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STRESS FUNCTIONS IN RECTANGULAR COORDINATES (09) 

I Main topics 

A Airy stress functions and the biharmonic equation 

B Example 

C Finding stress functions 

D Stress functions where body forces exist (Appendix) 

I I Airy stress functions and the biharmonic equation 

A Airy stress functions (φ) are potential functions for solving 2-D problems 

B We use derivatives of potential functions to get useful quantities, not the 
functions themselves (e.g., U=mgh; dU/dh = mg =Fg) 

C The stress function φ  must be consistent with the boundary conditions for 
a given problem and satisfy the governing equation(s) 

For no body forces (i.e., Fi = 0), the stresses are: 

€ 

σ xx =
∂2φ

∂y2  ,  σ yy =
∂2φ

∂x2  ,  σ xy =
−∂2φ
∂x∂y

,   (9.1) 

Our governing equation for plane strain is 

∇2 σxx + σyy{ } = −
1

1− ν
∂X
∂x

+
∂Y
∂y

 
 
 

 
 
 
. (9.2) 

If the body forces are zero, the right side of (9.2) is zero, and 
∇2 σ xx + σ yy{ } = 0. (9.3) 

This is the Laplace equation 

€ 

∇ 2 f{ } = 0 ,with the term in braces being the first 
stress invariant.  So the first stress invariant satisfies the Laplace equation.  
Dividing both sides of (9.3) by two yields: 
1
2
∇2 σ xx + σ yy{ } = ∇2

σ xx +σ yy

2
 
 
 

 
 
 

= 0.  (9.4) 

So the mean normal stress here satisfies the Laplace equation.  This tells us 
something about how the mean normal stresses at one point is related to the 
mean stress at neighboring points in an elastic body.  For a function that solves 
the Laplace equation, the function value a point on a rectangular grid equals 
average of the function at the four nearest points. 
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The mean normal stress also scales with the change in area of an infinitesimal 
element (i.e., the dilation) 

Stresses determined by an Airy stress function do satisfy the equilibrium 
equations (7.1) 
∂σ xx

∂x
+
∂σ xy

∂y
+ Fx = 0                      

∂σ xy

∂x
+
∂σ yy

∂y
+ Fy = 0  (9.5) 

Subsituting the equations of (9.1) into (9.4) yields  
∂ 3φ

∂y2∂x
+
−∂ 3φ

∂y 2∂x
+ Fx = 0                  

€ 

∂3φ

∂y 2∂x
+
−∂3φ

∂y2∂x
+ Fy = 0 (9.6) 

The stresses defined by the Airy stress function must also satisfy the 
compatibility equation. 

(1− ν ) ∂
2σxx
∂y2

+
∂2σ yy
∂x2

 
 
 

  

 
 
 

  
− ν

∂2σxx
∂x 2

+
∂2σyy
∂y2

 
 
 

  

 
 
 

  
= 2

∂2σ xy
∂x∂y  (9.7) 

This can be re-arranged to give the following: 
∂2σ xx
∂y 2

+
∂2σ yy

∂x 2
 
 
 

 
 
 
− ν

∂2σ xx
∂y 2

+
∂2σ yy

∂x 2
+
∂2σ xx
∂x 2

+
∂2σ yy

∂y2
 
 
 

 
 
 

= 2
∂2σ xy

∂x∂y  (9.8) 

or 

€ 

∂2σ x x

∂y2
+
∂2σy y
∂x2

 
 
 

 
 
 
−ν

∂2 σ x x+σy y( )
∂x 2

+
∂2 σ x x+σy y( )

∂y2
 
 
 

 
 
 

= 2
∂2σ x y

∂x∂y  (9.9) 

From (9.3), the second term in braces is zero: 
∂2σ xx
∂y 2

+
∂2σ yy

∂x 2
 
 
 

 
 
 

= 2
∂2σ xy

∂x∂y  (9.10) 

Expressing the stresses in terms of derivatives of φ (see eq. 9.1) we find 
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∂2 ∂2φ
∂y 2
 

 
 

 

 
 

∂y2
+
∂2 ∂2φ

∂x 2
 
 
 

 
 
