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Abstract-Fracture mechanics theory and field observations together indicate that the shear stress on many faults is 
non-uniform when they slip. If the shear stress were uniform, then: (a) a physically implausible singular stress 
concentration theoretically would develop at a fault end; and(b) a single curved ‘tail fracture’ should open up at the 
end of every fault trace, intersecting the fault at approximately 70”. Tail fractures along many small faults instead 
range in number, commonly form behind fault trace ends, have nearly straight traces and intersect a fault at angles 
less than 50”. A ‘cohesive zone’, in which the shear stress is elevated near the fault end, can eliminate the stress 
singularity and can account for the observed orientation, shape, and distribution of tail fractures. Cohesive zones 
also should cause a fault to bend. If the cohesive zone shear stress were uniform, then the distance from the fault end 
to the bend gives the cohesive zone length. The nearly straight traces of the tail fractures and the small bends 
observed near some fault ends implies that the faults slipped with low stress drops, less than 10% of the ambient 
fault-parallel shear stress. 0 Elsevier Science Ltd 

INTRODUCTION 

Faults play key roles in a variety of processes in the 

Earth’s crust. They produce some of nature’s most 
destructive phenomena and accommodate tremendous 
deformations in the Earth’s crust over geological time. 
They also are key pathways for the flow of water, 
petroleum, magma, geothermal fluids, and hydrothermal 
fluids (Goyal and Kassoy, 1980; Sibson, 1981; Bodvars- 
son et al., 1982; Stierman, 1984; Bruhn and Yonkee, 
1988; McCaig, 1988; National Research Council, 1990, 
1996; Forster and Evans, 1991; Antonellini and Aydin, 
1994; Hickman et al., 1995). For both academic and 
practical reasons, faults have attracted the attention of 
many people, including many who are not geologists or 
seismologists. 

Observations along exhumed faults provide informa- 
tion on faulting processes at depth that is difficult to 
obtain by other means. Measurements on exhumed faults 
commonly are coarser than those obtained in controlled 
experiments on shear fractures in the laboratory (e.g. 
Lockner et al., 1991; Blanpied et al., 1995), but exhumed 
faults reveal the effects of faulting under environmental 
conditions and at a size scale that are difficult to 
reproduce in the laboratory. Progress in electromagnetic 
methods (Black et al., 1991) and seismological techniques 
(e.g. Gillard ef al., 1995) allow ever smaller structures to 
be resolved along faults, but in few cases can the fine 
structure or composition of a fault be determined as 
accurately as direct observation allows. 

Recurring field observations of exhumed faults and 
predictions of faulting models must be reconcilable if 
they both are to be used with confidence to understand 
faulting processes at seismogenic depths or to better 
predict fluid flow along faults. For example, hydrother- 

mal mineralization and alteration along secondary 
fractures near the ends of fault traces consistently 
indicate that these fractures form excellent conduits for 

fluid flow (Sibson, 1981; Segall and Pollard, 1983a). Even 
where the faults and fractures are ‘sealed’, hydraulic tests 
demonstrate that these seals are incomplete (e.g. Niva et 
al., 1988; Black et al., 1991); in some cases fluid flow can 
be observed directly along filled secondary fractures 
(Martel and Peterson, 1991). Secondary fractures can 
link originally unconnected faults, and as a result they 
will play a critical role in the hydraulic behavior of a fault 
system (Long and Witherspoon, 1985). Processes that 
form secondary fractures along faults thus are critically 
important to the hydraulic conductivity of fault systems, 
even where those fractures become partially sealed. 

This paper deals specifically with field observations of 
secondary fracturing along faults and predictions of two- 
dimensional elastic fracture mechanics theory. Standard 
linear elastic fracture mechanics (LEFM) theory predicts 
that the stresses near the tip of a fault are singular, with 
the near-tip stresses having a characteristic form. These 
outcomes have two key difficulties as applied to observa- 
tions of secondary fractures along exhumed faults. First, 
real materials cannot sustain infinite stress levels. Second, 
the characteristic form of the singular near-tip solution 
leads to predictions about secondary fracture distribu- 
tions that are inconsistent with numerous field observa- 
tions. For example, multiple secondary fractures 
commonly open near, but not precisely at, the ends of 
fault traces (Fig. 1). In other cases, secondary fractures 
are absent (e.g. Segall and Pollard, 1983a). Where 
secondary fractures do occur, they commonly form an 
angle of 50” or less with the fault trace. In contrast, 
conventional LEFM theory suggests that a single 
fracture should open precisely at the end of a fault trace 
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Fig. 1. Secondary fractures near the ends of small faults. Maps (a) and 
(b) show the complete fracture traces. The fractures in (c) are traced 
from a photograph; the fractures extend more than 1 m from the fault, 
but only the portions near the fault are shown here. The dashed lines in 

(c) mark concealed portions of fractures. 

owing to an infinitely strong stress concentration there, 
and the fracture should extend from the fault trace at an 
angle of about 70” (Pollard and Segall, 1987; Ingraffea, 
1987). These qualitative and quantitative discrepancies 
between observations and theory prompt a re-examina- 
tion of conventional theory. 

The character of the near-tip stress field changes 
significantly when near-tip ‘cohesive zone stresses’ are 
considered. The concept of cohesive stresses was intro- 
duced independently in the context of opening-mode 
fractures by Dugdale (1960) and Barenblatt (1962) and 
subsequently has been applied to faults (Ida, 1972; 
Rudnicki, 1980). Recently, Rubin (1993) has discussed 
the effects of cohesive zones in the context of deformation 
near the tip of igneous dikes, and Cowie and Scholz 
(1992) and Btirgmann et al. (1994) illustrated some effects 
of cohesive zones on the slip distribution along faults. 
This paper, along with forthcoming work by Willemse 
and Pollard, examines effects that cohesive zones along 
faults have on secondary fracturing near the end of a fault 
trace. The discussion begins with a fairly comprehensive 
discussion of salient aspects of LEFM theory and 
cohesive zone theory and the key differences between 
them. The material is presented as compactly as possible, 
but readers not interested in the mathematical details 
may wish to just skim the theoretical treatment. Theore- 
tical predictions are then compared with field observa- 

tions of fracturing near fault trace ends and avenues for 
future research are suggested. 

