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WESTERGAARD COMPLEX STRESS FUNCTIONS (16)

| Main topics
A Historical perspective
B Expression of the biharmonic function by harmonic functions
C Boundary conditions
D Use of symmetry and boundary conditions to simplify the stress function
E General solution for stresses and displacements in terms of a single
complex stress function
F Stresses and displacements around mode | and mode Il fractures

Il Historical perspective

A

Westergaard’'s 1939 paper presented a simple way to express the
stresses and displacements around mode | fractures (later expanded to
cover mode Il fractures by Sih (1966)).

One of the three most important early papers in fracture mechanics, the
other two being by Inglis (1913) and Griffith (1921).

Westergaard’s stress function is given, not derived.
1 Solution constraints a bit hard to appreciate
2 Solution appears “like magic”

Il Expression of the biharmonic function F by harmonic functions 6,

A

If ®, 0,4, ©,, 6,, ©,;, and 6, are harmonic functions (i.e.,

Harmonic functions <V2®=0> are better understood than biharmonic

functions <V4F =0> because of their greater use in many fields

All harmonic functions are biharmonic, but not all biharmonic functions are
harmonic

The biharmonic function F can be expressed in terms of harmonic
functions (see lecture 16 appendix and MacGregor, 1935)

(VZ@i =0>, then

2

2
F=y®+®0=x®2+@1=<x +y >®4+®3 (16.1)
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Set up of Crack Problems by Perturbation of an Ambient Stress Field
Mode |

00 — 00 — 00 —
Oyy = S Oyy = 0 Oyy = S
A T T T T A A T T T T A
oyyc =S oyyc =-S (p;essure) oyyc =0
X=-a =ta
Position of crack Crack Crack
Ambient field Perturbation due to crack Total field
Fbor oyt Fbor ot
Mode I
nym = S O'yxw = O nym = S
—_— — —— —— — —_— > —— ——
l OyXC = S T O'yxc = 'S y l nyc = O
e T Ty T~ X =
- — <— —_— > —
l Position of crack T X=a  Crack x=+a l Crack
l Ambient field T Perturbation due to crack l Total field
-+ 44— 44— 44— <4— -+ 44— 44— 44— <4—
Mode Il
O'yzm =S O'yzm =0 Oyzco =S
oyz° =S oyz® =-S oyz° =0
yz Z z
o O TR ® ..
.................... + =
x=a (*)Crack (*) x=+a Crack
Position of crack
Ambient field Perturbation due to crack Total field

® & & ® & &
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IV Boundary conditions
A Mode | fracture with a uniform normal traction along y=0

c
By analogy with the solution for a mode lll fracture, we could also imagine that
this first boundary condition could be replaced by

uy=C|(a2—22)= C|(a2—x2) for X <ay=0 (16.2D)
The other boundary conditions along the fracture plane are

uy =0 for [x>a (16.3)
oyx =0 for [x<a (16.4)
oyx =0 for |x>a (16.5)

The second and fourth boundary conditions follow by symmetry.
B Mode Il fracture with a uniform normal traction along y=0

c
By analogy with the solution for a mode Ill fracture, we can anticipate that this
first boundary condition could be replaced by

2 2 2 2
uX=C||(a -z )= C”(a - X )for X <ay=0 (16.6b)
The other boundary conditions along the fracture plane are
oyy =0 for IX|<a (16.8)

The second and fourth boundary conditions follow by symmetry.

V Use of symmetry and boundary conditions to simplify the stress function

A First simplification of the stress function
The plane of the crack (i.e., the plane of the boundary conditions) is y=0. An
inspection of (16.1) shows that the from of the biharmonic function can be
chosen as
F=y®+8¢ (16.10)
Our boundary conditions are along y=0, so even though both ® and ®, must be
found to determine F, we can anticipate that choosing a solution in the form of
(16.10) will be helpful for finding F.
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B Second simplification of the stress function
We need to know what © and @, are and how they are related. We
use the boundary conditions to do this. This will lead us to expressions for
stresses (and displacements) in terms of “regular” derivatives of a complex
function (i.e., its real and imaginary parts solve the Laplace equation) instead of
partial derivatives of a biharmonic function.