 

∂x2

 

 
 

 
 

 

 
 

 
 

= 2
∂2 −∂ 2φ

∂x∂y
 

 
 

 

 
 

∂x∂y
 (9.11) 

Upon re-arranging we obtain: 

€ 

∂4φ

∂y4
+ 2 ∂4φ

∂x 2∂y 2
+
∂4φ

∂x 4
=

∂2

∂y 2
+
∂2

∂x 2
 

 
 

 

 
 
∂2φ

∂y 2
+
∂2φ

∂x 2
 

 
 

 

 
 ≡ ∇4φ = 0 (9.12) 

This is known as the biharmonic equation.  Any stress function φ that 
satisfies this equation is a solution to a 2-D stress problem. 

II I Example 
Let φ = Cx2y.  First check to see if ∇4φ = 0.  
∂ 4φ
∂x4

+ 2 ∂ 4φ
∂x2∂y2

+
∂ 4φ
∂y4

=
∂ 2 (2Cy )
∂x2

+
∂ 2 (2Cy)
∂y2

+ 0 = 0 + 0 + 0 = 0  

So this is a solution.  The stresses are as follows: 

σ xx =
∂ 2φ
∂y2

=
∂ 2 (Cx 2 y)

∂y2
=
∂(Cx 2 )
∂y

= 0 

σ yy =
∂ 2φ
∂x2

=
∂ 2 (Cx 2y)

∂x 2
=
∂ (2Cxy)

∂x
= 2Cy  

σ xy =
−∂ 2φ
∂x∂y

=
−∂ 2 (Cx 2 y)

∂x∂y
=
−∂(2Cxy )

∂y
= −2Cx        σ xy ∝ −x  
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V Finding stress functions 

A Pick a stress function, see which boundary conditions it satisfies, and that 
problem is solved 

B Guess which stress function might solve the problem of interest (semi-
inverse method).  Not the most satisfying method, but it works 

C Solve for the stress function analytically from the body 
geometry and boundary conditions by contour integration (for 
some simple problems) 

If second derivatives of φ yield the stresses, then two integrations of the 
stresses should give φ.  We start with Cauchy's formula 

 
ti = σ ijn j = σ jinj ., or (9.13) 
tx = σ xx nx + σ xy ny        and     ty = σ yx nx +σ yy ny  (9.14) 

Substituting for the stresses in terms of φ (9.1), and for 

€ 

nx  and 

€ 

ny  gives: 

tx =
∂ 2φ

∂y 2
dy
ds

+
−∂ 2φ
∂x∂y

−dx
ds

=
∂ 2φ

∂y2
dy
ds

+
∂ 2φ
∂x∂y

dx
ds

=
d
ds

∂φ
∂y
 

  
 

  
 (9.15) 

ty =
−∂ 2φ
∂x∂y

dy
ds

+
∂ 2φ
∂x2

−dx
ds

= −
d
ds

∂φ
∂x

 
 
 

 
 
 

          
(The chain rule applies)      (9.16) 

By contour integrating (9.15) and (9.16) around the body, we obtain 

d
∂φ
∂x
 
  

 
  C∫ =

∂φ
∂x

= − t ydsC∫ + C1 and d
∂φ
∂y
 

  
 

  C∫ =
∂φ
∂y

= txdsC∫ + C2  (9.17) 

Integrating the tractions over arc AB gives the net force over the arc; this is 
what ∂φ/∂x and ∂φ/∂y mean.   We now apply the chain rule again: 
dφ
ds

=
∂φ
∂x

dx
ds

+
∂φ
∂y

dy
ds

 and dφ
dn

=
∂φ
∂x

dx
dn

+
∂φ
∂y

dy
dn

=
∂φ
∂x

dy
ds

−
∂φ
∂y

dx
ds

 (9.18) 

By integrating ∂φ⁄∂s around the contour of the body we get φ. 

