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MODE III FRACTURES (15)

I Main topics

A Modes of fracture

B Anti-plane strain

C Solution of the Laplace equation by functions of a complex variable

D Stress and displacement fields for a mode III fracture

E Appendix on stress and displacement fields for all modes

II Modes of fracture (i.e., modes of relative displacement)
A Mode I: Perpendicular to fracture and perpendicular to fracture front
B Mode II: Parallel to fracture and perpendicular fracture front
C Mode III: Parallel to fracture and parallel to fracture front

Mode I
Opening mode

Mode II
Sliding mode

Mode III
Tearing mode

Mode III
Mode I

Mode I

Mode I

Mode I

Mode III

Mode II

Mode II

Single mode of fracture
around an elliptical fracture

under tension

Variation in mode of fracture
around an elliptical fracture

under shear

Shearing modes



GG711c 3 / 4 / 0 3 2

Stephen Martel 15-2 University of Hawaii

=

Ambient field Perturbation due to crack Total field

Position of crack Crack Crack
+

σyx
00 = S σyx

00 = Sσyx
00 = 0

σyx
c  = S σyx

c  = -S σyx
c  = 0

Mode II

+ =

Ambient field Perturbation due to crack Total field

Position of crack
Crack Crack

σyz
00 = S σyz

00 = Sσyz
00 = 0

σyz
c  = S σyz

c  = -S σyz
c  = 0

Mode III

+ =

Ambient field Perturbation due to crack Total field

Position of crack Crack Crack

σyy
00 = S σyy

00 = Sσyy
00 = 0

σyy
c  = S σyy

c  = -S (pressure) σyy
c  = 0

Mode I

Set up of Crack Problems by Perturbation of an Ambient Stress Field



GG711c 3 / 4 / 0 3 3

Stephen Martel 15-3 University of Hawaii

III Anti-plane strain (for mode III fractures)

From course notes, ME238, Stanford, Prof. Nix, 1984

A A two-dimensional treatment where neither stresses nor displacements
change in on direction (here, the z-direction).

∂σ

∂
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z

= 0
(15.1)

∂
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= 0
(15.2)

B Displacements
1 ux uy= = 0

2 uz f x y= ( , )

C Equilibrium
According to equation (7.1c), the equation of equilibrium is
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In light of (15.1), if body forces are absent, then for anti-plane strain
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(15.4)

These shear stress are related to the displacements as follows:
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The term µ is the shear modulus (also designated as G).  Inserting these

expressions into (15.3) yields
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So the displacement uz  in anti-plane strain must satisfy the Laplace eqn.
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IV Solution of the Laplace equation by functions of a complex variable
The Laplace equation in two dimensions can by solved easily using functions

of a complex variable.  This also allows stresses and displacements in two-
dimensional fracture problems (either plane strain, plane stress, or anti-plane
strain) to be expressed compactly.  We will consider a complex stress function
(Z) of the complex variable ζ, where
ζ = +x iy (15.9)
The parameter x is the real part of ζ, and y is the imaginary part.  We will use
the term ζ (zeta, the Greek z) rather than z, as is customary, so as not to

confuse the z-direction with the complex number x+iy.

Any analytic function uz(ζ) (i.e., any function that has a derivative in the
neighborhood of any point in the region of interest) of the complex variable ζ
solves the Laplace equation.  Here is the proof:
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∂
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Summing (15.13) and (15.15) proves that ∇2 uz(ζ) =0, so any displacement
field written as a function of ζ satisfies equilibrium conditions.
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Derivatives of a complex function and the Cauchy-Riemann conditions
To obtain the strains (and hence the stresses) from the displacements, we

need to know how to take derivatives of the displacement function.  For a
unique derivative to exist at a point, it must have the same value no matter
what direction the point is approached from.