We start by expressing the stresses in terms of the biharmonic function F
oF2 F? —gF2

XX =5 o Oyx =——
*= 2 W2 VX = ooy (16.11)

The first partial derivatives of F with respect to x and y are, respectively:

I _dy®+8g) _ B g o _, 8 g

o T % T Y (16.12a)
JF 07(y®+®0) /0 dq dOg 00 00

v Dy Ty Ty (16.120)

To get the second partial derivatives we will make some substitutions.
Let us refer to the partial derivatives in (16.12) by the following terms:

90 90 PN PN
d="" p- = - -0
oy IX v oy X IX (1613&)
In light of (16.3a), and because ® and ©, are harmonic functions
o _ M qp Iy
X oy and Py (16.13b)
Po_-ite N _-w 00 -’00 _ it _-ov
X2 52)’ X oy and pw &Zy X Y (16.13c)
So (16.12) and (16.13) yield
JF
- YVHX (16.14a) y YO (16.14b)

Now we return to the stresses. Using (16.12) and (16.13)

5
(ﬁy =a(yq>+®+w)=y@+¢g+q) N _opy yacp ox

T =Ty Py PYRRFY Py X (16.15a)
&F)
_ (ﬁx _ IV x) Y ox Y dx 9P dx
WS Tk ox _yax+lpax+ax_yax+o7x_ Yox ¥ ox (16.15b)
oF
(%)
X y‘I’+X) N Iy ob Iy
Oy = IRVAASN (A A/ S | VA3
Ty Py EVARRIFYARPY Y'ox "y (16.15c)
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1 Mode | constraints and mode | stresses
The mode | boundary conditions allow (16.15) to be simplified.

For mode 1, along y=0 the shear stress is zero, so from (16.15c)

—Jx —Jy
W=7  orusing (16.13b) V= 5 (16.16)

This relates ©® and ©®, for mode |. Substituting this back into (16.15c), the
shear stress becomes a function of only y and .

oD
Tyx ==Y (16.17)
Now we turn our attention to the normal stresses in (16.15). We let the
derivatives of ® be the real and imaginary parts of the following complex
function; the imaginary part can be expressed using (16.16) for W.

z|(§)=cp+ilp=q>+i% (16.18)

For this to be worthy of consideration as a stress function (i.e., for it to have
derivatives that are defined) the two Cauchy-Riemann conditions (15.20) must
apply. The first Cauchy-Riemann condition, applied to (16.18), yields

oD W
X oy (16.19a)
An inspection of (16.13b) shows that ® and ¥ always satisfy this.
Applying the second Cauchy-Riemann condition to (16.18), requires that
—o| 2 2 J |2
oD - ID d )_ 9% _ \dx

W=W or using (16.16 to express W) s ox  gxay o  (16.19b)

The righthand part of (16.19b) is satisfied if

_9x
= (16.20)

This key constraint results from symmetry across the fracture plane.
To obtain the mode | stresses we now substitute (16.20) into (16.15a)

oDy oD oD
then substitute (16.20) into (16.15a), and apply the left side of (16.19b)
VL S BPUR, SEPN, |
Oyy = 5+&— +y5— —y& (16.22b)

and finally reproduce (16.17)

oD
Tyx ==Y (16.22c)
Only y and the partial derivatives of ® are used here (see (16.10)).
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2 Mode Il constraints and mode Il stresses

For mode II. the normal traction on the plane y=0 is zero, so (16.15b) gives
ox
o (16.23)

The simplest way to enforce this condition is to set x = 0.

So (16.15), when specialized for mode Il, becomes

oD
Oxx = 2Py (16.24a)
O'yy=yg
X (16.24b)
My PN 9D
VRV A VA Vit
TYyx Yy Y Y X (16.24c)

3 Closing comments on this section
So the functions ® and ¥, along y = 0, yield the boundary conditions on the
fracture. MacGregor (1935) notes that these quantities are proportional to the
dilation (volumetric strain) and rotation in the body.

