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STRESSES AROUND HOLES (2-D) (11)

I Main Topics: Plane solutions for
A A traction-free circular hole under a uniaxial load
B A traction-free circular hole under biaxial loading
C A pressurized circular hole with no remote load

D A pressurized circular hole with a remote biaxial load

Il__A stress-free circular hole under a uniaxial load
Preliminary considerations and boundary conditions

We start by considering the problem of a plate under uniaxial tension, where
the plate contains a circular hole of radius a.

y
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Boundary conditions

The remote boundary conditions are met far away from the hole. In terms of x
and y the tension-positive remote stresses are:

@ o _ o ® o~ © o7 -0 (11.1)

In terms of polar coordinates these conditions are

t1141

[e'e} ©

w O . -0
(@ o =71(1+ cos26) (b) o}, = 21

The conditions of equations (11.2) can be visualized with a Mohr circle:

w_al

sin20 (c) op ) (1-cos26) (11.2)
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Boundary conditions also exist on the surface of the hole (r=a). These are:

a a
(@ oy = 0, (b) Oy = 0. (11.3)
In other words, no tractions exist on the surface of the hole. Note that o,, does
not act on the surface of the hole and so cannot be a boundary condition.

Governing Equation

2 2
Vi vivEpa Lo 20 (92)(@_2 gm0
or 079 r< do0 (11.4)
General solution (from Michell, 1899)
A01r2+A02r2Inr+A03Inr+A040
+(A11r3+A5L2rInr+A14r‘1)cos¢9+AgL3resin0
+(Bllr3+Blernr+Bl4r‘1)sin0+ By3ré coso
o=+ (Anlrr”z+An2r‘”+2+An3r”+An4r‘”)cosn(9 (11.5)
n=2

0]
+ Y (Bnlr 2 B or ™2 1 Bgr 4 Bn4r‘”)sinn6

The series contribution is in the form of a Fourier series.
Table 8.1 from Barber shows the stresses associated with each term in the
above equation, obtained using the following equations:

2
1& 190
r W r< o060
o, = -15% L 19 (11.7)
r &rz&e r? 06
J=¢
Opp =——5. (11.8)
99 = 52

An inspection of the table shows that terms involving cos(00) yield stresses
that do not depend on 6 or r. Such terms are needed to describe the boundary
conditions both on the hole and far from the hole. We also need functions that
yield stresses that vary as cos(20) term, and these come only from stress
functions that include cos26. So the general solution can be trimmed
substantially:

¢ = Agir? + Agr?Inr + Agglnr + A046+(A21r4 + Aot s Aggr? s A24r‘2)cosn9 (11.9)
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The general solution can be simplified more. The coefficients Ag2 and A2 1

must equal zero in order for the stresses to be finite value as r goes to «. So
(11.9) becomes

¢ = A01r2 + A03|nr + A040+ (Azzr_n+2 + A23rn + A24r_n)C05n8 (1 1. 10)
The stresses obtained from this stress function are:

O = 2Ag1 + Agal 2 + Agg (0) + (4 Axor 2 = 2Anar ® - 6Ax41r %) cos26 (11.11)
Org = 0+0+ Ao4r_2 + (—2A22r_2 + 2A23r0 — 6A24r_4)8in29 (1 1. 12)
Opgg = 2A01 - A03r_2 + A04(0) - (0A22r_2 + 2A23r0 + 6A24r_4)C0529 (1 1. 13)

Particular Solution
Letting r go to «, both orr and ogg equal c1*/2 at 26 = 90°. Equations (11.11)

and (11.13) require

A01=071_ (11.14)
Comparing (11.2c) and (11.13) shows that the term 2A2 3 equals -61%/2, so
_Oi"

pog= L. (11.15)

So the stresses are:

Oy = [071 + AOSI’_Z} + (—4A22I’_2 + 071 - 6A24r_4)C0326 (1 1 16)
_ 2 o7 4y
01 = [ Aot 2]+ (2552 - T 6y ) sin20 (11.17)
oy o o7 _4
Opo =71—A03r +(—7l+6A24|’ )cos26 (11.18)

At r = a, orr = 0 and org = 0 (for all values of 26), so the bracketed terms in
(11.16 and 11.17) must sum to zero. So

A03=—o£°a2. (11.19)
o (11.20)
So the equations for the stresses reduce to:

o [%_%azr-z} . (_4A22r-2+%_6A24r‘4)00829 (11.21)
O = (~2Agor 2 —071—6A24r'4)sin26 (11.22)
o =%Jr%aZr-er(_%mAmr“‘)cosZB (11.23)
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All that is left now is to find A,, and Ay,.