φ =
∂φ
∂sC∫ ds + C3 (9.19) 

C3 is arbitrary but C1 

€ 

(=∂φ /∂x A)and C2 

€ 

(=∂φ /∂y A)are not. 
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Example:  φ = Cx2y   (a) 

€ 

σ xx = 0     (b) 

€ 

σ xy = −2Cx     (c) 

€ 

σ yx = −2Cx     (d) 

€ 

σ yy = 2Cy   

 
 Leg 1 Leg 2 Leg 3 Leg 4 
(e)  nx                   0 1 0 -1 
(f)  ny                   -1 0 1 0 
tx           (ae+bf) 2Cx 0 -2Cx 0 
ty           (ce+df) 0 -2Cx 2Cy 0 
(g) ∂φ/∂x =

€ 

− tydsC∫                    = 2Cxy 

Leg 1 
∂φ/∂x =

€ 

− (0)dx0
x∫ = 0 

Leg 2  
∂φ/∂x =

€ 

I1a − (−2Cx)dy0
y∫ = 2Cxy

 
Leg 3  

∂φ/∂x =

€ 

I2a − (2Cy*)(−dx)
x*
x∫ = 2Cx * y* +2Cy *(x − x*) = 2Cxy *

 
Leg4 
∂φ/∂x =

€ 

I3a − (0)(−dy)y*
y∫ = 0 − 0 = 0  

 
 

€ 

I1a(x*,0) = 0  

 

€ 

I2a(x*, y*) = 2Cx * y* 

 

€ 

I3a(0, y*) = 0  

 

€ 

Fy∑ = 0 

 (h) ∂φ/∂y  

€ 

= txdsC∫                       

€ 

= Cx 2  

Leg 1 
∂φ/∂y =

€ 

(2Cx)dx0
x∫ = Cx2  

Leg 2  

∂φ/∂y = 

€ 

I1b + (0)dy0
y∫ = Cx *2 +0 = Cx *2

 
Leg 3  

∂φ/∂y =  

€ 

I2b + (−2Cx)(−dx)
x*
x∫ = Cx *2 +C(x2 − x*2) = Cx2

 
Leg4 
∂φ/∂y =

€ 

I3b − (0)(−dyy*
y∫ ) = 0 + 0 = 0 

 
 

€ 

I1b(x*,0) = Cx *2  

 

€ 

I2b(x*,y*)= Cx *
2  

 
 

€ 

I3b(0, y*)= 0  

 

€ 

Fx∑ = 0 
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Example:  φ = Cx2y 
 

 
 Leg 1 Leg 2 Leg 3 Leg 4 
(g)        ∂φ/∂x 0 2Cxy 2Cxy* 0 
(h)        ∂φ/∂y 

€ 

Cx 2 

€ 

Cx *2 

€ 

Cx 2 0 
(i)         dx/ds 1 0 -1 0 
(j)         dy/ds 0 1 0 -1 
dφ/ds      
              (gi+hj) 

0 

€ 

Cx *2 

€ 

−2Cxy * 0 

 
 
(k) φ  

€ 

=
dφ
ds
dsC∫                                   

€ 

= Cx 2y  

Leg 1 
 φ = 

€ 

(0)dx0
x∫ = 0  

Leg 2  

φ = 

€ 

I1c + (Cx *2)dy0
y∫ = 0 + Cx *2 y = Cx *2 y

 
Leg 3 

φ=

€ 

I2c + (−2Cxy*)(−dx)
x*
x∫ = Cx *2 y* +Cy * (x2 − x *2) = Cx2y *

 
Leg 4  

φ=

€ 

I3c + (0)(−dx)
x*
x∫ = 0 + 0 = 0 

 

 

€ 

I1c (x*,0) = 0 

 

€ 

I2c (x*,y*)= Cx *
2 y  

 

€ 

I3c (0, y*)= 0  

 
 

 
Note that along all legs, 

€ 

φ = Cx2y  provides a valid solution. 
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V Finding stress functions where body forces exist 

A Find the body force distribution (for gravitational body forces this can be pgh, 
where h is the distance above some datum). 

B Subtract the body force stresses from the total stress field, including along the 
boundary of the body.  The yields a modified problem with modified boundary 
conditions. 

C Solve for the stress function for the modified problem using the procedure above. 

D To obtain the total stress field, superpose the stress field from the modified 
problem (which has had the body force removed) with the body force. 

 
  