We have shown that the stress can be obtained by two harmonic functions that
are partial derivatives of the same higher order function. Similarly, these two
harmonic functions can also be taken to be the real and imaginary components

of a single complex function.
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VI General solution for stresses and displacements in terms of a single complex
stress function

A Road map

The work so far yields stresses in terms of the partial derivatives of some

harmonic functions with respect to x and y. The associated stress functions

(and stresses and displacements) can be cast in terms of the derivatives of

a single complex function in terms of the complex variable €, as (16.18

suggests). The following functions are needed:

f,_Z,Z, and Z', where
7 = d_Z 7 = d_Z 7 = d_Z

dg dg dg
These functions can be found directly from the boundary conditions, but owing
to time constraints we will not do this. Instead we will rely upon analogies with
the solutions that we have derived so far and show that the solutions for the
stress functions satisfy the boundary conditions. The stresses will come from Z
and Z'. The strains are proportional to the stresses, and the displacements
come from integration of the strains, so the displacements must depend on the
integrals of those terms. From our previous results we know that the relative
displacements along a fracture vary as (a2-x?)¥?, provided that the stresses
promoting relative displacement of the fracture walls are uniform. We thus can
anticipate a term like this being in the complex functions.
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B Derivatives of a complex function
We apply the Cauchy-Riemann conditions (see (15.8) and (15.9)) several times

in taking derivatives of complex functions with respect to y:
dz _7_ JRe”Z i dlmZ JlmZ i JReZ

el =ReZ'+ilmZ’

de x ec+iim (16.25)
C Mode |

Consider a candidate mode | stress function to have the form of (16.10)

The first derivative of F, with respect to y is:

o] _(aReZ )+y(9|m2| L mZ ﬂ_(aReZ )+ya|m2| L imZ,
o oy Py Y Py y (16.27)
Using the Cauchy-Riemann relations, this can be rewritten
ﬂ:(_|m2|)+ yReZ| +ImZ) = yRez| (16.28)

And then, noting that (16.28) feeds into (16.29a) and 16.29b),

2
9°F  d(yReZ])  dReZ oy ,
- - - Rez; 2 =ReZ| -yImzZ
Oxx 07y2 Py y Py +e|(9y ez| —ylmzj (16.29a)
e 52FI ) (?2(Rez +y|mZ|)_ReZI v yimZ,
w2 2 (16.29Db)
R
~9°F, ~ oy ) -d(yRez))
= = = - -yReZ]
XA IX X yReZ| (1629C)
Comparing (16.29) with (16.22) term by term
Oxx =D+ oo
XX =Y, (16.22a)
_(I) &(I)
Oyy =LY~ (16.22b)
0P
Tyx ==Y (16.22c)
shows that ® = ReZ, and W = yReZ, in the expression below (16.18)
. . Ox
ZI(E) =D+ W=D+
1(E)=@+i oy (16.18)

So the harmonic functions of section V are represented in the complex function
Z.
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The stress function for mode |
The elliptical relative displacement profile across a mode lll fracture are given by

the stress function of (15.25)
> w2 2
211 =S\&™-a (15.25)

A mode | fracture has an elliptical relative displacement profile too (14.25), so

by analogy we try the above stress function and its derivatives
1/2

Z =S<_§2—a2> (16.30a)

Z =%‘= %)(Cz—az)_l/zzc=SC(CZ—aZ)_M (16.30b)
el

Z, =Oc'j%_'=s ¢ i +(c?- 22 1/2(5—? (16.30c)

-s {; 5)e2-a2) " )+ (e2- az)‘”z} - s {-;2(8 ~a?) (2 a2)‘1’2}

Substituting (16.30) into (16.29) gives the stresses, here in tri-polar form

2
61+92 ya . 91+02
Oxx =S 172 COS(B‘ )‘ 3/25"”(3 16.31a
(r 11 2) (rar2) 2 (16.31a)
2
r 61+ 0> ya . (201t 02
Oy =S —1/20"5(9‘ )* 3/23‘”(“ 16.31b
(rar 2) (rar2) 2 ( )
2
ya 81+62)
Oy =S cos|3
Xy (r1r2)3/2 ( 2 (16.31c)
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Do these recover our boundary conditions?
For y=0, O<x<a

[ X Jl‘+0\-|
=S 0- =0

o l[((a—x)(a+ x))lf?cos{ 2 /J| (16.32a)
oxy =90]=0 (16.32b)
For y=0, -a<x<0
o =S|[ X co Jr—”+0\]|=0

yy [((a— X)(a+ x))1/2 2 }J (16.32¢)
oxy =§0]=0 (16.32d)
Asr,r, r,—-x,andd —- 0, — 0,
UXX—>S[ cog(0) - 0sin(36) | = s (16.33a)
axx—>S[ cog(0) - Osin(3«9)}=8 (16.33b)
oyy = §(0)cos(30)] =0 (16.33c)

So the solution is for a plate under biaxial tension of magnitude S with a crack.

