesive rim the remote boundary conditions of (2)
still apply, but shear stresses in the cohesive zone are set using (4).
In subsequent figures in this paper the cohesive zone inner
radius b was set to 0.9a. This cohesive zone size leads to
secondary fracture distributions comparable to those observed
along the small faults of Bear Creek (i.e., fracture clusters
restricted to near fault trace ends).

()]

4.2, Methods of Analysis

We use both analytical and numerical methods in our analyses.
Westman [1965] provides closed form solutions for stresses in the
plane of a penny-shaped shear fracture with a uniform resistance
to slip in an infinite elastic medium. The solutions apply to a fault
with no cohesive zone. We know of no simple analytical solution
for the stresses around a penny-shaped fault with a cohesive zone.
To treat a fault with cohesive zones, we applied the computer

- program Poly3D [Thomas, 1993], which is based on the boundary
element method [Crouch and Starfield, 1983). With Poly3D, the
surface of a fracture is divided into a series of polygonal elements
(Figure 5). The displacement discontinuity (e.g., slip) across a
polygonal element is constant. To solve for the stresses around a
fracture, one specifies either the tractions on each element, the
relative displacements across the elements, or some combination
of these conditions. In the first case, the relative displacements
across the elements are calculated such that the stress boundary
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conditions are satisfied. Poly3D calculates stresses, strains, and
displacements at observation points specified by the user as well
as at the centroids of the polygonal elements.

Limitations of the original version of Poly3D necessitated some
modifications of the code to solve the problems we posed. For
example, Crouch and Starfield [1983] noted that boundary
element methods yield accurate results only when observation
points are either precisely on a boundary element or are farther
than some minimum distance from an element. The minimum
distance typically used is the length of an element. At this
distance from a constant displacement-discontinuity boundary
element the stresses typically are within a few percent of
analytical solutions for problems with constant-stress boundary
conditions. In the cases we tested, the elements were triangular.
In order to obtain accurate solutions progressively closer to a
fault, the triangle leg length can be shortened. However, rather
than attempting to calculate stresses at observation points off the
fault but very close to it (i.e., within an element leg length), we
choose to calculate stresses at the element centroids. Although
Poly3D does calculate directly the stress components acting on the
elements at their centroids, it does not calculate the stress
components acting parallel to the elements. Those stress
components must be determined from numerical derivatives of the
displacements of the centroids; these derivatives must be
calculated with respect to two orthogonal directions [e.g., Chou
and Pagano, 1967]. From these derivatives the strains can be
calculated. A subsequent application of Hooke's law allows the
desired stress components to be obtained from the strains. If the
centroids were evenly spaced along a rectangular grid, then the
desired numerical derivatives could be calculated
straightforwardly. Unfortunately, only if the polygonal elements
themselves are rectangular will their centroids be evenly spaced
along a rectangular grid, and the smooth perimeter of a penny-
shaped fault cannot be fit well with a small number of rectangular
elements. We used a spline technique to approximate the
element-parallel stress components (see the appendix for more
details). Four rings of small elements were used for the cohesive
zone to increase the resolution of the displacements there (Figure
5). This choice reduced but did not eliminate errors associated
with a triangular element geometry, as described in the appendix.

We required that the fault walls remain in contact as they slip;
they must be displaced equally in the z direction. The same result
could be obtained by requiring both 6, and the normal stress
acting on the fault (6,/) to be zero, but only with a substantial
penalty in terms of computer memory and run time.

4.3. Location of Secondary Fractures

We envision that secondary fractures nucleate around a fault
where the tensile stresses are highest. The stress concentrations
arising from slip die off with distance from the fault, so we focus
on the vicinity of the fault plane. The magnitude of ¢y, G,,, and
0,y are illustrated on the southern face of an east striking left-
lateral fault with no cohesive rim in Figure 6. These stresses were
calculated using the analytical solutions of Westman [1965]. The
viewing direction is to the north. The plots also show the
following. (1) On any horizontal traverse of the fault face, the
tensile stresses are highest near the perimeter of the fault. (2)
Inside the fault perimeter, the most tensile stress (0;) is highest
near 9:00. (3) The stresses Gy, and G, are most tensile at 9:00
also; they are most compressive at 3:00. The first result suggests
that if a secondary fracture nucleated on the wall of a fault, then it
should nucleate toward the fault perimeter, where tensile stresses
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Figure 6. Dimensionless normal stresses on the face of a penny-
shaped fault with no cohesive zone based on the analytical
solutions of Westman [1965]. The faces of the fault sustain no
shear stress. ‘Stresses here and in subsequent figures are scaled
relative to the far-field shear stresss 0,,. (a) The most tensile
stress O1, (b) Oxy., and (C) Oy,

are greatest, rather than near the fault center. Furthermore, any
secondary fracture that did nucleate on the fault face should
preferentially propagate away from the fault equator toward the
perimeter. Given that tensile stresses also are concentrated past
the fault perimeter [Kassir and Sih, 1975], secondary fractures
should be able to propagate some distance beyond the fault
perimeter. These conclusions are consistent with the conceptual
geometric model based on the field observations (Figure 4). The
second result indicates that secondary fractures should
preferentially nucleate, be more common, and be larger at 9:00
than at 12:00 and 6:00. This result is consistent with the scarcity
of zipper crack bands and the relatively short length of the
fractures in those bands. The third result indicates that if either
preexisting horizontal fractures or fault-perpendicular vertical
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Figure 7. Dimensionless normalstresses on the face of a penny-
shaped fault with a cohesive zone based on results from Poly3D.
The portion of the fault ringed by the cohesive zone sustains no
shear stress. (a) The most tensile stress 01, (b) Oy, and (C) Gy

fractures occur near the fault perimeter, then they are most likely
to be opened at 9:00 and closed at 3:00.