MECHANICS OF SHEAR FRACTURES 
WITHOUT COHESIVE ZONES 

We begin by examining the stress and displacement 
fields around an entire slip patch that lacks near-tip 
cohesive zones, and then turn to the conditions near the 
patch tip. Pollard and Segall (1987) treat much of this 
material, albeit in a slightly different form. A slip patch 
refers to the portion of a fault slipping at a given time 
(Martel and Pollard, 1989). Slip patches, like earthquake 
ruptures, are considered to nucleate over a small section 
of a fault and then propagate along a fault, but they do 
not necessarily connote seismic activity. Slip patch 
lengths are less than or equal to those of the host fault. 

The quasi-static two-dimensional slip patches investi- 
gated here are described using the geometric configura- 
tion of Tada et al. (1973). The slip patch is centered at the 
co-ordinate origin and lies in the xz plane, with they-axis 
normal to the slip patch (Fig. 2). The patch extends an 
infinite distance in the z-direction and is perpendicular to 
the y-axis. The length of the patch, measured along the x- 
axis, is 2a, and the slip patch extends from x = -a to 
x= + a. Positions in the xy plane are given by the 

complex number z=x+ iy. Plane strain deformation is 
assumed, so the stresses and displacements depend only 
on x and y, and no displacements are permitted parallel 
to the z-axis. In order to facilitate comparisons with 
vertical strike-slip faults, the x- and y-axes are set to 
horizontal and the z-axis is vertical. 

We consider slip patches here with simple boundary 
conditions. The shear stress on faces of the slip patch 
(a;,) is treated as uniform, as is the fault-parallel shear 
stress far from the slip patch (a$). Slip in the x-direction 
occurs only if g,“X differs from &; this difference is 
known as the driving stress Aa (Pollard and Segall, 
1987): 

AC = c? - c&. YX (1) 

In the convention used here, positive driving stresses 
promote right-lateral slip, and negative driving stresses 
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Fig. 2. Two-dimensional fractures of (a) mode I and (b) mode II, 
showing a common reference frame. The y-axis is perpendicular to the 
fracture, the x-axis is parallel to the short in-plane dimension of the 
fracture and the z-axis is parallel to the infinite dimension of the fracture 
(i.e. in and out of the page). The complex positions z, zt, and z2 are 
shown in (a), and the position of a point in polar co-ordinates (r. 0) is 

shown in (b). 
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Fig. 3. Boundary conditions for a slip patch of length 2a without 
cohesive zones. The net boundary conditions (c) reflect a superposition 
of (a) the far-field shear stress and (b) the negative of the driving stress 
for the slip patch. The lengths and directions of the arrows reflect the 

relative magnitudes and signs of the shear stress, respectively. 

promote left-lateral slip. Only sliding of slip patch walls 
(mode II displacement) is admitted; opening of fracture 
walls (mode I displacement) is not, so dilation of material 
in a fault is neglected. Uniform loading of a slip patch is 
considered by superposing two contributions (Fig. 3): 

(1) a uniform shear stress 0; that acts both along the 
patch walls and at a distance far from the patch; 

(2) a uniform shear stress & - 0~4: that acts along the 
slip patch (Ix] 5 a) in a body subject to no far-field 
stresses. The shear stress along the slip patch walls is the 
negative of the driving stress. 

Both contributions are necessary to recover the 
complete stress field, but only the latter contributes to 
the displacement field associated with fault slip. 

Closed-form analytical solutions for the two-dimen- 
sional stress and displacement fields around a slip patch 
are obtained here from complex stress functions (Tada et 
al., 1973; Pollard and Segall, 1987). Complex stress 
functions in some ways provide more direct physical 
insight into the deformation around a slip patch than 
other methods, such as singular integral equation 
formulations (Barber, 1992; Hills et al., 1996) or 
conformal mapping (Muskhelishvilli, 1953). They also 
have a key advantage over numerical methods such as 
constant displacement-discontinuity boundary element 
techniques (Crouch and Starfield, 1974) in that the 
stresses and displacements can be calculated at points 
arbitrarily close to the patch walls. The following 
discussion of complex stress functions goes into some 
detail to provide complete solutions and to develop the 
insight that these functions can provide. 

The stress components (rrXX, ovv, cXY and a,,,.) and the 
displacement components (u, and uJ depend on three 
complex functions (2, Z and Z’) of position z (Tada et al., 
1973). For pure mode II fracturing, the stresses and 
displacements are: 

0 - 2 Im(Z) + XX - y Re(Z’) (2a) 

c7 ,,y = -y Re(.Z’) (2b) 

a,.. = aYX = Re(Z) + y Im(Z’) (2c) 

u, = [2( 1 - u) Im(Z) + y Re(Z)]/2G (3a) 

u,, = [-( 1 - 2~) Re(Z) + y Im(Z)]/2G. (3b) 

Here u is Poisson’s ratio and G is the shear modulus. The 
stress functions are related to each other through their 
derivatives: 

Z,dz 
dz 

ze. 
(44 

A few useful general points can be made here about the 

stress functions, even without knowing their specific 
forms. First, the stresses (equations (2a1, (2b) and (2~)) 
depend on Z and Z’ (and not on Z), whereas the 
displacements (equations (3a) and (3b)) depend on Z 
and Z, but not on Z’. This should be the case given the 
relationships of equations (4a) and (4b): the stresses, 
determined by Z and Z’, are proportional to strains, and 
the strains must be integrated to determine displace- 
ments. Second, equations (2a), (2b) and (2~) show that 
the real and imaginary parts of Z’ must go to zero as y 
increases in order that the far-field stresses remain finite 
far from the slip patch. Third, on the slip patch face, 
where 1x1 5 a and y=O, the above expressions simplify 
significantly and yield the stresses on the slip patch faces. 
The latter two points allow the stress functions to be 
identified with the boundary conditions for the problem. 

The stress functions for a uniformly loaded slip patch 
under no far-field stresses are (Tada et al., 1973): 

Z = Aa[z* - z] (sa) 

Z=AaL-1 
[ 1 Z* 

(5b) 

Z’=Aa A, [ 1 (5c) 

where 

and 

zI=JzI& 

zi =z-a 

(6) 

(74 

z2 =z+a. O’b) 

In equations (7a) and (7b), zr is the position of a point 
relative to the positive end of the slip patch, and z2 is the 
position relative to the negative end of the patch (Fig. 2). 
Note that z1 and z3 can lie in anv auadrant of the comnlex 
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plane, with the arguments of z1 and z2 being restricted to 
the range --71 to 7~ (Tada et al., 1973). Note also that as z 
becomes very large, all the stress functions (equations 
(5a), (5b) and (5~)) go to zero, thus yielding the correct 
far-field stress boundary conditions. As z approaches 
zero, Re(2) approaches - Aa. A uniform far-field stress 
can be superposed upon the solution if needed (Fig. 3). 

