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ELASTICITY PROBLEMS IN POLAR COORDINATES (10)

| _Main topics

Motivation

Cartesian Approach
Transformation of coordinates

Equilibrium equations in polar coordinates
Biharmonic equation in polar coordinates

Stresses in polar coordinates
otivation
Many key problems in geomechanics (e.g., stress around a borehole,
stress around a tunnel, stress around a magma chamber) involve
cylindrical geometries. Our reference frame should fit the features we
examine.
B Introduces the concept of stress concentration due to factors inside a
body (as opposed to concentrated boundary loads).
Il Approach
A  Transform elastic equations from xy form to polar form
B  Alternative: vector and tensor approaches (see C&P, Ch. 11)
IV Transformation of coordinates (See Fig. 34.1)
A  Rectangular to polar:

>ZITMMmMmOOW>

0 = tan-1(y/x) r=(x2+y2)1/2 (10.1)
B  Polar to rectangular:
X = r cosO y =T sino (10.2)
C  Stress convention: Still use on-in convention (60,,,0,9,0¢;,000)
0
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V_Equilibrium ions in lar rdin

SF, =0
We will assume body forces are negligible.
General form of the terms is ojj = {oijj ref + (oijj gradient)(distance)}.

Oy + Oy dr (r+d—r)d0— Oy + Oy dr (r+£)d9 +
ar 2 2 or 2 2
Jdo 0o
cosﬁ o9 + ro 49 dr—cosﬁ Org - ro 49 dr +
2 00 2 2 00 2
0o 00
_sin %8 Opo + 00 49) 4 _ gin 49 Ogo - 0049} 4 _ o (10.4)
2 0 2 2 00 2
This equation reduces to
2 0% dr 1 +(2a,,,ﬂd0)+ 0 90 dr dr g
or 2 2 00 2 2
2 ‘?G”ﬁdrcosd—a) —(ZOggdrsin d—e) =0
30 2 2 2 (10.5)

Dividing through by dr, and noting that for small angles sin(d6/2)=d6 /2 and
cos(dB/ 2) =1, equation (10.5) reduces to

Jd0, 90, dr? 0o do
(_&;r I’d@) +(O’rrd8) +(#7d9) +( 0751’ d@) _(2099 ?) =0. (10.5)

The third term drops out because dr2 is tiny relative to the other terms.
Dividing this (10.5) through by r do yields
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JdOpr +Grr 1 doy, _086 ~0

- (10.06)

or r r d0 r

This expression is commonly rearranged as (see eq. 5.41 in C&P):

d 10 0,.—0O
Oyr - Grr+ rr 00 ~0. (10.7)
or r 0o r

By summing the forces in the 0-direction one can obtain

1 do Jdo 20

~—r8 , 16 8 _ . (10.8)

r 06 or r
Equations (10.7) and (10.8) are the equilibrium equations in polar coordinates.

VI Biharmoni jon in polar rdin
Our starting point is the biharmonic equation
2 2 2 2
J J % J
Vi =VV=| S+|| 5 +—5]|¢=0, (10.9)
o0x dy ox dy
and the stresses in terms of the stress function ¢:
2 2 2
¢ °¢ —3°¢
a) Oy =—>, b) o =—+%, c) o, = . 10.10
@) on =73 ®) 0, ="1 © oy=70 (10.10)

In order to transform these equations to polar form, we need to know how to
express derivatives with respect to x and y in terms of r and 6. We get these
relationships from the chain rule:

9 _ 39 or 39 39 9 _ o 990

a b 10.11
()o"x dr dx d0 JIx ()dy dr dy 90 dy ( )
We therefore need to know how r and 0 relate to x and y.

(a) 0 =tan-1(y/x) (b) r=(x2 +y2)1/2 (10.12)
(a) X =r cosd (b) y =r sin® (10.13)

Now to the derivatives. Starting with eq. (10.12b)

o 1( 2 2)—1/2 X X

5=5(x +y (2x)=( ; 2)1/2=7=cost9 (10.14)
X" +y
1 -1/2 ,

ﬂ=—(x2+y ) (2y) = u L _sino (10.15)

dy 2 r

( 2 2)1/2=
X +Yy

Now take derivatives of eq. (10.12a). Recalling that d(tan-1u) = du/(1+u?)
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a_e_a(tan_l(y/x))_ T 1 -y -y -sind
ox ox - A 22x _r2_ r
142 1+[2
e ()
(10.16)
Similarly
(16) |
36 o tan” (y/x))_ I dp/» 1 1x_ x cosh
&y_ ady - 2\ 2 oy B N2xx 2 -
] ]
x x
(10.17)

Now we can find the derivatives of ¢ in terms of r and 6 by substituting egs.
(10.16) and (10.17) into chain rule equations (10.11):

in 0 ) 0
dx Or 0 r dy or 00 r

Second derivatives are found by operating on first derivatives.

