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MODE Il FRACTURES (15)

| Main topics
A Modes of fracture
B Anti-plane strain
C Solution of the Laplace equation by functions of a complex variable
D Stress and displacement fields for a mode Ill fracture
E Appendix on stress and displacement fields for all modes

I Modes of fracture (i.e., modes of relative displacement)
A Mode I: Perpendicular to fracture and perpendicular to fracture front
B Mode II: Parallel to fracture and perpendicular fracture front
C Mode llI: Parallel to fracture and parallel to fracture front
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Mode | Mode Il Mode llI
Opening mode Sliding mode Tearing mode
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Shearing modes

Mode | Mode Il
Mode | Mode IlI
Mode | Mode IlI
Mode | Mode Il
Single mode of fracture Variation in mode of fracture
around an elliptical fracture around an elliptical fracture
under tension under shear
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Set up of Crack Problems by Perturbation of an Ambient Stress Field

Mode |
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Mode Il

Gyzm =S Cyzm =0 O'yZCO =S

©O) ©O) ©O) ©O) ©O) ©
Oyzc =S Oyzc =-S Gyzc =0
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X (D crack () Crack
Position of crack
Ambient field Perturbation due to crack Total field
X X X X X X
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Il Anti-plane strain (for mode Il fractures)

From course notes, ME238, Stanford, Prof. Nix, 1984

A A two-dimensional treatment where neither stresses nor displacements
change in on direction (here, the z-direction).

J0ijj
—J =0
oz (15.1)
ﬂ:o
oz (15.2)
B Displacements
1 UX = Uy =0
2 uz=f(xy)
C Equilibrium
According to equation (7.1c), the equation of equilibrium is
o
da'z)(+ azy+aazz+F3=o
x o oz (15.3)
In light of (15.1), if body forces are absent, then for anti-plane strain
o
992 , P92y _
x (15.4)
These shear stress are related to the displacements as follows:
Ozx = 2/-182)( = ZHE@X + nguduz
2Lz ox O o (15.5)
[au ]
Ozy = 2uszy = ZHED Y4 duzguduz

20vz 0 % (15.6)

The term p is the shear modulus (also designated as G). Inserting these
expressions into (15.3) yields

Uz i
) % a@ﬁy%

ox
X oy (15.7)
%{7*%% [t =0 (15.8)

So the displacement u; in anti-plane strain must satisfy the Laplace eqgn.
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IV Solution of the Laplace equation by functions of a complex variable

The Laplace equation in two dimensions can by solved easily using functions
of a complex variable. This also allows stresses and displacements in two-
dimensional fracture problems (either plane strain, plane stress, or anti-plane
strain) to be expressed compactly. We will consider a complex stress function
(2) of the complex variable ¢, where
{=x+ly (15.9)
The parameter x is the real part of ¢, and y is the imaginary part. We will use
the term ¢ (zeta, the Greek z) rather than z, as is customary, so as not to
confuse the z-direction with the complex number x+iy.

Any analytic function u,(¢) (i.e., any function that has a derivative in the
neighborhood of any point in the region of interest) of the complex variable ¢
solves the Laplace equation. Here is the proof:

My 0z duy d %

Ezzédizzzdizz Note: u, = uy(¢), {=¢(x,y), and &Z:l (15.10)
Pz d 0@z d o] d [z &y

&2 O ox Cox 01 dZ ox CdZ O d¢ Cai¢ O 72 (15.11)
iz _0g duz _; dug % .

d dydl d¢ EY (15.12)
Pup_ d X d el d s -dy

a2 dZoy Doy O dZdyIdZ 0 dZ LIdZ O gz2 (15.13)

Summing (15.13) and (15.15) proves that [Z21,(¢) =0, so any displacement
field written as a function of ¢ satisfies equilibrium conditions.
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Derivatives of a complex function and the Cauchy-Riemann conditions

To obtain the strains (and hence the stresses) from the displacements, we
need to know how to take derivatives of the displacement function. For a
unique derivative to exist at a point, it must have the same value no matter
what direction the point is approached from.

y
(x,y+4y) A" B (x+Ax,y+Ay)

(x.y). -‘(X+Ax,y)
A A

X

The complex variable ¢ can be separated into real and imaginary
components:
Re  =x (15.14a) ImZ=y (15.14b)

And so can the complex function Zi11 ()

Zy =2y (¢) =ReZy +ilmZy; = a(x,y) +iB(x,y)

(15.15)

Now we consider the derivative 9Zi11()/d<.