A uniaxial compression parallel to the crack (o,, = -S) can be added to yield the
solution for a traction-free crack under a unaxial tension perpendicular to the
crack. This corresponds to the right column of page 16-2.

To obtain the solution for the central columns of page 16-2, and biaxial stress
of magnitude -S must be added to the solutions of (16.31). The associated

stress function and relevant derivatives are
12 ]

{(C ‘a2> ‘Cj (16.34a)
12
s{;(g —a2> - } (16.34b)

> -3/2
! a a
e

Z

[
n
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Westergaard (1939) gives the following expression for the displacements (and
MacGregor (1935) shows where they come from) for mode I, where G is the
shear modulus:

2Guy = (1-2v)ReZ| - ylmZ]

2Guy =2(1-v)ImZ| - yReZ,

(16.35a)

(16.35a)
Substituting (16.34)) these expressions into (16.32) gives the displacements.
Segall and Pollard give the results. A point Segall and Pollard highlight is that
geologists and geophysicists commonly are the most interested in the
displacements associated with the relative motion of the fracture walls (e.g.,
during an earthquake), and not the displacements due to the far-field stresses.

For mode Il (Tada et al., 1976)
|| =-yReZ

(16.36)

Oxx =2ImZ + yReZ' (16.37a)

oyy =-yReZ' (16.37h)

oxy =ReZ-ylmZ' (16.37c¢)
K+5 =

Ux =~~~ ImZ + yReZ (16.38a)
-k =

uy=EReZ—ylmZ (16.38Db)
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Comparison of solutions of MacGregor, Westergaard, Tada et al., and Pollard and Segall

MacGregor Westergaard Tadaet al. P&S
Airy stress F F P U
function
OXX 20+ yoL 4 ax Reg| o
X +yImgf +¢f| ]
oyy 0 _ o Re[¢f +2¢f) |
ay  ox -yImgf +¢fy ]
oXy Ly P, -1m{ ¢f) ]
x -yRE[oi + 9]
2uUx _21-v)Q - y@ 2(1-v)Imgj
oy +(1-2v)Imgy
_2(1-v)Q- y@ -yRe[ 9] + ¢ ]
oX
2uUx
2uuy 2(1-v)Regy
+(1-2v)Reg)
-yImgf +¢i1 ]
2uuy
Stephen Martel 16-13 University of Hawaii
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MacGregor Westergaard Tadaet al. P&S
Airy stress F F D 1_ ..
function | ERe[z¢+ x]
o =-ImW ReZ ReZ
[ ReZ' ReZ'
oX
[ -lmZ' -Imz’
oy
¥ = ReW ImZ _ ImZ _
Q -ReZ -ReZ
o ImZ ImZ
W — —
(C] ImZ ImZ
90 ReZ ReZ
W — —
©p ReZ ReZ
ReW ImZ
[mwW -ReZ
ReW'’ ImZ’
ImW'’ -ReZ'
OXX ory?® ReZ-yIlmzZ’ ReZ-ylmzZ’ Re¢| + ylmg¢”
-ImW -yReW'’ | ReZ-ylmZ' ReZ-ylmZzZ’ Re¢| + ylmg¢”
oyy o y&CIJ ReZ + ylmZz' ReZ +ylmZz' Reg| - yImeg|
oy
-ImW + yReW’ | ReZ+ylmZ' ReZ +ylmZzZ' Re¢| - yImg|
OXy oD -yReZ' -yReZ' -yReg[
ylmw’ -yReZ' -yReZ' -yReg[
2uux _1-2v9-y®? | @-2v)ReZ (1-2v)ReZ 2(1- v)/lm¢|
N | -ylmz ~ylmZ -yReg|
2uux _1-2v)0-y®2 | -2v)ReZ (1-2v)ReZ 2(1- V)/l mej
N | -ylmz —ylmz -yReg|
2uuy 21-v)e_y®® | 21-v)ImZ 2(1-v)ImZ (1- 2v),Re¢|
¥y | -yRez -yReZ -ylmgj
2uuy 21-v)e_y®® | 21-v)ImZ 2(1-v)ImZ (1- 2v),Re¢|
¥y | -yRez -yReZ -ylmgj
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MacGregor Westergaard Tadaetal. P&S
Model I
P =-ImW ImZ ImZ
ad Imz’ ImZ’
oX
ad ReZ' ReZ'
oy
¥ = ReW -ReZ ~ReZ
Q2 -ImZ -ImZ
R -ReZ -ReZz
W = j—
(C) -ReZ -ReZ
9 ImZ ImZ
oy
60
ReW -ReZ —-Rez
ImW -ImZ -ImZ
ReW’ -ReZ' -ReZ'
ImwW' -ImZ' -ImZ' , i
OXX 20+ y o 2imZ+yReZ' | ylmgy|
-2ImW - yReW' 2ImZ+yReZ | ylmgj|
o 2 -yReZ' 2Regj|
oy -yImgj|
yReW'’ “yReZ' SReq|
—ylmgj|
oxy —W—y@ ReZ-ylmZzZ’ —Im¢i|”
X ~yRegj|
-ReW +yImW' ReZ-ylmZ | —Imgj|
_ ~yRed||
2uux o1-va-y® 2(1-v)ImZ @-2v)img
% +yReZ -yReg||
2uux o1-v)a-y® 2(1-v)ImZ @-20im
% +yReZ -yRegj||
2uuy 1-20)0 -y 90 -(1-2v)ReZ 2(1- v),Re¢| |
%y _ylmz ~ylmgj|
2uuy 1-20)0 -y 90 -(1-2v)ReZ 2(1- v),Re¢| |
24 -ylmZ -ylmej|
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MacGregor Westergaard Tadaet al. P&S