%9 a(g_(p) a(j_(p) ‘9(3_(1)) sin 6
> = ST X/ cosO - X . (10.19)
ox ox or aQ r
Substituting eq. (10.18a) into eq. (10.19) yields
) (9((9—('15) &(a—qbcose—%—sme) &(a—(i)cos _ 99 sin 0) .
d7¢ ox ar a0 r ar d0 r )sin@
> = = cos 0 —
Jx Ix ar d6 ro.
(10.20)
This can be expanded as
2 2 . .
&2¢ d ;pcosze— d°¢ sin 00050+ Jd¢ sin 6;050
2 T Or d00r r 00 r
ox 5 S (10.21)
0 ¢sin0cost9+a_¢sin 0+<9 ¢ sin 0+<9_¢sin60030
000dr r or r 90%  r? 00 r2
9% ¢
The expression for (9_2 can be found by the same procedure:
y
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92 &2(]5 1204 &2(]) sin Bcos 6 ¢ sin 6 cos O

> =2 504 0 12
dy r , T d (10.22)
+07 ¢sin90089+(?_¢cos 0+(? ¢cos 0 &qﬁsm@cos@
d0dr r ar r 0% 2 20 2

Equation (10.21) is the expression for oyy and eq. (10.22) is the expression
for oxx. Notice the term-by-term "symmetry" between these two equations.

d
These equations can be added to give the expression for g) ;i)
0x dy
Recalling that sin26 + cos26 =1, we get
2 2 2
1 1
a¢+ag>=a¢+_a_¢ ) _v2 (10.23)

2 2

ax<  dy arc ror r &02

The biharmonic equation is obtained by allowing the harmonic equation (10.23)
to operate on itself.

2 2 2 2
> 19 1 g )(& 19 La_)(/,:o_ (10.24)

+__ — —

4 22
Vi =ViVig= +
/ O PR R

or:  rar r? 902

VliStresses in polar coordinates

We are now left with the problem of how to determine the stresses in polar
coordinates from the stress function ¢. We know that the mean normal stress
(and hence twice the mean stress) is an invariant term - it does not depend on
the choice of the system of coordinates. As a result

2
o J ¢
20mean = Oxx + Oyy = Opr +099 = (F"‘ &yz
By comparing equations (10.23 and 10.25) we know that if one of the terms on
the right side of eq. (10.24) equals ogg, then the other terms must sum to

equal o,,. If we can show this for any particular position (r,6), then the result

~V%y. (10.25)

will hold for all positions. We therefore choose a simple case. Let the r-
direction be along the x-axis and the 6-direction be parallel to the y-axis, so
Oyr = Oxc and Ogg = Oyy. The x-axis corresponds to 6 =0° and the y-

direction to 0 =90°. So
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&qu 2 ﬁzq) sin 8cos @ J¢ sin Ocos O
) —>5Cos” 0 — + 5
70 ar d0dr r d0 r
2 = Oyy =066 = 2, . .2 2. .92 . .
dx &¢sm00050+&_¢sm 0+a ¢ sin 0+8_¢sm00056
90dr 1 o r 30> 90 P
(10.26)
For our case of 6 = 0° all terms with sin 6 are zero and this simplifies to
2
7”9
Opp =~ (1 0.27)
07’,2
Similarly
2 2. . :
7, ¢sin29+ d”¢ sinfcos 6 d¢ sin 6 cosb

3¢ r? d0dr  r 0

2 =Oxx=orr=

dy +o72¢ sin@cost9+a_¢cos20+&2¢00826_@sin0cos0.
d0dr r ar r 90%  r? 00 r?
(10.28)
Again 6 = 0°, so allzterms with sin 6 are zero, and this simplifies to
arr=l%+%a—§. (10.29)
ror r< g6

2 2
J 1 o 1 ¢
Note that ogp + orr does indeed equal V¢ _979 + 1% + 1979

art ror 2 96%
The shear stress 0rg can be determined from Oxy and is given by
2
-J 10"(/)) -1 07¢ 1 d¢
a o9 =—"|—"— or O =— +—=—. 10.30
(@) 0= o (rae 0 ara0 T 2 90 ( )
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Stresses in Polar Coordinates

¥
&
%, 5%
[
i R
M
I = (_'_.:2 + '}.'2)1."'2 v
& = tan- ()
r
W=r 5ing
B
X =t G0sH
Tan + Agaa

Oy + LAy

'ﬁar"‘ﬁﬂ;r\/ \/1

G -
" " (Xﬁer - Ay

TEE - AToE

Length of this arc =r+{dr/Z) de
Length of this arc =r-{dr/2) da
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Oy + 4050

Length of this arc =r(dr/2) do

Length of this arc =r-(dr/2) da

Ty - &y

Ty - LTgg
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