The forms of equations (5a), (5b) and (5~) are modified 
from those of Tada et al. (1973) so that the functions yield 

proper values when calculated using standard mathema- 
tical practice. For example, the arguments of complex 
square roots typically are restricted to the range -n/2 to 
+ 71/2. As a result, if z* were calculated as (~~-a~)“~ as 
Tada et al. (1973) show, then z* values must lie outside 
the second and third quadrants of the complex plane. 
Equation (6) permits z* values in all four quadrants, and 
this is required for the stress functions to yield correct 
results. 

The normal stress parallel to the slip patch is not a 
boundary condition, but rather a product of the analysis. 
By substituting equation (5b) into equation (2a), one 
obtains: 

Equation (8) shows that the sign of oXX varies for 
neighboring points on opposing walls of a slip patch. 

We now turn to the relative displacement of the slip 
patch walls. The slip is obtained using equation (3a) by 
subtracting the displacements on the one slip patch wall 
from those on the other: 

Au = u,]~__~+ - u,jY=s- = 
2(1 - u) 
~ Im(g). G (9) 

Along the slip patch walls, the imaginary part of 2 is 
found, using equations (5a), (5b) and (5c), to be: 

Im(z) = Aam. (10) 

Substituting equation (10) into equation (9) yields an 
elliptical form of the slip profile along the patch walls 
(Fig. 2b): 

Differentiating the expression for slip with respect to 
position along the patch gives the slip gradient (Fig. 2~): 

Au, = 4A4 _Aow - 4 x 
-zz 

dx G ,/m’ 
(12) 

A comparison of equations (8) and (12) shows that at the 
patch walls, the normal stress parallel to the patch is 
proportional to the slip gradient. This result follows from 
the stress-strain relations for a linear elastic material: the 
stress scales linearly with the strains, and the strains in 
turn scale with the displacement gradients. Also, the 
slope of the slip profile is infinite at the patch tip (x = + a). 
Both of these are important results that we will return to. 

There also is a component of displacement perpendi- 
cular to a slip patch. For pure mode II slip, opposing 
points on the upper and lower faces of the slip patch are 
displaced equally in a direction perpendicular to the 
slip patch-that is [u& = 0’) = z+,(v = O-)]. Equation 
(3b) shows that along the patch wall uv scales directly 
with Re (2). Equations (5a), (5b) and (5~) reveal that 2 is 
the difference between z* and z. Along the patch z* is 
purely imaginary, whereas z, the position relative to the 

patch center, is purely real. Thus, along the slip patch 
Re (2) equals z, so uY is directly proportional to the 

distance from the patch center. So as the patch walls slip, 
the patch will rotate according to the following equation, 
obtained from equation (3b): 

x. (13) 

This equation for a uniform rotation applies only if the 
driving stress is uniform. 

The theoretical stress and displacement fields near the 
tip of a fracture that lacks cohesive zones have a 
characteristic form. Lawn and Wilshaw (1975) express 
these fields in terms of a polar (Y, 6) reference frame 
centered at the fracture tip (Fig. 2b): 

pi = KdGgi(O) (14) 

Oij = &j(O)3 (15) 

where the terms gi and fV are trigonometric functions. The 
term K is known as the stress intensity factor. It reflects 
the loading of the fracture and the fracture geometry. For 
a fracture with a uniform driving stress AC and of half- 
length a, the stress intensity factor has a particularly 
simple expression: 

K = Aa&. (16) 

According to equation (14) the displacements, as 
measured relative to the fracture tip, have a parabolic 
form. The stresses and the slip gradient are singular, 
varying as r -‘I2 Unless the stress intensity factor is zero, . 
the tangent to the slip profile will have an infinite slope at 
the fracture tip. Finite near-tip stresses and a stress 
intensity factor of zero require a reversal of the driving 
stress sign along a slip patch. 

MECHANICS OF SHEAR FRACTURES WITH 
COHESIVE ZONES 

Real materials cannot sustain infinite stresses, and two 
models are commonly used to account for the stresses 
near a fracture tip in a physically more plausible way. The 
first requires a zone of plastic yielding to surround the 
fracture tip, with the stresses being limited by the yield 
strength of the material (Irwin, 1961; Broek, 1982). 
Equations (14) and (15) traditionally are considered to 
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Fig. 4. Boundary conditions for a slip patch of length 2a with cohesive 
zones of length R at the slip patch ends. The boxes at the ends of the slip 
patch border the cohesive zones. The net boundary conditions (d) reflect 
a superposition of (a) the far-field shear stress, (b) the negative of the 
driving stress associated with the central portion of the slip patch and (c) 

the negative of the driving stress associated with the cohesive zones. 

apply outside this small region (e.g. Rice, 1968). In the 
second model, finite cohesive stresses occur in zones near 
the fracture ends to prevent a singularity in the fracture- 
tip stresses (Dugdale, 1960; Barenblatt, 1962; Ida, 1972; 
Palmer and Rice, 1973; Rudnicki, 1980). 

A cohesive zone model for a slip patch is followed here 
(Fig. 4). The fault-parallel shear stress far from the fault 
again is o,“x, the shear stress in the cohesive zones is & 
and the shear stress along the slip patch outside of the 
cohesive zones is &This model can be envisioned as the 
superposition of three contributions: 

(1) a uniform shear stress o$ that acts both along the 
patch walls and at a distance far from the patch; 

(2) a uniform shear stress & -cry2 that acts over the 
central slip patch interval 1x1 ( a - R, with no shear 
stress acting in the interval a - R -C 1x1 5 a; 

(3) a uniform shear stress c& -cry: that acts in two 
cohesive zones of length R that exist over the patch 
intervals a - R < (xl I a, with no shear stress acting in 
the central interval 1x1 5 a - R. 

All three contributions are necessary to recover the 
stress field, but only the latter two contribute to the 
displacement field associated with fault slip. Along a real 
fault the cohesive zone shear stress is quite likely to differ 
from the step function distribution considered here, 
perhaps varying linearly with distance from the patch 
end. The stresses are held uniform here to present a 
cohesive zone model in its most simple form. 

The complex stress functions for calculating the elastic 
fields arising from slip under a constant driving stress 
along part of a slip patch are (Tada et al., 1973, p. 5.11): 

! 

