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EQUILIBRIUM & COMPATIBILITY ( 0 7 )

I    Main topics

A Equilibrium

B Compatibility

C Plane strain

D Plane stress

E Anti-plane strain

II   Equilibrium
The equations of equilibrium describe how stress can vary within a body.  They
do not have any information on the rheology of the body, so these equations
apply to viscous fluids, plastics, and elastic solids.  From balancing forces (see
diagram on next page)
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(7.1d)
where F = body force/unit volume.  Commonly the only body force is due to
gravity, so Fvert = ρg.  For true plane strain in the x,y plane there can be no

body force in the z-direction (Chou & Pagano, p. 70, Barber, p. 70).
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EQUATIONS OF EQUILIBRIUM (2-D)

y

x

(σyx + ∆σyx)

σyx

(σxy + ∆σxy)

σxy

(σxx + ∆σxx)σxx

(σyy + ∆σyy)

σyy

Body force X
(per unit area)

Body force Y
(per unit area)

Small area element

∆x

∆x = ∆y 

∆y

We again turn to force balances: Fx∑ = 0 and Fy∑ = 0 .  First we sum forces in

the x-direction:
( + )( ) - ( )( ) +( + )( ) -  ( )( ) + X =  0.σ σ σ σ σ σxx xx xx yx yx yxy y x x x y∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

The terms involving σ xx  and σ yx  fall out.  Dividing through by ∆x∆y gives
( )/( ) +( )/( ) + X =  0.∆ ∆ ∆ ∆σ σxx yxx y

Taking the limit as ∆x and ∆y go to zero: 
∂σ
∂

∂σ

∂
xx yx

x y
+ + X =  0.

Similarly, 
∂σ

∂

∂σ

∂
yy xy

y x
+ + Y =  0.

These are the equations of equilibrium.  Assuming the body forces are constant,
decreases in σ xx  in the x-direction must be balanced by increases in σ yx in the y-

direction, etc.

The moments must balance as well.  If moments are taken about the center of
the box, only the shear stresses contribute to the moment (the normal stresses
and body forces act through the center of the box and hence don’t contribute).
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By inspection of the diagram above, one can see that ∆ ∆σ σyx xy= , so the shear

stresses σ yx  and σ xy  since they must be equal at one point must be equal at all

points.
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III Compatibility

A The strains of all the elements of a body must be compatible so that all

elements "fit together" during deformation without opening holes.

B The compatibility equation brings information on the elastic response of a

body; the equations of equilibrium do not.

C Compatibility conditions can be expressed in terms of strain (better for 2-D

problems) or displacement (better for 3-D problems).
The equations for strain in two dimensions are:
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These three equations are not independent; they rely on only two variables, the
displacements u1 and u2.  We can combine the equations by taking partial

derivatives (we don’t have many other options!):
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Half the sum of (7.3) and (7.4) equals (7.5), so
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This gives us three variables (3 strains) and three equations (7.1a, 7.1b, and
7.6).  These equations are sufficient to determine how the stress and
deformation fields vary within an elastic body with no cavities (need to check
whether displacements are single-valued in a body with cavities).

IV Plane strain

A Displacements permitted only in two directions, and they do not vary as a

function of the third direction; displacements in the third direction are zero

B Restrained, frictionless boundaries

C Infinite 2-D bodies by symmetry ("thick plate")
Suppose displacements are not allowed in the z (or x3) directions.  Then
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The four strains that can be non-zero are:
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D Compatibility equation for plane strain
Substituting (7.7)-(7.12) into the compatibility condition (7.6) yields:
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Dividing both sides through by (1+ν)
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The right side of (7.15) can be derived from the equilibrium equations
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Take the derivatives of (7.16a) with respect to x and (7.16b) relative to y to
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Equating the right side of (7.18) with the left side of (7.15):
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This can be simplified
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This gives the governing equation for 2-D plane strain.  Note that if the body
forces are constant, then the stress variation is independent of the elastic
properties (E and ν) of the material; steel behaves as plastic.
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V Plane stress (Generalized plane stress)

A Stresses in one direction are zero (thin plate approximation)

B A thin plate, plane stress solution is approximate; stresses are really those

averaged over the thickness of the thin plate.  The mid-plane of a thin plate

under "plane stress" actually feels plane strain!

C Plane stress solutions can be converted to plane strain solutions by

substituting 
E

E
=

′

− ′
=

′

− ′1 12ν
ν

ν
ν

; 
 in the plane stress solutions.

VI Anti-plane strain
A Displacements permitted only in one direction (e.g., the z-direction), do

not vary with z, but can vary as a function of x and y.

B Because the displacement fields are one-dimensional, anti-plane strain is
simpler to address than plane strain or plane stress

C Strains (five terms equal zero, including all the normal strains)
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D Stresses (five terms equal zero, including all the normal stresses)
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E Equilibrium (in the absence of body forces)
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F Compatibility (in the absence of body forces)

The displacements must yield compatible strains
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In light of the equilibrium condition (7.42), written for strains,
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Subtracting (7.46) from (7.45) yields
∇ =2

23 0ε (7.47)

Substituting for the shear stress using (7.36) yields
∇ =2

23 0σ (7.48)

One can show by analogous procedures that
∇ =2

13 0ε (7.49)

and
∇ =2

13 0σ (7.50)

So for anti-plane strain, the stresses, strains, and displacements in an x,y,z
reference frame all obey the Laplace equation.

F Plane strain and anti-plane strain solutions are completely independent
and can be superposed.
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