Fractures and Faults in the Earth

Steve Martel

This lecture-seminar course focuses on the most widespread geologic structures in the earth's crust: fractures. Lectures in the first third of the course address underlying principals of elasticity theory and fracture mechanics. The middle third of the course concerns boundary element modeling, an extremely versatile and useful method to numerically model fractures. In the last third of the course we will discuss topics such as formation of joints, dike propagation, mechanics of mid-ocean ridges, and fault mechanics. The course as a whole should provide students with a <u>working</u> knowledge of fracture mechanics theory and an appreciation of its broad application to <u>geologic</u> phenomena.

We will develop a significant numbers of key solutions from fundamentals so that we can have confidence in them, gain insight into them, and understand the assumptions behind them. As a result, students will be able to use this material in other classes and as a foundation for further independent work on fractures. However, some solutions (notably on 3-D fractures) which are difficult to derive will simply be presented.

Grades will be based on homework problems (50%), and class presentations of journal papers (40%) and class participation (10%). Homeworks and the presentations will emphasize use of Matlab.

Textbooks: These are all outstanding books

Barber, J.R., 1993, Elasticity: Kluwer Academic Publishers, Boston, 293 p. Chou, P.C., and Pagano, N.J., 1967, Elasticity: Dover, New York, 290 p. (optional)

Class notes will supplement the texts and papers.

Week	Topics	Reading (Tentative)
1	Introduction; Vectors	Barber Intro,1.1; Chou & Pagano 8.1,8.2,
		11.1,11.2, Barber 1.1.2, 1.1.3
2	Tensors; Stress;	Chou & Pagano 8.3; Chou & Pagano 1, 9.1,
		Barber 1.1
3	Cauchy's Formula; Strain	Chou & Pagano 9.2,; Barber 1.2, 1.3; Chou &
		Pagano 2
4	Equilibrium &	Chou & Pagano 3,4.1, 4.2, 4.3
	Compatibility;	Barber 2.1, 2.2,3
	Boundary value problems;	
5	Stress Functions;	Barber 3,4
	Elasticity: polar	Barber 8.1, 8.2, 8.3, 8.4,
	coordinates (I & II)	
6	Stresses around holes;	Barber 9.2, 9.3;
	Dislocations;	Barber 13.1, 13.2
7	Stress fields around 2-D	Barber 13.3
	fractures;	Atkinson 8.1, 8.2
	Westergaard stress	Westergaard paper
	functions;	Atkinson 8.3, 8.4, 8.5
		Handouts
8	Stress Intensity factors;	Barber 13; Atkinson 1.2.3, 8.5.1
	Fracture energy release	Atkinson 1.2.4
	rate;	Handouts
	3-D fractures	
9	Boundary elements	Crouch & Starfield 3,4,5
10	Boundary elements	Crouch & Starfield 3,4,5
11	Joints	Secor, 1965; Pollard, 1976; Pollard & Muller,
		1976; DeGraff & Aydin, 1988
12	Joints	Pollard & Aydin, 1988; Pollard et al., 1983
	Joints	Olson & Pollard, 1989
	Dikes	Delaney & Pollard, 1981
13	Dikes	Delaney et al., 1986;
	Dikes	Rubin, 1995
	Mid-ocean ridges	Pollard and Aydin, 1984
14	Faults	Segall and Pollard, 1980
	Faults	Bilham & King, 1989
	Faults	Burgmann et al., 1994

1-2

Table of Contents/Tentative Schedule

1-3

15	Faults	Martel, 1996
	Arches at Arches	Avdin, 1994:
	National Park	Fletcher and Pollard, 1975:
	Stylolites	

INTRODUCTION (01)

I Main topics

- A Why are fractures important?
- **B** What is a fracture?
- C Geologic application of engineering fracture mechanics
- D Quantitative methods for predicting fracture patterns

II Why are fractures important?

- A Most common structures in the earth's crust (i.e., where we live)
- B Fractures define plate boundaries (essential tectonic structures)
- C Fractures dictate and record intra-plate deformation
- D Fractures generate earthquakes
- E Fractures locally dominate mass and fluid flow in the earth's crust

1 Groundwater

- a Drinking water
- b Nuclear waste disposal
- c Chemical waste disposal
- d Solid waste disposal
- 2 Geothermal fluids (energy)
- 3 Hydrothermal fluids (ores)
- 4 Petroleum and natural gas (energy)
- 5 Magma (dikes)
- F They control the strength of rock masses (engineering scale)
- G Fracture signal incipient failure of slopes

III What is a fracture?

- A A discontinuity in the deformation field
- B Relatively planar structure
- C Bounded structure

IV Geologic application of engineering fracture mechanics

- A Nucleation
- **B** Propagation
- **C** Termination

V Quantitative methods for predicting fracture patterns

<u>References</u>

Pollard, D.D. & Segall, P. 1987. Theoretical displacements and stresses near fractures in rock. In: *Fracture Mechanics of Rock*, (edited by Atkinson, B.K.). Academic Press, London, 277-349.