92y _lim a(x+Axy+A4y)-a(xy) . Bx+Axy+4y) - B(x.Y)

dd TAC=Dxily - 0 AX+ iy AXx +ilAy (15.16)
Algng the path from A’ to B, Ax = 0, so

dZ;; _lim a(xy+4y)-a(xy) By +4y)-B(xy) _1loa B

dg A¢Eiby -0 iny iny iy oy (15.17)
or alternatively
ﬂ:i_}a_a+%:—id_a+%

dZ  iidy o y & (15.18)
Along the path from A” to B, Ay = 0, so

0Zy _tm alx+Bxy)-a(xy) | BO+Axy)-B(xy) _da, 9B

dZ A{=0x -0 Ax Ax X o (15.19)

Equating the real and imaginary terms in (15.19) and (15.20) yields the
Cauchy-Riemann conditions:

Jda _ -dp
X o (15.20a) LR (15.20b)
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Differentiating (15.20a) with respect to x and of (15.20b) with respect to y
and summing shows that a satisfies the Laplace equation too. Similarly,

B also satisfies the Laplace equation. So possible solutions for the Laplace
equation (and hence the displacement field) can come from

Z, Rez, (e, a), and Im Z,, (ie, B).

Solution for the displacement and stress field around a mode Ill fracture

We now consider the following displacement function
“z:i'mzlll (15.21)
The displacement here is a shear displacement, and it should be inversely
related to the shear modulus p (see Table 9.1 in Barber). We now need to find
a function that satisfies our boundary conditions. The solution for the relative
displacement across a mode Il fracture (see the Appendix) under a driving
stress S is

_25 /. 2_.2
Aupp == vat=xt, (15.22)
This solution is found by the method of lecture 14. By symmetry, half the
relative displacement occurs on one side of the fracture, and half on the other.
So

|2 2
< - 0+ - S\e a —X

upi (X <ay=0") 0 (15.23)
This means that

Imz, :ﬁzs\fﬁaz‘fz_ (15.24)
This leads directly to the following solution
The displacements throughout the body with a mode Ill crack are then

u :§|m Zz—az :§

T 7 (15.26)

The nonzero stresses throughout the body come from the strains.

el

7} O
oo =y Me_,, B TIOB oo =y M-, B C10B
x~H S TH— S "% (15.27a) ve=Hy TH T Ta  (15.27b)
Applying (15.17) to (15.27a), and (15.19) to (15.27b) leads to
o= 9B _ %% oo = 9B _red9ZuL
X7 dZ (15.28a) Y27 dz (15.28Db)
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The solutions for the displacements and the stresses still do not lend
themselves to tremendous insight, so we pursue this a bit more. The next step
is to take the derivative of the function of (15.25):

d s (2 2)1/2%
_ -a
dZ||| _ ] |::|ls( _a)ll ZZ: SZ
dz dc 2 (Z_I_a)l/Z(Z_a)l/Z (1529)
At this point we switch to polar coordinates
IMPORTANT! ly ) __—
0<6, 81, 8,<2m {=x+iy=rel
1 1’ 2
Branch cut r2 r 1
6 is discontinuous 5
across cut 1
\ 6, \ 6 f\ y
(-a,0) (+a,0)
Z=x+iy=r(cosf+ising) = re'® (15.30)
. i0
Z-a=r(cosf 1+ising ;) =re"1 (15.31)
- i0
{+a=r 5(cosh ,+isinf 5)=re "2 (15.32)
Equation (15.29) can be re-written in either of the two following ways
O 6,+0, 0
dZ||| — 36'9 r el
d¢ @ |91% @ |92% N (15.33)
dZ||| =g r L] 91 9 L] 91 9 D
= cos IS sin
g S, H T,y (15.34)
So the nonzero stresses and displacements are
dZ||| r 6 1+6 L
=Re =S ——=
T T, COS@ “H (15.35)
i e T 1+9 D
Io =IM=37-=S rlrzs'n@ (15.36)
1 1 '91+62 s 0,+6
_ e “ . +
uZ:ﬁImZm :ﬁlmWe 2 :ﬁ\rlrzsm% (15.37)
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Lecture 15 Appendix

| Main topics
A Displacement and stress fields for a screw dislocation (mode llI)
B Evaluating “deformation fields” for fractures of modes I, Il, and IlI

I Displacement and stress fields for a screw dislocation (mode IlI)

A Displacement parallel to the dislocation edge increases uniformly along a
spiral-like circuit from one side of the dislocation to the other (for a right-
handed screw dislocation, point your right thumb along the dislocation
edge; displacement parallel to the edge increases in the direction your
fingers curl.