Although some predictions of LEFM are physically reasonable
and are consistent with field observations, others are not. First
and foremost, the singular nature of the LEFM crack tip stress
field associated with a uniform driving stress is problematic on
physical grounds. Second, owing to the theoretical singular stress
concentration at the fault perimeter, all secondary fractures should
nucleate at the fault perimeter rather than on the fault faces.
Furthermore, because tensile stresses are highly concentrated past
the perimeter of an LEFM fault, all secondary fractures nucleating
at the fault perimeter should extend past the perimeter. Cases like
Figure 2 appear rarely, however, suggesting that most fractures do
not extend far past the fault perimeter. Third, secondary fractures
should nucleate everywhere along the fault perimeter, making the
lack of secondary fractures near the ends of many fault traces
difficult to account for. )
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For a fault with a cohesive rim where the shear stress is
uniform (Figure 7) the distributions of stresses are grossly similar
to those for a fault lacking a cohesive zone, but there are two
important differences. First, the stresses are finite, and thus the
stress concentration is physically plausible and inherently broader
than for the LEFM case. Second, the highest tensile stresses occur
near the inner margin of the cohesive rim, rather than at the fault
perimeter. This effect together with the prior one provide
conditions favorable for the nucleation of secondary fractures over
a larger portion of a fault than in the LEFM model.

4.4. Orientation of Secondary Fractures

We anticipate that secondary fractures grow such that they are
oriented perpendicular to the most tensile local stress. Under
LEFM constraints the singular stress concentration at the fault
perimeter dominates the local stress field no matter how little a
fault slips, and so the orientation of secondary fractures would
depend only on the singular stress contribution arising from fault
slip. However, LEFM does not yield predictions consistent with
the observed orientations of secondary fractures. Based on the
theoretical orientation of the most tensile stress near the perimeter
of a penny-shaped LEFM fault, secondary fractures should strike
away from a fault at an angle between 45° and 70°, the angle
being measured relative to the strike of the fault. The angle
should be near 45° [Pollard et al., 1982] for pure mode III
shearing (12:00 and 6:00 positions), and near 70° [Ingraffea,
1987] for pure mode II shearing (3:00 and 8:00 positions).
Secondary fractures of these orientations are rare or absent along
small faults of the Sierra Nevada. The observed intersection
angles of the traces of secondary fractures and faults along Bear
Creek are consistently 25°+10° (e.g., Figures 1, 2, and 3) rather
than 45°-70°. If there is a component of opening along a fault
(mode I relative displacement), then the predicted angle can be
reduced. However, the amount of opening must be large relative
to the amount of slip to lower the angle to the observed values
near 25° [Pollard et al., 1982; Cruikshank et al., 1991], and the
aperture:slip ratios of many Bear Creek faults are tiny [Martel,
1997]. Finally, LEFM predicts that as secondary fractures
propagate, they should twist and warp to become perpendicular to
the far-field most tensile stress [Pollard et al., 1982]. In contrast,
the field observations suggest that the secondary fractures twist
little if at all. The field observations and the predictions of LEFM
thus conflict in several key qualitative and quantitative areas.

For a fault with a cohesive zone the orientation of a secondary
fracture would be determined by the total stress field, not just the
perturbation to the stress field arising from fault slip. The total
stress field reflects contributions from gravity, regional tectonic
stresses, thermal stresses, and the perturbations arising from slip
on the fault.

To simulate these effects, we consider the following
dimensionless far-field boundary conditions, scaled relative to the
magnitude of the far-field shear stress 6,,™:

Oy =0y =-1, (5a)

Oy = 0y "= 0y, " = 0, =0, (5b)
Oy~ =-2 tan (200), (5¢)

0,,° =-tan (20) -1, (5d)

o~ =0. (5e)

These conditions lead to strike slip along a vertical fault (Figure
8). The most tensile far-field principal stress (G;) and most
compressive principal stress (03) are horizontal; o gives the
orientation of the most compressive stress as measured
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Figure 8. Far-field stress state used in calculations. (a) Mohr
circle diagram. Tensile normal stresses and right-lateral shear
stresses are considered positive. The angle o between the o}
direction and the normal to the fault is 25°. The most tensile
stress (G7) and the least tensile stress (03) are horizontal, and the
intermediate principal stress (0,) is vertical. The difference
between the intermediate principal stress and the mean normal
stress equals the magnitude of the far-field shear stress parallel to
the fault (6,,™). (b) View down on the fault (in the negative y
direction) showing the orientation of 6 and o3 relative to the fault
and the reference frame.