Atr = a, org = O for all values of 26, so the terms in parentheses in (11.22)

that multiply sin26 must sum to zero.

—2Aa % - 07 [2-6Aya4 =0,

(11.24)

Similarly, at r = a, orr = 0 for all values of 26, so the terms in parentheses in

(11.21) that multiply cos26 must sum to zero.

—4A22a_2+(7f/2—6A24a_4 =0. (1125)
Subtracting (11.25) from (11.24) gives 2A,a ?-o07 =0, hence
00 2
A22=012a (11.26)
Inserting (11.26) into (11.25) yields
ofaz 2 o7 4
This simplifies to
—6Ayat =31 (11.28)
Finally,
oo 4
Agy =12 (11.29)
4
So here is our solution
<4— y —>
- <+— |—» >
(0
4_ _01 X A 8 _> 1
<4— < » = —>
© 2 2 4
o, =2 (1—6‘—2 +(1-4a—2+3a—4) cos26 |. (11.30)
2 r r r
-0y a a'\ .
O, = 1+2— -3—|sin20 (11.31)
2 r r
o _9 (1+a—2)—(1+3a—4) cos26 (11.32)
“o2 r2 ra
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Comments on solution
At this point we should examine the solution to see what insight it provides.

A  Even though the walls of the hole are traction-free, they are not stress-

free, because atr = a, oy = 0 only where cos26 = 1/2.
2

B  The mean normal stress at 6 = £+45° dies off as ?—2

C On the boundary of the hole (r=a) the hoop stress ogg is

Oppl,_, = 01 (1-2c0826), (11.33)
The hoop stress at the perimeter of the hole at 6 =+ n/2 has the same sign

as o; but a higher magnitude, so the hole concentrates stress:
(049),. = 307 - (at 6 = n/2) (11.34)

The hoop stress at 6 = 0 and 6 == is the negative of o7:
(04) = -0 - (at®=0and 6 = m) (11.35)

* Localized tensile stresses can exist even though the ambient
stress field is compressive (and vice-versa).
* The magnitude of the stresses around the perimeter of the hole

are independent of the radius of the hole. So tiny holes can

concentrate stresses just the same as large ones.
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Il _Solution for stresses about a hole under biaxial loading
The solution for the stresses about a hole under biaxial loading can be obtained
by superposing the solutions for uniaxial loads at right angles

R S Y S

- - >

N 71

- . -+ >
- O | O

- . > - >

- - >

Vo Vo, VOV Vo, ¥

We use the solutions of (11.30)-(11.32) to find the stress state for the uniaxial
load of 02 along the y-direction, substituting o2 for 61 and (6 -/ 2) for 6.

The resulting equations differ in form from (11.30)-(11.32) by a sign change in
the trigonometric terms.

© 2 2 4
o, =2 (1—a—2)—(1-4a—2+3a—4)cosze] (11.36)
2 r r r
oy a® _a*) .
0,y =—2|1+2— -3—|sin26. (11.37)
2 r r
oy a a’
O-HH=7 1+r—2 + 1+3r—4 cos26 |. (1138)
Superposing (11.30)-(11.32) and (11.36)-(11.38)
oo o 2 oo oo 2 4
o, =(M)(1—a—2)+ (M)(1-4a—2+3a—4) cos26 . (11.39)
2 r 2 r r

o o 2 4
o, =—(%)(1+2?—2—3?—4)sin26. (11.40)

o0 o0 2 o o 4
on = (B (1 5 - | F5 1 2% Cosze].. (11.41)

Remember that o] and o, refer to remote principal stresses.
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lV_Solution for a pressurized hole with no remote load
We obtain the solution for a pressurized hole here by superposition. Let o, and
o, in the biaxial solution both equal -S (case C). Superpose this solution with

one for remote hydrostatic stress S with no hole (case B).

t s ¢ t t-s ¥ {

< —i — —
Case A Case B Case C
= —<— — + —> —
s Position of hole[d Traction-freed
- boundary L boundary —

\ \ Y t t 1

We check the boundary conditions to make sure that the desired conditions are
satisfied. In case B the position of the hole boundary is shown, but no hole
exists. The following conditions apply at the boundaries r=a and r=cc:

Case B (hydrostatic pressure, no hole)

07/%=S 0;°=0 07" =S8 0;°=0 (0, =0y =S everywhere).
Case C (hydrostatic remote tension, traction-free hole)

0,%=0 0,%=0 o, " =-S o;7=0

Case A (By superposition of A and B)