(x+∆x,y+∆y)(x,y+∆y)

(x+∆x,y)(x,y)
A A'

A" B

x

y

The complex variable ζ can be separated into real and imaginary

components:
Re ζ = x                 (15.14a)                                        Im ζ = y (15.14b)

And so can the complex function ZIII ( )ζ

Z Z Z i Z x y i x yIII III III III= ( ) = + = +ζ α βRe Im ( , ) ( , ) (15.15)
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Equating the real and imaginary terms in (15.19) and (15.20) yields the
Cauchy-Riemann conditions:
∂α
∂

∂β
∂x y

=                       (15.20a)             
∂α
∂

∂β
∂y x

=
−

(15.20b)
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Differentiating (15.20a) with respect to x and of (15.20b) with respect to y
and summing shows that α satisfies the Laplace equation too.  Similarly,
β also satisfies the Laplace equation.  So possible solutions for the Laplace

equation (and hence the displacement field) can come from
Z Z i e Z i eIII III III,  Re   ( . .,  ),   Im   ( . .,  ).α βand

Solution for the displacement and stress field around a mode III fracture
We now consider the following displacement function

u Zz III=
1
µ

Im (15.21)

The displacement here is a shear displacement, and it should be inversely
related to the shear modulus µ (see Table 9.1 in Barber).  We now need to find

a function that satisfies our boundary conditions.  The solution for the relative
displacement across a mode III fracture (see the Appendix) under a driving
stress S is

∆uIII
S

a x= −
2 2 2
µ . (15.22)

This solution is found by the method of lecture 14.  By symmetry, half the
relative displacement occurs on one side of the fracture, and half on the other.
So

uIII x a y S
a x

( , )< = + =
−

0
2 2

µ (15.23)

This means that

ImZ S aIII = = −β ζ2 2
. (15.24)

This leads directly to the following solution

Z iS a S a S aIII = − = − − = −2 2 2 2 2 21ζ ζ ζ (15.25)

The displacements throughout the body with a mode III crack are then
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(15.26)

The nonzero stresses throughout the body come from the strains.
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Applying (15.17) to (15.27a), and (15.19) to (15.27b) leads to
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The solutions for the displacements and the stresses still do not lend
themselves to tremendous insight, so we pursue this a bit more.  The next step
is to take the derivative of the function of (15.25):
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At this point we switch to polar coordinates

(-a,0) (+a,0)

ζ = x + iy = reiθ
iy

x
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θθ2

r1rr2

IMPORTANT!�
0<θ, θ1, θ2<2π�
�

_ _

Branch cut�
θ is discontinuous�
across cut
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Equation (15.29) can be re-written in either of the two following ways
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So the nonzero stresses and displacements are
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+
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Lecture 15 Appendix
I Main topics

A Displacement and stress fields for a screw dislocation (mode III)
B Evaluating “deformation fields” for fractures of modes I, II, and III

II Displacement and stress fields for a screw dislocation (mode III)
A Displacement parallel to the dislocation edge increases uniformly along a

spiral-like circuit from one side of the dislocation to the other (for a right-
handed screw dislocation, point your right thumb along the dislocation
edge; displacement parallel to the edge increases in the direction your
fingers curl.

B Angular position: θ = tan-1(y /x )

C Expressions for displacements and strains, Cartesian ref. frame
1 Cartesian displacements: u ux= v uy= w uz=

2 Normal strains:  ε
∂
∂

∂
∂xx

u

x

u

x
= +




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2
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  ε
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∂
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w
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
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

1
2

3 Shear strains:    ε
∂
∂

∂
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u

y

v

x
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
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∂
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  ε
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

1
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D Expressions for displacements and strains, cylindrical ref. frame

1 Cylindrical displacements: ur uθ u wz =

2 Normal strains:  ε
∂
∂

∂
∂rr

r ru

r

u

r
= +





1
2

          ε
∂
∂θθθ

θ= + 





u

r r

u1
  ε

∂
∂

∂
∂zz

w

z

w

z
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



1
2

3 Shear strains:   ε
∂
∂θ

∂
∂θ

θ θ
r

r

r

u u

r

u

r
= + −





1
2

1
ε

∂
∂
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∂θθ

θ
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
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E Comparison of screw dislocation expressions
1 Displacement