counterclockwise from the strike of the fault. In our case, o =
25°. The intermediate principal stress (03) equals Gy, and is
vertical and compressive (negative). The magnitude of o, is
arbitrarily set such that the difference between it and the mean
normal stress equals the magnitude of the shear stress 6,,. These
choices yield a unit left-lateral shear stress and no normal stress
along planes parallel to but remote from the fault (Figure 8).
Figure 9 depicts predicted secondary fractures around a penny-
shaped strike-slip fault. The secondary fractures are represented
by semicircular disks as seen in orthographic projections parallel
to the fault. The fractures appear most foreshortened where their
strike is most nearly perpendicular to the fault. A dot marks the
center (and inferred nucleation point) of each secondary fracture.
These centers are located along the inner radius of the cohesive
zone, where the most tensile stress is at a maximum along a radial
line from the fault center. Far-field boundary conditions are given
in (6) and Figure 8. Figures 9a and 9b thus show predicted
fracture orientations if no vertical stress were applied (i.e., if
gravitational stresses were ignored). In Figures 9c and 9d the
vertical stress is given by (6d). In Figures 9a and 9c the shear
stress drop at the fault center is 100% (i.e., szf = 0 for r<b),
whereas in Figures 9b'and 9d the stress drop is 1% (i.e., szf
=0.996,,™). Martel [1997] noted that the stress drop during slip
on a fault should affect the strike of secondary fractures; Figures
9a-9d show that the dip is affected too. They also show that a low
stress-drop CZT model is consistent with observed macroscopic
fracture orientations at Bear Creek, whereas high stress drops are
inconsistent. A low stress drop also is consistent with the ductile
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Figure 9. Predicted orientations of potential secondary fractures
along a penny-shaped fault; far-field most compressive stress at
25° to fault. Secondary fractures are depicted as foreshortened
semicircles and are oriented perpendicular to the local most tensile
stress 01. Dots mark the centers of the secondary fractures.
Fracture radii are scaled to the magnitude of the most tensile
stress. The view here is perpendicular to the fault, so the
secondary fractures, which do not parallel the fault, appear
foreshortened. The inner radius of the cohesive zone (dotted line)
is set to 90% of the fault radius. (a) Unit stress drop; 0y~ = 0.
(b) Stress drop of 1%; 6,,” = 0. (c) Unit stress drop; Oy~ as
shown in Figure 8. (d) Stress drop of 1%; 0,,~ as shown in
Figure 8a. The secondary fractures in Figures 9b and 9d strike
25°13° relative to the faults and dip at nearly 90°.

mylonitic fabrics of the material filling the small faults [Segall
and Pollard, 1983].

4.5. Distribution and Shapes of Secondary Fractures

The distributions and shapes of secondary fractures can be
gauged by the strength and distribution of the tensile stress
concentrations depicted in horizontal and vertical cross sections
perpendicular to a fault. Figure 10 shows the magnitude of the
most tensile stress and trajectories (large tick marks) normal to the
most tensile stress along the four horizontal planes perpendicular
to the fault of Figure 4. The trajectories reflect the most probable
strike of new secondary fractures that open. Figure 11 shows the
stress configurations along the four vertical planes that intersect
the fault near 3:00 and at 1:30, 12:00, and 8:30; the locations of
the planes are shown as insets. Fault traces on Figure 11 are
shown in a heavy line, and small ticks crossing a fault trace mark
limits of the cohesive zones. Dotted lines show the diameter of
the faults. The boundary conditions of Figures 10 and 11 are
those of Figure 9d which correspond to a 1% shear stress drop and
a most tensile far-field stress of dimensionless magnitude 0.4663.

Local tensile stresses with magnitudes greater than the most
tensile far-field stress would promote secondary fracture
formation, whereas lower stresses would not. Regions where
o1'cal exceeds the most tensile far-field stress of 0.471 are shown
shaded in Figures 10 and 11. These regions correspond roughly to
where secondary fractures were observed in the field, but they are
larger, relative to the fault, than the regions of observed fracturing.
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Smaller regions that more closely fit the sizes of the observed
regions of fracturing would be bounded by higher stress levels and
have similar shapes to those shown but would be difficult to see in
Figures 10 and 11.

Figure 10 suggests how secondary fractures would be
distributed along the strike of a fault trace. For planes at 3:00
(Figure 10c) and 1:30 (Figure 10b) the most tensile stress is
concentrated near the fault trace ends and diminishes rapidly
toward the fault trace center. Secondary fractures intersected by
either of these planes would likely be concentrated near the fault
trace ends. If multiple secondary fractures were encountered, then
their traces would decrease in length toward the fault trace center.
In contrast, the magnitude of the most tensile stress is much more
uniform along strike near the top and bottom of the fault (Figures
10a and 10d, respectively). Secondary fractures near the top or
bottom of a strike-slip fault thus seem more likely to have a spatial
distribution and horizontal trace length distribution more uniform
than for fault end secondary fractures. These predictions are in
general agreement with the observations.