(z - c) sin-’ u2 - ” (z - b) sin 
_, u2-bz 

~ z = ~ 
u(z - c) u(z - b) 

n 
+ sin-’ C _ sin-’ 

U I (174 

Z’=E 
?r 

sin-’ 
u2 - cz . _, u2-bz 

~ - ‘ln u(z - c) u(z - 6) 

sin-’ z - sin- lb a 
> 

(17b) 

(17c) 

The terms b and c delimit the negative and positive 
ends of an interval of uniform driving stress, so the above 
equations must be applied three times, once for each of 
the cohesive zones and once for the central portion of the 
slip patch. For example, for the left-hand cohesive zone 
in Fig. 4, b= --a and c= R-u. 

The contribution of a given interval of uniform driving 
stress to the stress intensity factor is (Tada et al., 1973): 

[ 
sin-’ f: _ sin-’ 

U 
;+=izqbjll;;)l. 

(18) 
If the dimensions of the two cohesive zones are related 

to the driving stress levels in the following manner: 

u-R 
CF-,c 

sin-’ - 
YX YX - ( > U 

@o-.~f -- 
YX .J= -, a-R 

cos - 
( > 

(19) 

U 

then the stress intensity factor contributions from the 
central portion of the patch and the cohesive zones cancel 
each other to yield a total stress intensity factor of zero. 
Cohesive zones thus permit the stresses along a slip patch 
to be finite, and they allow the slip profile to taper 
asymptotically to zero near the patch tip rather than 
being parabolic (Fig. 5). The driving stress associated with 
cohesive zones described by equation (19) is opposite in 
sign to the driving stress associated with the remainder of 
theputch and refects resistance to slip (Fig. 4). Even if the 
cohesive zone shear stress differs from the uniform 
distribution considered here, the sign of the driving 
stress in at least part of a cohesive zone would be opposite 
that elsewhere along the slip patch to achieve a stress 
intensity factor of zero. 

The stress and displacement fields around a slip patch 
with cohesive zones differ in some intriguing ways from a 
slip patch with a uniform driving stress. For example, 



840 S. J. MARTEL 

-10 L , ., 

-0 6 -0.4 -0.2 0 0.2 0.4 0.6 0.6 1 

-10 ’ I 
-1 -0 8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.6 1 

10 
C-I ‘,L,< 

$ 0 

-10 
-1 -0.8 -0.6 -0.4 -0.2 

Normalized positionkng s~~patch”&a) 
0.6 0.6 1 

of a cohesive zone. 

Fig. 5. Profiles of (a) the normalized slip (AU*), (b) the slip gradient 
(AU’), (c) the normalized tensile stress parallel to the slip patch (CT&) and 
(d) the normalized most tensile stress (UT) along the positive side 
(J = 0 ‘) of a right-lateral slip patch. Dotted curves are for a slip patch 
with a uniform driving stress (no cohesive zones). Solid curves are for a 
slip patch with a cohesive zones with backs at x/a = k 0.8; the driving 
stress in the central portion of the slip patch equals the driving stress 
everywhere along the slip patch with no cohesive zones. The slip in (a) is 
normalized by the maximum slip along the patch with no cohesive 
zones; the circles mark the inflection points in the slip profile that occur 
at the back of the cohesive zones. The stresses in (c) and (d) are 
normalized by the driving stress along the central portion of the slip 
patches. The peaks in the curves of(b), (c)and (d) also occur at the back 

both the maximum tensile stress parallel to thefuult and the 

maximum principal tensile stress occur at the buck of the 
cohesive zone, behind the fault tip rather than at the fault 
tip. This is a consequence of the cohesive zone driving 
stress acting in the opposite direction from the driving 
stress associated with the central portion of the slip patch. 
The location of the stress concentration also can be 
understood by examining the slip profile. The point at 
which the fault-parallel normal stress is a maximum is 
where the slip gradient is the steepest. By elementary 
calculus, the slip gradient must be zero where the slip is a 
maximum. The slip gradient is also zero at the fault end 
because K=O. As a result, the maximum slip gradient 
must occur between the point of maximum slip and the 
fault end. For the constant-shear stress cohesive zone 
model considered here, the slip gradient is greatest at the 
back of the cohesive zone. This position coincides with an 
inflection point in the slip profile (Cowie and Scholz, 
1992; Btirgmann et al., 1994). For a cohesive zone with a 
variable stress distribution, the maximum stress concen- 
tration generally would be at a different point, but it 
would nonetheless be behind the slip patch tip if the total 
stress intensity factor is zero. 

A second point is that the elevated shear stresses in the 
cohesive zone will cause the cohesive zone to rotate in a 
direction opposite that of the central portion of the fault 
(Fig. 6). For a left-lateral fault, the central portion of the 
fault rotates clockwise, whereas the cohesive zones rotate 
counterclockwise. If the shear stress in the cohesive zone 

a 

b c$k 
Cohesive 
ZO”e 

Cohesive 
ZOW 

Fig. 6. Diagram showing the shape of a fault trace (a) before slip and 
(b) after slip, assuming cohesive zones are present. The magnitude of the 
rotations in (b) are exaggerated here above what would occur in most 

situations in the field. 

4 
E 
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Fig. 7. Dimensionless displacement perpendicular to a left-lateral slip 
patch for cohesive zones of different lengths. Dashed line, R/a = 0; solid 

equals 0.25. 

line, R/a = 0.1; and heavy line, R/a = 0.2. The length of the slip patch and 
driving stress associated with the patch center are held constant. The 
sharp bends occur at the backs of the cohesive zones. The ratio of patch- 
center driving stress to shear modulus equals 1, and Poisson’s ratio 

differs sharply from that elsewhere along a slip patch, the 
fault hosting the slip patch should become kinked or bent 
at the back of the cohesive zone. For a slip patch of a 
given length, the smaller the cohesive zone, the sharper 
the bend (Fig. 7). The rotation amounts increase with the 
magnitude of the driving stresses. Depending on the 
length of the cohesive zone and the amount of slip on the 
fault, these bends should be measurable in the field. For 
example, consider a slip patch 7.2 m long which has a slip 
of 20 cm at a point 2.35 m from the middle of the patch. If 
this slip patch had a cohesive zone 39 cm long, then the 
simple cohesive zone model presented here predicts a 
bend of 6” at a point 39 cm from the fault end. This 
prediction will be compared to field observations at the 
end of the following section. 