Polar coordinates Cartesian coordinates
a ur = 0 u = 0

b uθ = 0 v = 0

c w b z=
θ
π2

w
b y

x
= −

2
1

π
tan

2 Strain
Polar coordinates Cartesian coordinates

a ε εθ θr r= = 0 ε εxy yx= = 0

b εθ ε θ πz z
b

r
= =

1
2 2

ε ε
π πyz zy
b x

x y

b x

r
= =

+
=

1
2 2

1
2 22 2 2

c u urz zr= = 0 ε ε
π πxz zx
b y

x y

b y

r
= =

−

+
=

−1
2 2

1
2 22 2 2

d εrr = 0 εxx = 0

e εθθ = 0 εyy = 0

f εzz = 0 εzz = 0

3 Stress (G = shear modulus)  σ εij ijG if i j= ≠2   

a σ σθ θr r= = 0 σ σxy yx= = 0

b σ σ
πθ θz z

Gb

r
= =

2
σ σ

π πyz zy

Gb x

x y

Gb x

r
= =

+
=

2 22 2 2

c σ σrz zr= = 0 σ σ
π πxz zx

Gb y

x y

Gb y

r
= =

−
+

=
−

2 22 2 2

d σ rr = 0 σ xx = 0

e σθθ = 0 σ yy = 0

f σ zz = 0 σ zz = 0
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x

y

Towards       Away

To infinity

-

x

y

Towards       Away

To infinity

=

xx' x''

y

y'

y'' y''
Towards       "Away"

x = +a x = +a

x = -a x = -a

SUPERPOSTION OF TWO (INFINITE) SCREW DISLOCATIONS (A,B) 
TO FORM A FINITE DISPLACEMENT DISCONTINTUITY (C)�

(View along the -z direction)

SCREW DISLOCATIONS

wA = bθA/(2π) 
    
      = (b/2π) tan-1(y'/x')
    
      = (b/2π) tan-1(y/[x-a])

wB = bθB/(2π) 

      = (b/2π) tan-1(y''/x'')
    
      = (b/2π) tan-1(y/[x+a])

wC = b(θA - θB)/(2π) 

      = (b/2π) [tan-1(y/(x-a)) - tan-1(y/(x+a))]

Dislocations
cancel out

A B C

x

y

z

θA

θB

θA

θB

−π ≤ θ ≤ π

wC (θA = -π, θB = 0) = -B/2
wC (θA =   0, θB = 0) = 0
wC (θA = π, θB = 0) = B/2
wC (θA =  π, θB = π) =  0

b
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III Evaluating “deformation fields” for fractures of modes I, II, and III
The solutions for the stresses, displacements, and relative displacement

around fractures of modes II and III are entirely homologous to the
corresponding solutions for an opening mode (mode I) fracture.  Rather than
rederive the entire solutions, we can demonstrate that the starting points, key
steps, and results for the solutions are identical in form (see the tables on the
following pages).  The key differences are in the multiplicative constants (i.e.,
Cm values) that accompany the solutions.  We will consider for each case an
isolated 2-D fracture in a body with no stresses at an infinite distance from the
fracture.  The relative displacement of the fracture walls is driven by a uniform
stress +S acting on the walls of a fracture.  The fracture extends from x = -a to
x = +a, so the length 2a is the short dimension of the fracture (the longest
dimension is infinite!).  The diagram below shows the case for mode III.

x

y

x = - a x = + a

S
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Table 1.  Stresses around a 2-D dislocation (critical steps are boxed)

Mode I Mode II Mode III

σ
θ

rr
CI

r
=

cos
σ

θ
rr

CII
r

=
sin * *σrr = 0

σθθ
θ

=
CI

r

cos σθθ
θ

=
CII

r

sin * *σθθ = 0

σzz
plane stress = 0

σ ν σ σθθzz
plane strain

rr
 = +( )

σzz
plane stress = 0

σ ν σ σθθzz
plane strain

rr
 = +( )