Figures 10 and 11 together provide some insight into likely
shapes of secondary fractures. The D-shaped secondary fractures
of Figure 4 occur near 3:00 and 9:00. They are confined to one
side of the fault. In this sense they are like edge cracks that
extend from free surfaces and characteristically assume
semielliptical shapes [Broek, 1993]. The portions of the shaded
regions of Figures 11a and 11d that are restricted to the sides of
the fault with the broader tensile stress concentrations are also D-
shaped. A comparison of the shaded areas in Figures 10a and 10d
and those of Figures 11c and 10b indicates that the D-shaped
fractures are likely to have a significantly greater vertical extent
than horizontal extent. The O-shaped fractures of Figure 4 occur
near 6:00 and 12:00. They extend past the perimeter of the fault,
across the fault plane, and toward the fault equator. The roughly
equidimensional shaded areas in Figure 11c reflect stress
concentrations at 6:00 and 12:00 that would promote formation of
a roughly O-shaped fractures centered near the fault perimeter.
The P-shaped fractures of Figure 4 occur near 1:30, 4:30, 7:30,
and 10:30. These are inferred to be asymmetric, with large lobes
on the sides of the fault with the broader tensile stress
concentrations and small lobes extending to the other side of the
fault. Elasticity theory predicts that perturbations of the normal
stress components arising from fault slip are of opposite sign on
the opposing walls of a fault [Pollard and Segall, 1987], so one
might suspect that secondary fractures would be strongly hindered
in propagating from the side of a fault where the mean tensile
stress is increased as a result of slip to the opposing side where the
mean compressive stress is increased [see Pollard and Segall,
1987, Figure 8.7b]. However, the stress field near the end of a
fracture is complex, and concentrations of the most tensile stress
in fact do develop where the mean compressive increases, albeit
of smaller extent than those on the side where the mean tensile
stress increases. Figures 10b, 10c, 11b, and 11c of this study
show this, as do Figures 7b and 11 of Segall and Pollard [1980].
Thus secondary fractures nucleating on one side of a fault should
be able to propagate past the perimeter of the fault and a small
distance across the fault plane to yield P-shaped secondary
fractures. Figure 11b suggests that the horizontal and vertical
extents of these P-shaped fractures would be similar.

4.6. Relative Sizes of Secondary Fractures

The observed relative sizes of secondary fractures also can be
gauged by the extent of tensile stress concentrations around the
fault. The field observations show that the traces of secondary
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Figure 10. Contour map of the magnitude of the most tensile stress (0;) and trajectories normal to ©;, along
horizontal planes perpendicular to a model penny-shaped fault of radius a. Boundary conditions match those of
Figure 9d. Insets show where cross-section planes cut fault. (a) Plane i$ a distance of 0.03a above the top of the
fault. Compare with plane A of Figure 4. (b) Plane intersects fault at 1:30. Compare with plane B of Figure 4. (c)
‘Plane intersects fault at 3:00 and 9:00. Compare with plane C of Figure 4. (d) Plane is a distance of 0.03a above
the bottom of the fault. Compare with plane D of Figure 4.

fractures are roughly an order of magnitude longer near fault trace
ends than along the zipper crack bands. We interpret these
observations as indicating that D-shaped fractures near 3:00 and
9:00 will have much greater horizontal extents than O-shaped
fractures near 6:00 and 12:00. Suppose secondary fractures
extend from a fault and terminate where the most tensile stress
drops below the most tensile far-field stress, which is 0.471 in
Figures 10 and 11. Figures 10 and 11 suggest that the D-shaped
fractures would have horizontal extents greater than O-shaped
fractures, but not an order of magnitude greater. The 0.471
contour also encloses a region that extends considerably farther
from the trace of the model fault than the observed secondary
fractures extend from the real fault traces. This suggests a higher
stress threshold for secondary fracturing is appropriate. A higher
threshold also would account for the inherent tensile strength of
the rock. In Figures 12a and 12b we consider a contour of 0.4715,
which hugs the fault tighter than the 0.471 contour and encloses
an area more compatible with the regions of secondary fractures
observed in the field. In Figure 12a, which represents conditions
near the top of the fault, this contour extends a distance of about
0.01a away from the projected fault trace, about half the distance
of the 0.471 contour. In contrast, in Figure 12b, which represents
conditions near 9:00, this contour extends a distance of about
0.15a away from the fault trace, the distance being measured
along the strike of potential secondary fractures. Thus if
secondary fractures propagated to the 0.4715 contour, their
maximum horizontal dimension near 3:00 and 9:00 would be
several times the horizontal dimension near 6:00 and 12:00. This
is comparable to the relative lengths of the observed fractures. If
a higher contour level were selected, the disparity would increase.

The D-shaped fractures (Figures 11a and 11d) are expected to
have greater heights than the O-shaped fractures (Figure 11c), and
this would also contribute to a greater horizontal extent of the D-
shaped fractures. If the fault were elliptical and longer than it is
tall, rather than circular, that would also promote the formation of
larger D-shaped fractures owing to relatively enhanced stress
concentrations near 3:00 and 9:00 [Kassir and Sih, 1975].

4.7. Evaluation of LEFM and CZT Models

In conclusion, although LEFM and CZT models are
qualitatively similar in several ways, CZT has some distinct
advantages. First, it is more plausible on physical grounds
because the predicted stress concentrations are finite. Second, it
more readily accounts for the observed locations, orientations, and
sizes of secondary fractures. Third, it better explains the presence
of multiple fractures near the end of a fault trace owing to its
broader, finite concentration of tensile stress near the fault
perimeter.