DISCUSSION: COMPARISON OF THEORY AND 
OBSERVATIONS 

Orientation of secondary fractures 

The orientation of secondary fractures that propagate 
from faults can be calculated using various ‘mixed-mode’ 
fracture mechanics criteria which account for a mixture 
of opening and sliding motions of fracture walls. Three of 
the most popular quasi-static criteria (Ingraffea, 1987) 
are the maximum circumferential stress criterion (Erdo- 
gan and Sih, 1963; Lawn and Wilshaw, 1975, p. 55) the 
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Fig. 8. Angular dependence of circumferential stress (Erdogan and Sih, 
1963), energy release rate (Hussain et al., 1974; Lawn and Wilshaw, 
1975) and strain energy density (Sih, 1973) fracture propagation criteria 
about the tip of a uniformly loaded, two-dimensional, pure mode II 
fracture. Poisson’s ratio equals 0.25. Each function is normalized to a 
maximum value of 1 and calculated for a fixed small distance r from the 
fracture tip. The maximum values of the circumferential stress and the 
energy release rate, and the minimum value of the strain energy density, 

all occur near 70” 
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Fig. 9. Trajectories of most compressive principal stress near a left- 
lateral slip patch with a uniform stress drop. The driving stress equals 
the far-field shear stress parallel to the fault (i.e. there is a complete stress 
drop). The angle of the most compressive far-field stress relative to the 
patch is (a) 45” and (b) 15”. Figures (c) and (d) show virtually identical 

trajectory patterns inside the box surrounding the patch tip. 

maximum energy release rate criterion (Hussain et al., 

1974; Lawn and Wilshaw, 1975, p. 68) and the minimum 
strain energy density criterion (Sih, 1973, 1974). These 
criteria usually are cast in terms of stress intensity factors 
and applied to fractures that are assumed to have no 
cohesive zones. For a uniformly loaded pure mode II slip 
patch (no fracture opening), all of these criteria predict 
that a secondary fracture should extend from a fault at an 
angle (u) of about 70” (Fig. 8). This angle is independent 
of the orientation of the principal compressive stress (p) 
far from the fault (Fig. 9) and the shear driving stress 
(Fig. 10). The predicted fracture angle increases with slip 
patch propagation speed (Freund, 1990). 

Predictions of secondary fracture orientations based 
on pure mode II slip under uniform driving stresses do 
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Fig. 10. Trajectories of most compressive principal stress near a left- 
lateral slip patch with a uniform stress drop. The driving stress equals 
1% of the far-field shear stress parallel to the fault (i.e. there is a very low 
stress drop). The angle of the most compressive far-field stress relative to 
the patch is 45”, the same as in Fig. 9(a). Owing to the low driving stress, 
the stress trajectory pattern inside the box surrounding the patch tip is 

different from the patterns in Figs IO(b) and 9(c), 

not square well with field observations of many faults. 
Cruikshank et al. (1991) described CY angles between 35” 
and 50” for faulted joints in sandstone at Arches National 
Park. Segall and Pollard (1983a) reported angles of 15- 
35” for secondary fractures near the ends of small faults 
(faulted joints) in granodiorite in the Bear Creek region 
of the Sierra Nevada in California. Angles of less than 50” 
have also been observed at the ends of small faults in 
granitic rocks in the Mt Pinchot quadrangle of the Sierra 
Nevada in California (Moore, 1963), near Grimsel Pass, 
Switzerland (Martel and Peterson, 1991) and in the 
Cevennes Mountains of France (Granier, 1985). The 
angles observed in the field are considerably lower than 
those predicted by a pure mode II model of faulting 
involving a uniform stress drop. 

Cruikshank et al. (1991) used the maximum circumfer- 
ential stress criterion in conjunction with a two-dimen- 

sional mixed-mode LEFM model to account for the 
orientation of secondary fractures near the ends of 
small-displacement faults at Arches National Park. 
Cruikshank and his co-workers assumed that the faults 
were subject to uniform driving stresses, and that the 
secondary fractures opened perpendicular to the greatest 
circumferential stress (oes) near the fault tip. Based on 
these conditions, they then related the ratio of fault 
aperture (w) to slip (U) at the time of faulting to the angle 
c(. For a pure mode I fracture (W/U= a), ol=O”. For a 
pure mode II fracture (W/U=O), CI=COS-’ (1/3)~70.5”. 
These angles hold no matter how large the relative 
displacements of the fracture walls are, provided they are 
not zero. Cruikshank et al. attributed angles between 0” 
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and 70.5” to a mixture of opening and sliding of the fault 
walls. For angles between 35” and 50”, they calculated 

that the ratio of opening to slip at the time of faulting was 
between 2 and 3 (Cruikshank et al., 1991, table 1). Based 
on this analysis, Cruikshank and his co-workers coined 
the ‘Moab Rule’: that the faulted joints at Arches had an 
initial aperture greater than or equal to the eventual 
amount of slip. 

The Moab Rule encounters difficulty when applied to 
other faults however. For example, some of the faults 
along Bear Creek are only about 1 cm thick yet display 
2 m of slip (Martel et al., 1988). These faults are spaced a 

couple of meters apart and appear to have traces lengths 
of no more than a few hundred meters. The faults of Bear 
Creek resemble small faults elsewhere in the Sierra 
Nevada (Moore, 1963) and in Europe (e.g. Martel and 
Peterson, 1991). If the Moab Rule applied to faults in 
Bear Creek, then some would have had original apertures 
of 4-6 m, several hundred times their current thickness. 
An aperture change of this magnitude on the Bear Creek 
faults would require profound deformation in the 
surrounding rock and profound changes in the hydraulic 
behavior of the faults. The rocks adjacent to the faults are 
in general mildly deformed and do not show evidence of 
intense, widespread hydrothermal alteration. The major 
discrepancies between predictions of the Moab Rule and 
the observations at Bear Creek indicate that a mixed- 
mode slip model invoking a uniform driving stress 
neglects a key physical phenomenon that accompanies 
faulting in at least some rocks. 