0,7%=S o;°=0 0" =0 o,"°=0

The stress state between our boundaries is found by setting the remote normal

stresses in (11.39)-(11.41) to -S and superposing a hydrostatic stress S:

(S+S\(,_a*)_ l/s-s a® Lat ] S
Oy = {\ > }(1 rz) {\ 5 }(1 i +3f4)COSZBJJl+S or G"_+Sr2 (11.42)

S-S 2 at).
ar9=—{—(T)(l+2?—2—3?—4)sn2¢91 or o,y =0. (11.43)
_J(s+sy, @ Iis-sy, ,a | &
Ogg = {\ > /(1+ rz) {\ 5 }(l+3 )COSZBJJLS Of Ogg = Sr2 (11.44)

The stresses decay as (a/r)2; so St. Venant's principal holds. Also note that a
pressure in the hole causes a circumferential tension of equal magnitude at the
hole wall. Finally, the mean normal stress equals zero everywhere, and the
shear stress on radial planes is zero everywhere.
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V_Solution for a stressed hole with a remote load

The solution for a pressurized hole with a remote load is obtained here also by
superposition. We will superpose the solution for a stressed hole (case E below)
with the solution for a stress-free hole under a biaxial load (case F below).

t

< —»OO - —
Case D o1 Case E Case F o1

= +
S S Traction-freel]
-— [ > - boundary .
Y 02% y 0%
We again check the boundary conditions to make sure that the desired
conditions are satisfied at the boundaries r= a and r=cc:
Case E (Pressurized hole, no remote load)
o %=S G{ga =0 o{fwﬁ:o =0 o%wﬁ:o =0 G{goo =0.
Case F (biaxial remote load, stress-free hole)
r=a r=a r=0,0=0 _ oo r=0,0=0 _ oo =0 _
Oy " =0 015" =0 Oyr =01  Opg =0y 0O =0
Case D (By superposition of E and F)
r=a r=a r=,0=0 o0 r=,0=0 o0 =
o =S 0O =0 Orr =091 Opg =0y Oy =0

The stress state between our boundaries is given by superposing the solutions
of egs. (11.39)-(11.41) and egs. (11.42)-(11.44).

0 © 2 © o 2 4 2
o = 2E%2 |12 AR 1-42 .32 00529]+Sa—2- (11.45)
2 r [ 2 2 J "
GOO—OOO a2 a4 . 11.46
Opg =~| -2 || 1+2=5 -3, |sin26- (11.46)
2 r r
o0 0 2 0 o0 4 2
S e/ PO I AR/ FIRPC S IOV P (11.47)
00 2 2 2 i J (2
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The Michell Solution - stress components*
(Modified from Barber, 1992, p. 93)

¢ orr ore 000

2 2 0 2

2inr 2Inrn+1 0 (2Inr)+3

Inr 1r2 0 -Ur2

0 0 1r2 0

r3 cos 0 2r cos 2r sind 6r cosd

ro sin 6 2 coso/r 0 0

r (Inr) cosd (cosB)/r (sinB)/r (cosB)/r

(cost)/r (-2 cosp)/r3 (-2.sinB)/r3 (2 cost)/r3

r3 sino 2r sinf -2r cos 0 6rsino

re cosd -2 sinB/r 0 0

r(inr)sing (sinB)/r (-coso)/r (sinB)/r

(sinb)/r (-2.sinB)/r3 (2 cost)/r3 (2.sinB)/r3

rM*2 cosnp (1+n)(2-n)r"N cosnod n(1+n)M  sinnod (1+n)(2+n)rN cos nB
r-"*2 cosno (2+n)(1-n)r-N cosnod n(1-n)r sinnod (1-n)(2-n)rN cosnod
N cosnd n(1-n)r"-2  cos no -n(1-n)r"-2 sinnp -n(1-n)r"-2 cosnod
r-N cos no -n(L+n)r"2 cosno -n(1+n)r"2sinno n(1+n)r-"-2 cosno
rM*2 sinng (1+n)(2-n)r" sinno -n(1+n)M  cosno (1+n)(2+n)rN sin nB
rr"*2sinnp (2+n)(1-n)r'Nsinnod -n(1-n)r'N cosno (1-n)(2-N)rNsinnod
M sinng n(1-n)r"-2 sinnd n(1-n)r"-2  cosnd -n(1-n)r"2  sinng
rNsinng -n(L+n)r"2  sinng n(1+n)r-"-2 cosno n(1+n)r-"-2 sin no
* Values have not been checked independently
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