A three-dimensional CZT model has some key advantages over
a two-dimensional model. First, a three-dimensional model can
treat faults and fractures of finite size. As a result, it provides an
even more robust explanation for the multiple secondary fractures
observed near the ends of many fault traces. Secondary fractures
in a two-dimensional model would have an infinite height;
opening such a fracture would reduce the local tensile stresses and
inhibit the opening of other fractures nearby, more so than the
opening of a three-dimensional fracture of finite height. Multiple
fractures thus are more likely to form in a given volume of
material along the fault perimeter if they are of finite size.
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Figure 11. Contour plot of the magnitude of the most tensile
stress (61) and trajectories normal to oj, along vertical planes
perpendicular to a model penny-shaped fault of radius a. View is
along strike to the west. Boundary conditions match those of
Figure 9d. Insets show where cross-section planes cut fault. (a)
Plane is a distance of 0.03a past the 3:00 end of the fault. (b)
Plane intersects fault at 1:30. (c) Plane through 6:00 and 12:00.
(d) Plane a distance of 0.03a toward the fault center from 9:00.

Second, the three-dimensional model provides a unifying
explanation for the locations, orientations, and sizes of a broader
range of secondary fractures (see Figure 4). The two-dimensional
model of Martel [1997] accounts only for secondary fractures that
form in. response to pure mode II loads, whereas a three-
dimensional model accounts for mode II, mode III, and mixed-
mode II-III loads. A three-dimensional CZT model thus can
account much better for the locations, orientations, sizes, and
relative abundances of secondary fractures observed in the field.

5. Discussion

Questions regarding how secondary fractures along faults can
be located and characterized, how they affect fluid flow, and how
they can be predicted stimulated our work. Our discussion of the
field observations and mechanical analyses focuses on five
specific points relevant to those questions.

5.1. Hydrogeologic Effects of Secondary Fractures
Along Bear Creek

Theory shows that secondary fractures have the potential to
radically change the hydrogeologic behavior of a rock mass [e.g.,
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mineralized, unfaulted joints but are common along the faults and
associated secondary fractures. This indicates that faulting in
some way profoundly affected the hydrogeologic behavior of the
pluton. Two competing scenarios for how this might have
occurred seem most likely. First, where fault slip produced
localized regions of elevated mean compressive stress (e.g., on the
side of a fault immediately opposite a secondary fracture), quartz
might have liberated from the host granodiorite by pressure
solution. Quartz dissolved from these regions conceivably could
have been transported by fluids to, then precipitated in, the
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tested and rejected the first possibility on the basis of geochemical
analyses; there was no evidence of preferential quartz loss
opposite secondary fractures near fault trace ends. Unless another
viable explanation can be found, the linkage of originally
discontinuous, parallel faults by secondary fractures to form a
well-connected, conductive fracture network appears to be the
most likely mechanical explanation for why quartz is scarce in the
joints and common in the faults. Further geochemical work in the
Bear Creek region might be able to substantiate this.

1.

5.2. Loading Conditions During Faulting

Some general comments on the loading conditions during slip
along the faults of Bear Creek can be made based on the
orientations of the secondary fractures. The secondary fractures
there consistently strike 25°+10° counterclockwise relative to their
host faults, even though the absolute orientations of the faults
vary. For example, faults at the Kip Camp outcrop of Segall and
Pollard [1983] strike about N65°E, whereas the central fracture of
Figure 2b of this study strikes N35°E. We assume that the
secondary fractures strike roughly perpendicular to the most
tensile far-field stress and parallel to the most compressive

02f a 0.468
0.1
0.4695 4
0.4715
—_—
0.46!

0.1 LY

0.468 -\
0.2 X

0.2 0.1 0 0.1 0.2 2 1.1 1 0.9 0.8 0.7

x/a, x/a

Figure 12. Contour map of the magnitude of the most tensile
stress (07) and trajectories normal to ¢ along horizontal planes
perpendicular to a model penny-shaped fault of radius a.
Boundary conditions match those of Figure 9d. Insets show
where cross-section planes cut fault. Contour levels match those
of Figure 10, except for the addition of a contour at 0.4715. (a)
Plane is a distance of 0.03a above the top of the fault. Compare
with Figure 10d. (b) Plane intersects fault at 9:00. Compare with
Figure 10c.
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horizontal stress at the time of faulting. The varied absolute
orientations of the secondary fractures thus indicate that different
faults slipped when the far-field stresses were at different
orientations. This means that different faults slipped at somewhat
different times, so the far-field principal stresses probably were
rotating about a vertical axis during the general period of faulting;
this is consistent with findings by Christiansen [1995].
Additionally, the narrow orientation range of the secondary
fractures relative to their host faults implies that the faults tended
to slip when the most compressive horizontal stress was oriented
at 25°+10° relative to fault strike. This is about what one would
predict using standard Mohr-Coulomb shear failure criteria for
rocks lacking preexisting planes of weakness. Perhaps conditions
during faulting were such that the faults were only slightly weaker
than the host rock. This condition might not be peculiar to the
faults of Bear Creek, for secondary fractures along small faults in
other areas also formed at angles of 25°+10° relative to the host
fault [e.g., Granier, 1985; Martel and Peterson, 1991].