Before addressing the quantitative effect a cohesive 
zone would have on the orientation of a secondary 
fracture, we first review how a secondary fracture would 
form conceptually. It presumably nucleates where the 
greatest tensile stress concentration occurs. For the 
uniform-stress cohesive zone model adressed here, this 
point is at the back of a cohesive zone. The orientation of 
the fracture can be described in terms of two angles, a and 
/I, which are measured here relative to fault strike. The 
orientation of the most compressive stress at the back of a 
cohesive zone (a) gives the preferred orientation of a 
secondary fracture where it extends from the slip patch 
(Fig. 12c, inset). The fracture will tend to track the 
orientation of the local most compressive stress as it 
propagates (Ingraffea, 1987; Pollard and Segall, 1987; 
Biirgmann et al., 1994). If it propagates far enough, its tip 
will point in the direction of the far-field most compres- 
sive stress (p). Based on Figs 9-l 1 this should not require 
a secondary fracture to grow to a length greater than 0. l- 
0.2a. If cI were equal to p, then a fracture would be planar 
and have a perfectly straight trace. If a exceeds p, then a 
fracture will curve. 

Figure 12 shows the orientation of the most compres- 
sive stress (a) near the back of a cohesive zone as a 
function of the orientation of the most compressive far- 
field stress (8) for different driving stresses in a slip patch 
center. Figure 12(a-c) illustrates effects for cohesive 
zones of length O.OOla, 0.1~ and 0.2a, respectively. In 
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Fig. I I. Trajectories of most compressive principal stress near a left- 
lateral slip patch with cohesive zones with backs at Ix/al = 0.9. The angle 
of the most compressive far-field stress relative to the patch is 15”. The 
driving stress at the patch center (relative to the far-field shear stress 
parallel to the patch) is (a) 100% and (b) 1%. The trajectory patterns 
inside the boxes surrounding the patch tip in (c) and (d) differ from each 

other and those in Figs 9(c & d) & IO(b). 

each of these figures, the line a=p corresponds to a 
condition where a slip patch has not perturbed the 
ambient stress field (i.e. the fault has not slipped). The 
line IX=B thus represents a lower limit for faulting, and 
hence secondary fractures cannot form such that a < /3. 
Unless the material in a fault can deform plastically 
under the ambient shear stress, a secondary fracture with 
a perfectly straight trace (i.e. c( = p) should not be able to 
form. 

A long secondary fracture with a nearly straight trace 
generally would imply a very low driving stress (i.e. very 
low stress drop) on the central portion of a slip patch. 
Figure lZ(a-c) shows that if CI and /I differ by less than 5” 
(the interval between the two dashed lines), then for 
fractures with I angles between 10” and 50” the driving 
stress can be no more than O.l~,~. 

The change in strike of a secondary fracture constrains 
the driving stress on the central portion of a slip patch. 
For example, consider a slip patch with a cohesive zone of 
length 0. la (Fig. 12b) intersected by a secondary fracture 
at an c( angle of 30”. If the tip of the fracture turned to a /3 
angle of 24”, a driving stress of O.OloY$ is indicated, 
whereas if/J equals 8”, the driving stress would be 0.1~~:. 
Large changes in the strike of a secondary fracture thus 
imply a relatively large driving stress. 

For very small cohesive zones (Fig. 12a) only very 
small driving stresses can account for most of the 
allowable range of permitted fracture orientations. For 
example, suppose the driving stress along the central 
portion of a slip patch were greater than 0.1 u,“x. Then, 
only if the far-field most compressive stress is at an 
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Fig. 12. Predicted secondary fracture orientations as a function of the 
most compressive far-field stress for various driving stresses. The 
driving stresses are normalized relative to far-field shear stress. The 
uppermost curves are for the largest stress drops. The dashed line a = ,3 
corresponds to a driving stress (i.e. stress drop) of zero, the lower limit of 
faulting. Faulting, and hence secondary fracturing, is not permitted for 

OL </?. Cohesive zone lengths are (a) O.OOla, (b) O.la and (c)0.2a. 

extremely shallow angle relative to the slip patch (i.e. 
/I < 2”) is an c( angle less than 80” permitted. Large driving 
stresses will invariably produce a secondary fracture that 

intersects a fault at a high angle. This can be understood 

by considering the limiting case of a slip patch with a 
cohesive zone of zero length: in this case secondary 
fractures would emerge at angles of about 70” under any 
non-zero driving stress. An extremely low driving stress 

along the central portion of a slip patch (e.g. 
,J= 0.001o_$!) is required to account for variations in 
strike of less than 8” along a relatively long secondary 
fracture. As another example, for secondary fractures 
with CI angles of 50”, p angles in the range of 2-49”, nearly 
the entire allowable range, indicate a driving stresses of 

less than 0.1~;. If CI = 30”, then only if p< 9” would 

driving stresses greater than 1% of gz be indicated. 
Effects of different cohesive zone lengths can be seen by 

comparing Fig. 12(a-c). As cohesive zone lengths 
decrease, the high driving stress curves migrate closer to 
the upper-left corner of the plots. This shift reflects two 
important points. First, as a cohesive zone shrinks, more 
and more of the field of permitted fracture orientations is 
accounted for by small stress drops. In other words, high 
driving stresses become increasingly unable to account 
for the large difference between c( and B on a secondary 
fracture. The second point is that the plots of Fig. 12(b & 
c) are quite similar. This indicates that once cohesive 
zones exceed lengths of 0. la they are unlikely to produce 

significant changes in the geometry of a secondary 
fractures. As a result, variation in secondary fracture 
orientation probably cannot be used to determine 
cohesive zone lengths precisely if the cohesive zones are 
longer than 0. la. 

The above discussion leads to the following key points. 

(1) Secondary fractures near the end of an isolated 
fault would not form at angles less than that of the most 
compressive far-field stress (i.e. OZ~P). 

(2) A cohesive zone does allow for secondary fractures 
to extend away from faults at CI angles well below 70” 
without having to invoke large initial apertures on a fault. 

(3) A long secondary fracture with a typical CI angle 
(i.e. between 10” and 50°) that varies in strike by less than 
5” indicates a driving stress of less than 10% of the 
ambient shear stress parallel to a fault. 

(4) For cohesive zones that are very short relative to 
the slip patch length (e.g. Fig. 12a), secondary fractures at 
angles of less than 80” to the host fault appear to require 
very small driving stresses. 