* *σzz = 0

σθ
θ

r
CI

r
=

sin
σθ

θ
r

CII
r

=
− cos * *σθr = 0

σθz = 0 σθz = 0 σθz
CIII

r
=

σzr = 0 σzr = 0 * *σzr = 0

σ θyy
CI
x

=( ) =0
σ θyy =( ) =0 0 * σ θyy =( ) =0 0

σ θyx =( ) =0 0
σ θyx

CII
x

=( ) =
−

0 * *σ θyx =( ) =0 0

* σ θyz =( ) =0 0 * σ θyz =( ) =0 0
σ θyz

CIII
x

=( ) =0

CI
By=

−

+

2

1

µ

π κ( )
CII

Bx=
−

+
2

1
µ

π κ( )
CIII

Bz=
µ

π2

* From plane strain or plane stress constraint
** From anti-plane strain constraint
The C-values in the last row produce a positive displacement discontinuity (i.e.,

u(y=0+) - u(y=0-) >  0)

κ ν= −3 4  for plane strain (κ=2 for ν=0.25),

and
κ ν ν= −( ) +( )3 1/ for plane stress (κ=2.2 for ν=0.25).

Table 2.  Boundary conditions on fracture walls

Mode I Mode II Mode III

σ yy
c S x a y= < =; , 0 σ yx

c S x a y= < =; , 0 σ yz
c S x a y= < =; , 0

σ yx
c x a y= < =0 0; , σ yy

c x a y= < =0 0; , * *σ yy
c x a y= < =0 0; ,

* σ yz
c x a y= < =0 0; , * σ yz

c x a y= < =0 0; , * *σ yz
c x a y= < =0 0; ,
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Table 3.  Key steps in determining the relative displacement across a fracture

Mode I Mode II Mode III

Integral equation for boundary

condition

S
CI
By

By d
a

a
= ′

−
+∫ ( )ξ ξ

Integral equation for

boundary condition

S
CII
Bx

Bx d
a

a
= ′

−
+∫ ( )ξ ξ

Integral equation for

boundary condition

S
CIII
Bz

Bz d
a

a
= ′

−
+∫ ( )ξ ξ

Constant from dislocation

solution

CI
By=

−

+

2

1

µ

π κ( )

Constant from dislocation

solution

CII
Bx=

−
+

2
1

µ
π κ( )

Constant from dislocation

solution

CIII
Bz=

µ

π2

Unit-strength constant

CI
*

( )
=

−
+

2
1

µ
π κ

Unit-strength constant

CII
Bx*

( )
=

−
+

2
1

µ
π κ

Unit-strength constant

CIII
Bz* =

µ

π2

S CI By d
a

a
= ′

−
+∫ * ( )ξ ξ S CII Bx d

a

a
= ′

−
+∫ * ( )ξ ξ S CIII Bz d

a

a
= ′

−
+∫ * ( )ξ ξ

Dislocation derivative

distribution that yield boundary

condition

′ =
−

−
By

S

CI a

π ξ

ξ* 2 2

Dislocation derivative

distribution that yield

boundary condition

′ =
−

−
Bx

S

CII a

π ξ

ξ* 2 2

Dislocation derivative

distribution that yield

boundary condition

′ =
−

−
Bz

S

CIII a

π ξ

ξ* 2 2

Equation to solve for relative

displacement of fracture   walls

∆uy x By d
a

x
( ) ( )= ′

−∫ ξ ξ

Equation to solve for relative

displacement of fracture walls

∆ux x Bx d
a

x
( ) ( )= ′

−∫ ξ ξ

Equation to solve for relative

displacement of fracture walls

∆uz x Bz d
a

x
( ) ( )= ′

−∫ ξ ξ

∆uI
S a x

CI
=

− −π 2 2

*
∆uII

S a x

CII
=

− −π 2 2

*
∆uIII

S a x

CIII
=

− −π 2 2

*

Relative displacement o f

fracture walls

∆uI
S a x

=
− +( ) −κ

µ
1 2 2

2

Relative displacement o f

fracture walls

∆uII
S a x

=
− +( ) −κ

µ
1 2 2

2

Relative displacement o f

fracture walls

∆uIII
S a x

=
−2 2 2

µ

The equations below yield the “deformation fields” around a 2-D fracture of any
mode.  The terms σij(z-ξ,y) and ui(z-ξ,y) are Green’s functions.

For stresses For displacements

σ ξ σ ξ ξij x y B ij x y d
a

a
( , ) ( , )= ′( ) −

−
+∫ ui x y B ui x y d

a

a
( , ) ( , )= ′( ) −

−
+∫ ξ ξ ξ
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