5.3. Comparison With Models Based on Laboratory
Investigations

Conceptual models of secondary fractures around penny-
shaped shear fractures have been prepared by other investigators
based on laboratory experiments and are illustrated in Figure 13.
Adams and Sines [1978] based their conceptual model (Figure
13a) on compression tests on penny-shaped cracks in rectangular
plastic samples. The cracks were machined into the surface of
two blocks of polymethylmethacrylate plastic (PMMA) that were
subsequently glued together, so the cracks were along a seam.
The samples were loaded in uniaxial compression tests, with the
axis of compression at 45° to the penny-shaped cracks. In some
of their tests the samples were clamped in a vise to produce a
biaxial compression, with the resulting intermediate compressive
stress being parallel to the crack. The magnitude of the
compressive stress produced by the vise apparently was not
measured. Scholz [1990] crafted his conceptual model (Figure
13b) by combining results of two-dimensional mode II shear tests
in plastic sheets [e.g., Brace and Bombolakis, 1963] with mode III
torsion tests on rocks [Cox and Scholz, 1988a, b]. Germanovich et
al. [1994] based their conceptual model (Figure 13¢) on uniaxial
compression tests on PMMA and silica glass. Their penny-shaped

Figure 13. Secondary fracturing models from (a) Adams and
Sines [1978], (b) Scholz [1990], and (c) Germanovitch et al.
[1994]. Modified from Germanovitch et al. [1994]. Small solid
arrows show orientations of applied compressive stresses. Figure
13a is reprinted from Adams and Sines [1978]. Copyright 1978
with permission from Elsevier Science.

MARTEL AND BOGER: FRACTURING AROUND FAULTS

cracks were formed inside the samples using a laser and thus did
not lie along a seam. The laser produced a powder along the crack
faces in the PMMA samples but not in the glass. Cracks grew
more stably in the PMMA samples than in the glass, which tended
to fail explosively. Germanovich and his colleagues concluded
that high friction between the crack faces in the glass impeded
sliding, whereas the soot probably acted as a lubricant between the
crack faces in the PMMA and promoted sliding. )

The secondary fractures in Figures 4 and 13 have three key
similarities regarding locations, orientations, and sizes. (1) They
touch the penny-shaped shear fracture near its perimeter. (2) They
are roughly perpendicular to the most tensile principal stress on
the sample boundary. (3) They are larger where the fracture
perimeter is perpendicular to the slip vector (i.e., 3:00 and 8:00)
than where it parallels the slip vector (i.e., 6:00 and 12:00). These
similarities are consistent with the descriptions in section 5
regarding the stress concentrations along the perimeter of a penny-
shaped shear fracture and with the numerical results of
Germanovich et al. [1996].

There are also some key differences between the conceptual
models, however. First, the secondary fractures at 9:00 (mode II
loads) in Figure 4 are planar, do not everywhere intersect the fault
at its perimeter, and do not merge to form a continuous curved
fracture, in contrast to those in Figure 13. The model of Figure 4
accounts for multiple discontinuous secondary fractures near the
end of a fault trace, whereas the models of Figure 13 cannot.
Second, the P-shaped secondary fractures of Figure 4 provide an
explanation for secondary fracture traces that occur past the end of
a fault trace; none of the corresponding fractures in Figure 13 can.
Third, Figure 4 can account for the presence of zipper crack bands
with and without central fractures. Neither Figure 13a nor 13c can
account for a zipper crack band at all, and Figure 13b cannot
account for a band with a central fracture. Interestingly, Cooke
and Pollard [1996] did produce secondary fractures in their
experiments that resembled those near 12:00 of Figure 4, with
secondary fractures propagating ahead of as well as behind the
shear fracture front, but the portions behind the shear fracture
front were difficult to photograph (M. L. Cooke, personal
communication, 1997). The experiments of Cooke and Pollard
[1996] thus support a pattern like that near 12:00 and 6:00 of
Figure 4. So although the models of Figures 4 and 13 are similar
in several ways, only Figure 4 captures the details necessary to
match the field observations in Bear Creek.

The differences between the conceptual models of Figures 4
and 13 might be largely a result in differences in the loading
conditions during slip in the Earth and in the laboratory. Neither
Adams and Sines [1978] nor Germanovich et al. [1994] applied
large triaxial compressive loads in their laboratory tests. Instead,
compressive stresses were applied to either one or two faces of the
plastic parallelepipeds containing the fractures. Where
compression was applied to two sample faces [Adams and Sines,
1978], one of the directions was parallel to the shear fracture. An
inspection of Figure 9 shows that applying an intermediate
compressive stress parallel to a shear fracture will have relatively
little effect on the orientation of secondary fractures. The loads
that Adams and Sines [1978] and Germanovich et al. [1994]
applied might not have been sufficient to close the shear fractures
tightly. If a shear fracture were not closed, it would sustain no
shear stress. Thus the experimental conditions might correspond
to the large stress-drop scenarios of Figures 9a and 9b. Figures 9a
and 9b show a large stress drop is far more likely to yield
continuous curved secondary fractures near 3:00 and 9:00 than a
small stress drop is (Figures 9c and 9d). Thus the discrepancies
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between the models of Figures 4 and Figure 11 might be due
primarily to differences in loading that yielded differences in the
stress drops during slip.

The method of sample construction probably accounts for some
discrepancies too. For example, Adams and Sines [1978] show all
the secondary fractures that extend past the perimeter of the
penny-shaped shear fracture as being D-shaped (Figure 13a). The
seam along the penny-shaped crack in their test might well have
prevented those secondary fractures from propagating across the
plane of the fault and becoming P-shaped as our analyses predict.
The powder on the faces of the penny-shaped fractures of
Germanovich et al. [1994] might have acted as a dry lubricant,
favoring a large stress drop during slip.