The last two points are particularly interesting given 
the commonly reported nature of secondary fractures 
along faults that originated as joints. The secondary 
fractures commonly have fairly straight traces and are 
oriented between 20” and 50” relative to the host fault 
(Segall and Pollard, 1983a; Granier, 1985; Cruikshank et 

al., 1991). The implication is that these faults commonly 
slip under low driving stresses (i.e. AaaO.lo,“,). Scholz 
(1990, p. 91) notes that stress drops observed during 
laboratory friction tests simulating stick-slip faulting 
typically are of the order of 10%. Although the observed 
fracture angles appear to be consistent with stick-slip 
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faulting and low stress drops, the mylonitic fabrics in the 
small faults of Bear Creek (Segall and Pollard, 1983a; 
Segall and Simpson, 1986; Martel et al., 1988) support 
ductile shearing of the material in those faults. The 
orientations of secondary fractures at Bear Creek thus 
may not be diagnostic of stick-slip. 

There is an alternative explanation for unusually 
shallow angles observed between some faults and what 
appear to be secondary fault-end fractures. For this we 

turn to the fault in Fig. l(a). It has a trace length of 7.2 m 
and has a strike-slip separation of 20 cm at a point 2.35 m 
from the middle of the fault trace. The fault trace is quite 
straight except at a 12” bend about 39 cm from the east 
end of the fault trace. The 12” angle is far less than what 
uniform stress drop theories would predict for the angle 
between a fault and a secondary fracture, but is close to 
the 6” bend angle predicted by the cohesive zone model. 
This raises the interesting possibility that some angles 
between faults and apparent secondary fractures are in 
fact fault bends that arise from cohesive zone stresses. 
The curved traces documented near the ends of several 

faulted joints (Segall and Pollard, 1983a; Granier, 1985; 
Cruikshank et al., 1991) might reflect non-uniform 
cohesive driving stresses. Careful observations as to the 
nature of the relative displacement across the end of the 
fault (or secondary fracture) would be necessary to 
distinguish between these two possibilities. 

Location of secondary fractures 

Secondary fractures occur near the trace ends of many 
small faults but commonly they do not occur precisely at 
the fault trace ends (e.g. Segall and Pollard, 1983a, fig. 8a; 
Granier, 1985; Cruikshank et al., 1991, figs 5 & 14A; 
Btirgmann and Pollard, 1994, fig. 3~). These observations 
imply that either the fractures: (a) grew back from the 

fault trace end; or (b) that the faults grew along strike 
after the secondary fractures opened. Neither possibility 
appears consistent with a linear elastic shear fracture 
model that lacks cohesive zones. First, an infinitely 
strong stress concentration should exist precisely at the 
fault trace end, and this should favor secondary fractur- 
ing there rather than back from the fault trace end. 
Second, once a secondary fracture opened, the greatest 
stress concentration should be at the tip of the secondary 
fracture rather than along the fault trace, diminishing the 
ability of the fault to propagate. The cohesive zone 
analysis of the prior section provides a straightforward 
explanation for secondary fractures a short distance 
behind a fault trace end: fractures form there because 
the greatest stress concentration occurs at the back of the 
cohesive zone, which will not coincide exactly with the 
fault trace end. 

Number of secondary fractures 

Multiple secondary fractures occur near the ends of 
many fault traces, forming structures colorfully known as 
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Fig. 13. Hypothesized development of horsetail fractures as slip 
accumulates on a fault of constant length. The back of the cohesive 
zone moves and the shear stress along the cohesive zone increases in this 
process. (a) Cohesive zone fronts coincide with fault tips. (b) Cohesive 

zone fronts are inboard of fault tips. 

‘horsetails’ (Granier, 1985). The fracture traces in a 
horsetail typically are spaced a few centimeters apart 
and form an angle of less than 50” with respect to the fault 
trace. The presence of multiple fractures near fault trace 
ends must enhance the hydraulic conductivity there. 

These structures cannot be explained by a linear elastic 
shear fracture model with a uniform stress drop. First, as 
noted above, the orientation of the fractures is incon- 
sistent with model predictions. Second, a singular stress 
concentration at a fault end should produce one, and 
only one, secondary fracture at a fault end. Many small 
faults have no fractures at their ends, and many faults 
have several. Third, the opening of a single fracture near 

the fault end should relax the tensile stresses there, thus 
diminishing the likelihood of additional parallel fractures 
opening nearby (Pollard and Segall, 1987). Whatever 
process produces horsetail fractures must also cause 
stress concentrations to develop at different points near 
the end of a fault trace and must allow fractures to form 
at the observed angles. 

There are two ways slip involving cohesive zones could 
produce horsetail structures (Fig. 13). The first involves 
slip patches propagating all the way to the end of the 
fault. Suppose slip accumulated to the point where a tiny 
secondary fracture formed near the back of the cohesive 
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zone. Now we ask where the next secondary fracture 
would form if more slip occurred. If the cohesive zone 
were small relative to the length of the fault, then for a 
substantial amount of additional slip to accumulate on a 
fault of fixed length, the magnitude of the driving stress 
along the central portion of the fault must increase 
(equation (11)). If the length of the cohesive zone stayed 
constant while this occurred, then the magnitude of the 
driving stress in the cohesive zone would have to increase 

proportionately (equation (19)). Slip at every point along 
the fault, including along the cohesive zone, would also 
increase in proportion to the change in the magnitude of 
the driving stresses. However, given that the size of the 
cohesive zone is determined by a critical amount of slip 
(Rudnicki, 1980), we are driven to the following conclu- 
sions. As slip accumulates everywhere on a slip patch of 
constant length: (a) the size of the cohesive zone must 
shrink; and (b) the magnitude of the stress concentration 
there must increase at a rate more rapid than slip 
accumulates. This scenario requires the stress concentra- 
tion at the back of the cohesive zone to change its 
location as slip accumulates, and thus the location where 
secondary fracturing can occur will change with time. If 
this scenario is correct, then the first secondary fracture 
to form in a horsetail structure would be the one farthest 
from the end of the fault trace. Even though opening of 
this fracture would tend to relax the tensile stresses, 
because the tensile stress concentration progressively 
intensifies and shifts towards the end of the fault, other 
secondary fractures could form. 

The second possibility is that slip, at least initially, does 
not propagate all the way to the end of a fault. This might 
occur along a faulted joint because the thickness of 
fillings tend to decrease near the joint’s end (Segall and 
Pollard, 1983b). This allows for increased contact 
between the opposing rough walls of a joint and an 
increased frictional resistance to slip. However, as slip 
accumulates, the front and the back of the cohesive zone 
both could propagate towards the fault end. This process 
too could result in a progression of secondary fractures. 
The fairly regular spacing of fractures at 5 cm intervals in 
the horsetails documented by Granier (1985) suggests 
that the back of the cohesive zone might have advanced 
by about the same amount between episodes of second- 
ary fracturing. 