Mode lll
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Appendix for Lecture 16
Main topic:
Solution of biharmonic functions in terms of harmonic functions (see
MacGregor, 1935, Timoshenko and Goodier, 1970, p. 172)
Consider the harmonic functions ® = 0(x,y) and 0, = ©,(x,y). We want to show

that y® + ©, is biharmonic. Clearly if

2
V“Op =0 (16.A1)
then
v3e0-=0
(16.A2)
So the crux of the issue is y®.
AY8) _ 90 g _,®
IX y 07X yo"X (16.A3)
2 (y %) 2 2
J (y@) \ ax}_y © 0y _ yﬂ
07X2 IX 2 IX IX 07X2 (16.A4)
Similarly,
AY8) _ 3 oW, o
oy Y d A (16.A5)
0 1Y%
2( & =y6’2®+07®07y+(9@ ya2@+2@
(;y2 R N N (16.46)
20 20)
5 (5’0 %0 _®
VA(YB) =y —5 +— |+ 2—
So (axz Wz) Py (16.A7)
The term in parentheses on the right side of the above equation is zero
2
because © is harmonic (i.e., (V ®=0>), SO
2 00
ve(y®)=2-= (16.A8)
4 2(,00
This means ¥ (v0)=Vv (25) (16.A9)
2&@
Taking the second partial derivatives of 5 yields
) (2‘9@) )
%) _,3%®
Y o2 (16.A10)
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072(2&@) 3
oy =26’ ®
ayz o7y3 (16.A11)
and,
; (2‘96) ,
oy 00
IX - axay (16.A12)
072(2‘9"5) 3
oy _> "¢
"2 o'ryaxz (16.A13)

Using these results

3 3 (20 2a)
4 2(,00 770 /) d1d=® 9O
Vi(ye)-v (2@)=2WW2+ZMX2=25(?+;)=0 (16.A14)

So y® is biharmonic if ® is harmonic.

You might wonder why one would say if ® is harmonic then y® +0, is
biharmonic — why bother including ®,? We can draw an analogy with polynomial
functions of a single variable. Consider the fourth derivative of f=y* with
respect to y

7)) ) e _

= = =0
dy4 dy3 dyz dy (16.A15)
If we integrated the second derivative (f’= 6y) twice to recover a general
4
d™f

solution for dy4 , we would not get y* — we would get y® + (Ay + B), with the

term in brackets being a “function of integration”. Similarly, even though

2( 0 2 90
v (E) = 0, one can not just integrate v (y®)=g twice to obtain a

a general solution. A harmonic function needs to be added to obtain a general

4
solution for ¥ (x¥)=0.
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