Although differences in loading rates, material rheology, and
environmental conditions probably contribute to some differences
between field-based observations and laboratory-based models,
triaxial compression tests with loads sufficient to close a shear
fracture could help resolve whether the differences are primarily a
reflection of different loading conditions. Alternatively, a weak
bonding resin might be injected into a laboratory shear fracture to
allow for slip with an incomplete stress drop.

5.4. Comparison of Two- and Three-Dimensional Mechanical
Models

‘The three-dimensional nature of our mechanical analysis
required us to address some issues that two-dimensional analyses
did not. For example, the two-dimensional plane-strain analyses
of Segall and Pollard [1980] and Pollard and Segall [1987], if
applied to strike-slip faults, pertain to vertical faults. Owing to the
two-dimensional nature of those analyses, the secondary fractures
that the analyses predict must be vertical too. The question of
what might have caused the secondary fractures along the faults of
Bear Creek to actually be nearly vertical tends not to arise in a
two-dimensional analysis. Our three-dimensional analyses
prompted us to account for the effects of three principal stresses in
order to explain the observed dip of the secondary fractures. An
inspection of Figure 9 shows that the stress drop during slip will
greatly affect the orientation of the secondary fractures, whereas
the vertical stress due to the weight of the overburden exerts little
influence if it is the intermediate principal stress.

5.5. Implications Regarding Fault Growth and Fault
Hydrology

The mechanical model proposed here has direct implications
for how faults link, grow, and conduct fluids in three dimensions.
Both field observations and mechanical considerations indicate
that strike-slip faults far from a free surface in massive granitic
rock should link more readily end-to-end than top-to-bottom
(Figure 14). This is because fractures associated with mode II
loads are larger than those for mode III.

Although our focus here is on the linkage of neighboring
segments of small strike-slip faults, linkage is increasingly
recognized as being a significant, or potentially significant,
process in the growth of faults of all types across a broad range of
scale [Childs et al., 1996; Cladouhos and Marret, 1996; Mansfield
and Cartwright, 1966; Nicol et al., 1996, Wojtal, 1996]. We
expect a strike-slip fault formed by linkage in massive granitic
rock would tend to develop its maximum dimension along strike if
growth were unrestricted, whereas a dip-slip fault would tend to
develop its greatest dimension downdip. Unfortunately,
information on aspect ratios for faults with dimensions of
kilometers is exceedingly scarce for massive granitic rock. This
precludes a thorough discussion of scaling in this type of rock.
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Figure 14. Possible locations of fault linkages, shown here for
idealized penny-shaped strike-slip faults. Mode II-mode II
linkages are oriented perpendicular to the slip vector. Mode III-
mode III linkages are oriented parallel to the slip vector.

The available data on faults with dimensions of kilometers instead
tend to come from heterogeneous or layered rocks. The data
presented by Nicol et al. [1996] show that both normal and strike-
slip faults (or fault ruptures during earthquakes) tend to have
greater dimensions in the direction of strike than the direction of
dip. In their study of normal faults in sedimentary rocks,
Mansfield and Cartwright [1996] concluded that initially isolated
dip-slip faults had dimensions parallel to layering (along strike)
several times greater than across layering (downdip). This is
counter to our prediction for faults in massive rock and instead is
reminiscent of the relative dimensions of strata-bound joints in
sedimentary rocks [e.g., Pollard and Aydin, 1988]. We contend
that the discrepancy is not a function of scale but rather a
reflection of the mechanical difference between massive granitic
rock and layered rock, consistent with the conclusions of Nicol et
al. [1996]. .

Forster and Evans [1991] have previously argued that the
hydraulic conductivity of faults should be anisotropic, with the
hydraulic conductivity across a fault in many cases being much
lower than the conductivity parallel to the fault. Our work
suggests that fluid flow along faults would tend to be anisotropic
and channeled, with "chimneys" of highly fractured rock oriented
normal to the slip vector being regions of elevated hydraulic
conductivity (Figure 14). This point also has been noted
previously by Martel and Peterson [1991] and Sibson [1996]. For
vertical strike-slip faults these chimneys would be vertical. We
expect horizontal linkages between the top and bottom of
overlapped strike slip faults (i.e., parallel to the slip vector) also
will exist.. However, based on the narrowness of the zipper
fracture bands (Figure 3) and our modeling studies, these slip-
parallel linkages would be less well developed or smaller than
linkages normal to slip, especially where slip along the linked
faults is small. Hence fault plane hydraulic conductivity arising
from linkages would be high parallel to slip and low normal to
slip. This prediction contrasts with what one might expect based
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on studies of fault roughness. For example, Power et al. [1987]
and Lee and Bruhn [1996] have called attention to how faults tend
to be substantially smoother in the direction of slip (i.e., in the
orientation of slickenlines) than in the direction normal to slip.
Calculations of Brown [1987] and Thompson and Brown [1991]
have shown that fluids would flow more readily along the less
tortuous path; along strike-slip faults this would be horizontally
rather than vertically. There is no obvious reason why anisotropy
both in linkages and in fault roughness should not contribute to
anisotropy and channeled fluid flow along faults, but their relative
importance probably is a function of location, scale, and perhaps
the amount of slip.