Angular position: 6 = tan(y/x)
C Expressions for displacements and strains, Cartesian ref. frame

1 Cartesian displacements: u=u, v=u, W= U,
1rau 0u|j|€ _1@+0\/E _1lmw owd

2 Normal strains: ¢, == —
* 20k xOY 20y O~ T2 a0

3 Shear strains: ¢, 1@, vH ﬂ_l@Jr@E _1lfw ol
2@y xO% 20 O 20k a0l

D Expressions for displacements and strains, cylindrical ref. frame

w

1 Cylindrical displacements: u, Uy u,=w
_1lrau éu u 1@16 ] law ow[]
2 Normal strains: == = =4+ -0 i
e Tan Ty re0™ 20 a0
oo 1ou, éug YW 1@ 1 % 1@ a H
3 Shear strains: == ol e A W
0= oo % r 00 20y 9z 01
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E Comparison of screw dislocation expressions

1 Displacement
Polar coordinates
au=0
bu=0

c W:bi
21

2 Strain
Polar coordinates

acg,=¢g =0

_ _1hb
P

de =0
€ &, =0
fe,=0

Cartesian coordinates

u=0

v=0

Wzitan‘lz
2m X

&y =6,=0
o —g =lb x _1bx
2 TH 22m k24 g2 22m 2
E =& :l__b y _l__bl
T 22m %24 y2 2212

£, =0

£,=0

e =0

3 Stress (G = shear modulus) oj; =2Gg; if i# ]

ao,=0,=0
_Gb

bo =0
6z z6 27'[7'

C Orz=0xg =0

do,=0
€ 0, =0
fo,=0

Stephen Martel 15-9
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yz

Xz

0,=0,=0

b 2Gb X _Gbx
Yo2mx*+y* 2mr?
_-Gb y _-Gby

0, = = =
2m x*+y®  2m r?
o,=0

o,=0

0,=0

University of Hawaii



GGT711c 3/4/03 10

SCREW DISLOCATIONS

SUPERPOSTION OF TWO (INFINITE) SCREW DISLOCATIONS (A,B)
TO FORM A FINITE DISPLACEMENT DISCONTINTUITY (C)
(View along the -z direction)

° X't x e X'I[IX ° X
B o
y X =+a el L~ g X=+a
o8 OB

— T BN ORI
@ ® Towards "Away"

Towards Away Y X = -a Y X =-a
A B @ ® C Dislocations
cancel out
Towards Away
v To infinity v To infinity
wa = boa/(2m) wg = bog/(2m) we = b(84 - 6g)/(2M)

= (b/2m) tan"L(y'/x) = (b/2m) tan"L(y"/x") = (b/2m) [tan~L(y/(x-a)) - tan"L(y/(x+a))]
= (b/2m) tan"L(y/[x-a]) = (b/2m) tan"L(y/[x+a]) we (94 =-m, 0g = 0) = -B/2

wc (o= 0,6g=0)=0
wc (6p=m, 6g =0) = B/2
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Il Evaluating “deformation fields” for fractures of modes I, Il, and Il

The solutions for the stresses, displacements, and relative displacement
around fractures of modes Il and Ill are entirely homologous to the
corresponding solutions for an opening mode (mode 1) fracture. Rather than
rederive the entire solutions, we can demonstrate that the starting points, key
steps, and results for the solutions are identical in form (see the tables on the
following pages). The key differences are in the multiplicative constants (i.e.,
C,, values) that accompany the solutions. We will consider for each case an
isolated 2-D fracture in a body with no stresses at an infinite distance from the
fracture. The relative displacement of the fracture walls is driven by a uniform
stress +S acting on the walls of a fracture. The fracture extends from x = -a to
X = +a, so the length 2a is the short dimension of the fracture (the longest
dimension is infinite!). The diagram below shows the case for mode IIl.