Under either of these scenarios, the first fracture to 
form in a horsetail is the furthest from the end of a fault, 
and the last fracture to form is closest to the end. This 
order is opposite to that suggested by Granier (1985). The 
two hypothesis could be tested if the relative ages of 
fractures in horsetails could be determined. Regardless of 
which model is correct, the distance along a fault from a 
horsetail fracture to the fault end would give the 
maximum length of the cohesive zone when the fracture 
opened. These dimensions provide maximum sizes for 
cohesive zones because the front of a cohesive zone does 
not necessarily coincide with the end of a fault. Based on 
the horsetails documented by Granier (1985) and Cruik- 

shank et al. (1991), the distance from the last horsetail 

fracture to the fault end commonly appears to be a few 
centimeters. The actual distance might be somewhat 
greater. Segall and Pollard (1983b) note that the end of 
a joint can be difficult to locate precisely because instead 
of ending cleanly, joints terminate amidst an array of 
numerous small cracks; this same comment might also 
apply to the ends of faults, especially faulted joints. 
Nonetheless, the secondary fracture nearest the fault end 
seems unlikely to be more than a few decimeters from the 
fault end. Granier does not indicate the lengths of the 
faults she studied, but these lengths presumably are at 
least several meters. Cohesive zones that are this small 
relative to the host fault should coincide with kinks unless 
the driving stress on the fault is small; if the driving stress 
is small then the secondary fractures should be nearly 

planar (Fig. 12a). 

Comparisons with other studies 

Two other studies have recently estimated cohesive 
zone sizes by methods other than those discussed here. 
Cowie and Scholz (1992) estimated cohesive zone lengths 
based on the position of the inflection point in slip 
profiles compiled by Walsh and Watterson (1987). Most 
of the faults Cowie and Scholz treated have trace lengths 
between 0.2 and 2 km, longer than the small faults 
focused on here. Cowie and Scholz (1992) concluded 
that the cohesive zone size generally increased with fault 
length, the ratio being about 1:5. Based on this relation, 
the fault in Fig. I(a), with a trace length of 7.2 m, would 
be expected to have a cohesive zone about 1.3 m long. 
This is roughly three times the cohesive zone length 
inferred for this fault, and at least two orders of 
magnitude greater than cohesive zone lengths inferred 
based on the location of secondary fractures relative to 
fault ends. Okubo and Dieterich (1984) estimated 
cohesive zone sizes based on laboratory measurements 
on a 2-m long simulated fault. They estimated cohesive 
zone lengths of l&20 cm for smooth fault surfaces and 
30-100 cm for rough surfaces from experiments with a 
fault-normal compressive stress of 3.45 MPa. These 
estimates are closer to those of this study, even though 
the compressive stress across the Bear Creek faults 
apparently was substantially higher, about 100 MPa, 
when the faults slipped (Martel et al., 1988). Cohesive 
zone lengths of a few centimeters to a few decimeters are 
consistent with Okubo and Dieterich’s expectation that 
the size of a cohesive zone would decrease with increasing 
compressive stress across a fault. 

Suggestions for future work 

The model proposed here can be tested by detailed field 
work at outcrops with well-exposed faults. Cowie and 
Scholz (1992) and Btirgmann et al. (1994) have drawn 
attention to how slip profiles can be used to evaluate the 
size of cohesive zones. This report shows that detailed 
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mapping of fault trace geometries might also define 
cohesive zone sizes. An integrated effort involving the 
mapping of fault traces and secondary fractures, mea- 
surement of slip profiles and thin section examination of 
samples collected from fault traces would be an ideal way 
to proceed. Examination of samples in thin section 
should be able to determine where slip drops to a small 
fraction of a mineral grain, or where deformation of the 
fault fillings ceases, effectively defining the position of the 
front of the cohesive zone. The associated position of the 
back of the cohesive zone would coincide with the 
fracture closest to the fault trace end. Such an integrated 
approach may be necessary to ascertain whether the 
kinks near the ends of small faults result from cohesive 
zones or represent the intersection of secondary fractures 

with faults. 
The model presented here is two dimensional, and it 

cannot account for all the aspects of three-dimensional 
shear fracturing in the earth. Extension of two-dimen- 
sional cohesive zone analyses to three dimensions would 
clearly help in testing the viability and usefulness of 
cohesive zone models. The model also assumes that the 
fault-filling material does not dilate or contract during 
shear. Small amounts of dilation or contraction near the 
end of a fault could have a noticeable effect on the 
orientation of secondary fractures. 

CONCLUSIONS 

Fracture mechanics theory and field observations 
together indicate that the shear stress on many faults is 
non-uniform during slip. A model involving cohesive 
stresses near the tip of a slip patch yields a physically 
plausible finite stress concentration near the patch tip; it 
also can account for the geometries (i.e. range of 
positions, orientations and numbers) of secondary 
fractures commonly observed near the ends of fault 
traces. In contrast, an LEFM slip model with a uniform 
driving stress yields a physically implausible infinite stress 
concentration at the fault end and does not account well 
for the geometries of secondary fractures near the ends of 
many faults. The two theories can also lead to distinctly 
different interpretations of field data regarding the 
mechanics of faulting. For example, near the ends of 
many faults, secondary fractures intersect the fault at a 
shallow angle. Mixed-mode LEFM theory requires a 
fault like this to have an aperture during faulting roughly 
comparable to the amount of slip. For a fault with a large 
slip-to-thickness ratio, the predicted aperture during 
faulting can be several hundred times greater than its 
extant thickness. Cohesive zone theory requires no such 
aperture changes: shallow-angle secondary fractures with 
fairly straight traces would reflect slip under a low driving 
stress (i.e. low stress drop) outside the cohesive zones, 
and the least compressive far-field stress being at a fairly 
high angle to the fault. Cohesive zone theory also predicts 
that some faults will develop bends near their ends as 

cohesive zones rotate in a direction opposite to that of the 
rest of the fault. If the cohesive zone shear stress were 
uniform, then the distance from the fault end to either the 
bend or the nearest secondary fracture gives the cohesive 

zone length. Along some small faults with trace lengths of 
several meters this distance is a few centimeters to a few 
decimeters. A cohesive zone this size is small relative to 
these faults, but large relative to the size of typical 
laboratory specimens. Samples with dimensions of 
meters, not centimeters, are thus needed for laboratory 
experiments to adequately account for cohesive zones 
that exist at depth in the Earth’s crust. 
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