Our model also is being adapted to stochastic use. For
example, distributions of secondary fracture locations and sizes
can be selected stochastically using the most tensile stress or the
strain energy density. Estimation of statistical parameters
describing the distributions of fault and fracture sizes can be done
by conditioning the statistical model to match field data using a
method called conditional coding [Hestir et al., 1998]. The
estimation results can be used to determine connectivity of the
fault zone and as a basis for hydrologic inverse modeling [e.g.,
Martel and Evans, 1996; Hestir et al., 1998].

6. Conclusions

Observations of the structure and mineral fillings along the
small faults and secondary fractures along Bear Creek indicate
that secondary fractures played a critical role in fault growth and
fluid flow. The three-dimensional model we propose for
secondary fractures is consistent with field observations from Beer
Creek. It also is consistent with a physically plausible,
quantitative CZT model for fracturing in three dimensions around
faults. Finally, the model is compatible in many ways with results
from laboratory experiments on shear fractures in plastics.
Differences between the laboratory results and the field
observations underscore some of the considerations which must be
accounted for if laboratory tests on shear fractures are to be used
to precisely simulate faulting at depth in the Earth. Our
observations, conceptual geometric model, and three-dimensional
CZT model together provide a way to account for and predict the
location, relative extent, orientation, and relative abundance of
secondary fractures along the small faults of Bear Creek. The
style of secondary fracturing there is reflected along faults in
crystalline rocks in other parts of the world. Accordingly, our
model should have broad applicability in understanding how
fluids flow along faults and how faults grow in crystalline rock.

Appendix

To calculate strains on the faces of a fracture defined by
polygonal displacement discontinuity elements, one must obtain
the partial derivatives of the element-face displacement field along
two orthogonal directions. For each element we sample the
displacement field at the element centroid and at two points just
outside the element perimeter, one along the axis of strike and the
other along the orthogonal axis of dip. The displacements and
coordinates at these points are used with B splines [e.g., Kincaid
and Cheney, 1991] to calculate the partial derivatives at the
centroid. The orders of B splines are designated by a superscript.
The lowest orders, B and B1, are used here. B splines are
piecewise constant functions, whereas B! splines are piecewise
linear. Everywhere B! splines exist they have derivatives, except
at the ends of their constituent line segments.
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Figure A1 provides an example of spline usage. The upper part
of Figure A1 shows a cartoon of some triangular Poly3D elements
and a reference line, L. The lower part shows a graph of one
displacement component () as a function of position (x) along L.
Displacements are constant on'the face of an element, so that
graph consists of piecewise constant segments. Connecting the
right edges of these segments by dotted lines produces a piecewise
linear graph. These two graphs can be represented by B® and B!
spline functions, respectively. Segment endpoint coordinates x;
are assumed to be in ascending order but need not be evenly
spaced. The corresponding displacements are u;. Consider a point
x such that x; < x < x;,;. The derivative of the B! spline evaluated
at x is given by equation (A1), as adapted from Kincaid and

Cheney [1991]:
ou, \ | u—uy
ax (x) = (x“_] x J

1

(A1)

In the geometry of Figure Al, the derivative is the length of
line segment PQ divided by the length of line segment QR, or the
slope of line segment PR. Derivatives calculated in this manner
can be used to estimate the strains and then the stresses [Chou and
Pagano, 1967].

The spline technique has a key advantage over difference
methods in the context of polygonal elements: data points need
not be evenly spaced or be on a rectangular grid. For the problem
at hand, the points at which displacements are known indeed are
not evenly spaced. The irregularly spaced data could be projected
onto a rectangular grid, but this has two associated difficulties.
First, the use of gridding requires extra computation and will
introduce some error. Second, the number of grid nodes needed to
adequately represent the displacement field would greatly exceed
the number of triangular elements. As a result, the finer grid
spacing makes an approach using gridding and finite differences
more susceptible to numerical errors than using splines on
relatively coarse triangular elements. Our tests indicated that the
spline method yielded significantly better results.

Nonetheless, the spline method is susceptible to error. For
example, it would not yield a displacement derivative of zero at
shaded element in Figure Al where the displacement is a local
maximum. We avoided this problem by generating elements such
that their centroids do not fall where derivatives might be
expected to equal zero.

There are inherent difficulties in evaluating the displacement
derivatives when the displacements are discontinuous between
adjacent elements. Imagine trying to evaluate the average slope of

Displacement

X1 X

X Xipq
Distance along line L

Figure Al. Stepped displacement profile (solid line) along a
traverse across part of a fracture defined by triangular elements.
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a portion of a spiral staircase from two adjacent steps which might
be of different widths. How does tread width affect the slope?
How does tread shape affect the slope? At what point along the
two steps should the slope be assigned? For the problem at hand,
these difficulties were reduced but not eliminated by using smaller
elements to define a penny-shaped fracture.

Difficulties also arise because the triangle centroids generally
are not aligned along strike or dip; they are staggered. This causes
contour graphs of element-face stresses to show regions outlined
with fluted or convoluted boundaries. Numerous disconnected
“island" contours also can arise, especially where derivatives are
near zero. Smaller elements produce smaller amplitude
irregularities in contour lines but still tend to produce "islands."

Clearly, there are many potential sources of artifacts in
evaluating the derivatives. Some of these artifacts are present in
Figure 7, but gross errors appear to be absent. The contour lines
near the inner boundary of the cohesive zone show no striking
anomalies and cross both the cohesive zone boundary and the
adjacent rings of elements smoothly.
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