y
O © O O) O] O)
x=-a® X ®S X ® ®x=+a
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Table 1. Stresses around a 2-D dislocation (critical steps are boxed)
Mode | Mode I Mode Il
_ Cj cosf _Cysné *%x0rr =0
Orr = " L
Cj cosf Ci| sin@ opg =0
op = I : 0pg = IIr *+x066
Uzpzlane str%szo Uzpzlane str%szo xx077=0
lane strain lane strain
ng =v(orr +0gg) ng =v(orr +0gg)
Cj siné - ogr =0
gy = | Sin ogr = Cy| cos@ *x00r
r r
gy, =0 gy, =0 C
6z 6z Uez:%
Ogr = Oz = *x%x0zr =0
Ci ow(6=0)=0 «OwW(0=0)=0
o 0=0)=—" Yy Yy
y(6=0)="
oyx(6=0)=0 oy (0=0)= Ci| x+0yx(6=0)=0
X
»Oyz(6=0)=0 % Oyz(8=0)=0 Uyz(9:0):C|x”
_ —Z;JBy _ _Z,UBX _ I’lBZ
C = "= ==
m(k+1) n(k+1) 2n

* From plane strain or plane stress constraint
** From anti-plane strain constraint

The C-values in the last row produce a positive displacement discontinuity (i.e.,

u(y=0+) - u(y=0-) > 0)
K=3-4v
and
k=(3-v)/(1+V)

Table 2. Boundary conditions on fracture walls

for plane strain (k=2 for v=0.25),

for plane stress (k=2.2 for v=0.25).

Mode |

Mode Il

Mode I

UyyC:S; X|<ay=0

UyXC:S; X|<ay=0

oy° =S [x<ay=0

ay® =0 [x<ay=0

oW’ =0 [x<ay=0

**UWCZO; X <ay=0

*ayZC:O; X <ay=0

*ayZC:O; X <ay=0

**ayzc =0 |x<ay=0

Stephen Martel

15-12

University of Hawaii




GG711c

3/4/03

13

Table 3. Key steps in determining the relative displacement across a fracture

Mode |

Mode Il

Mode I

Integral equation for boundary

condition

s=["2L ! 5jae

Integral equation for

boundary condition

s= [723] aC” By (£)dE

Integral equation for

boundary condition

tacy) .

Constant from dislocation

solution
n(k+1)

C =

Constant from dislocation

solution
_Z,UBX

G = nk+1)

Constant from dislocation

solution
HBz

Ciy =2
=

Unit-strength constant
*x _ =2U
nm(k+1)

Ci

Unit-strength constant
* _2,UBX
nm(k+1)

Ci

Unit-strength constant
HBz

cul =
==

+a _ x ,
S= I_a C1"By(&)dE

S= I_Jr:Cu*BS((E)dE

S= I_Jr;Cul*B’z(E)dE

Dislocation derivative
distribution that yield boundary
condition
=

C va™-¢

Dislocation derivative
distribution that yield
boundary condition
Ci va”-¢

Dislocation derivative
distribution that yield
boundary condition
Cin va™-¢

Equation to solve for relative

displacement of fracture walls

duy()= [ By(Oae

Equation to solve for relative

displacement of fracture walls

dux(x)= [ By(@de

Equation to solve for relative

displacement of fracture walls

b= [ By(@)de

—nS\s“““aZ - x2

*

Ci

Auy =

2 2
-nSya“ - x
Auj| =————
Ci

-71S a2—x2
= 2

Cliy

Aupy =

Relative displacement of

fracture walls

-k + 1)'\@‘5a2 ~x2
2u

Auj =

Relative displacement of

fracture walls
-9k + 1)Ja2 — %2
2u

Auj| =

Relative displacement of

fracture walls

2 2
2SvVa“ - x
Aujjp =————

The equations below yield the “deformation fields” around a 2-D fracture of any
mode. The terms o,(z-§,y) and u,(z-&,y) are Green’s functions.

For stresses

For dlsplacements

aijey)= [T

(&)aij (x- &, y)d&

woey)= [

(&)ui(x-¢&,y)dé
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